Preliminary Analysis

Initial Correlation Check

corrs <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ 1, data = Experiment_2_demographics, family = student(), cores = parallel::detectCores(), prior = c(
  prior(gamma(2, 0.1), class = "nu"),
  prior(normal(0, 1), class = "Intercept"),
  prior(normal(0.56, 1.56), class = "sigma", resp = "ethicalPreference"),
  prior(normal(0.21, 1.59), class = "sigma", resp = "financialPreference"),
  prior(normal(0.31, 2.49), class = "sigma", resp = "healthAndSafetyPreference"),
  prior(normal(0.63, 1.86), class = "sigma", resp = "recreationalPreference"),
  prior(normal(0.83, 1.83), class = "sigma", resp = "socialPreference")
), iter = 5000, warmup = 500, backend = "cmdstanr")
saveRDS(corrs, "DOSPERT_Correlation.rds")
summary(corrs)
##  Family: MV(student, student, student, student, student) 
##   Links: mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity 
## Formula: ethicalPreference ~ 1 
##          financialPreference ~ 1 
##          socialPreference ~ 1 
##          healthAndSafetyPreference ~ 1 
##          recreationalPreference ~ 1 
##    Data: Experiment_2_demographics (Number of observations: 289) 
##   Draws: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
##          total post-warmup draws = 18000
## 
## Population-Level Effects: 
##                                     Estimate Est.Error l-95% CI u-95% CI Rhat
## ethicalPreference_Intercept             2.70      0.88     0.96     4.43 1.00
## financialPreference_Intercept           6.10      0.98     4.18     8.01 1.00
## socialPreference_Intercept              5.60      0.95     3.73     7.45 1.00
## healthAndSafetyPreference_Intercept     3.36      0.86     1.68     5.04 1.00
## recreationalPreference_Intercept        2.82      0.90     1.03     4.56 1.00
##                                     Bulk_ESS Tail_ESS
## ethicalPreference_Intercept            10551    13179
## financialPreference_Intercept          16939    13496
## socialPreference_Intercept             17666    12806
## healthAndSafetyPreference_Intercept    13924    12289
## recreationalPreference_Intercept       16897    13749
## 
## Family Specific Parameters: 
##                                 Estimate Est.Error l-95% CI u-95% CI Rhat
## sigma_ethicalPreference            11.66      0.64    10.42    12.94 1.00
## sigma_financialPreference          19.66      0.89    17.92    21.39 1.00
## sigma_socialPreference             16.48      0.81    14.91    18.08 1.00
## sigma_healthAndSafetyPreference    11.92      0.69    10.60    13.30 1.00
## sigma_recreationalPreference       14.64      0.75    13.16    16.12 1.00
## nu                                  2.82      0.50     1.99     3.96 1.00
## nu_ethicalPreference                1.00      0.00     1.00     1.00   NA
## nu_financialPreference              1.00      0.00     1.00     1.00   NA
## nu_socialPreference                 1.00      0.00     1.00     1.00   NA
## nu_healthAndSafetyPreference        1.00      0.00     1.00     1.00   NA
## nu_recreationalPreference           1.00      0.00     1.00     1.00   NA
##                                 Bulk_ESS Tail_ESS
## sigma_ethicalPreference             9104    12124
## sigma_financialPreference           8970    10705
## sigma_socialPreference              9476    11174
## sigma_healthAndSafetyPreference     8254    10112
## sigma_recreationalPreference        9032    10786
## nu                                  8464    10009
## nu_ethicalPreference                  NA       NA
## nu_financialPreference                NA       NA
## nu_socialPreference                   NA       NA
## nu_healthAndSafetyPreference          NA       NA
## nu_recreationalPreference             NA       NA
## 
## Residual Correlations: 
##                                                          Estimate Est.Error
## rescor(ethicalPreference,financialPreference)                0.87      0.01
## rescor(ethicalPreference,socialPreference)                   0.83      0.02
## rescor(financialPreference,socialPreference)                 0.90      0.01
## rescor(ethicalPreference,healthAndSafetyPreference)          0.90      0.01
## rescor(financialPreference,healthAndSafetyPreference)        0.88      0.01
## rescor(socialPreference,healthAndSafetyPreference)           0.89      0.01
## rescor(ethicalPreference,recreationalPreference)             0.84      0.02
## rescor(financialPreference,recreationalPreference)           0.89      0.01
## rescor(socialPreference,recreationalPreference)              0.90      0.01
## rescor(healthAndSafetyPreference,recreationalPreference)     0.91      0.01
##                                                          l-95% CI u-95% CI Rhat
## rescor(ethicalPreference,financialPreference)                0.84     0.90 1.00
## rescor(ethicalPreference,socialPreference)                   0.78     0.86 1.00
## rescor(financialPreference,socialPreference)                 0.87     0.92 1.00
## rescor(ethicalPreference,healthAndSafetyPreference)          0.87     0.92 1.00
## rescor(financialPreference,healthAndSafetyPreference)        0.85     0.90 1.00
## rescor(socialPreference,healthAndSafetyPreference)           0.86     0.91 1.00
## rescor(ethicalPreference,recreationalPreference)             0.81     0.88 1.00
## rescor(financialPreference,recreationalPreference)           0.86     0.91 1.00
## rescor(socialPreference,recreationalPreference)              0.88     0.92 1.00
## rescor(healthAndSafetyPreference,recreationalPreference)     0.89     0.93 1.00
##                                                          Bulk_ESS Tail_ESS
## rescor(ethicalPreference,financialPreference)                8958    12554
## rescor(ethicalPreference,socialPreference)                   8749    12143
## rescor(financialPreference,socialPreference)                14771    15179
## rescor(ethicalPreference,healthAndSafetyPreference)          9376    12550
## rescor(financialPreference,healthAndSafetyPreference)       14951    14056
## rescor(socialPreference,healthAndSafetyPreference)          16555    14465
## rescor(ethicalPreference,recreationalPreference)             9113    12075
## rescor(financialPreference,recreationalPreference)          14713    14902
## rescor(socialPreference,recreationalPreference)             16673    14955
## rescor(healthAndSafetyPreference,recreationalPreference)    16542    15376
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Demographics Section

Demograpbic table

demo_table_j <- Experiment_2_demographics
table1(~ factor(Gender) + Age + Education + Ethnicity + Ethnic_Origin, data = demo_table_j)
Overall
(N=289)
factor(Gender)
1 124 (42.9%)
2 155 (53.6%)
3 8 (2.8%)
6 2 (0.7%)
Age
Mean (SD) 29.3 (9.84)
Median [Min, Max] 26.0 [18.0, 78.0]
Education
1 5 (1.7%)
2 18 (6.2%)
3 65 (22.5%)
4 130 (45.0%)
5 62 (21.5%)
6 4 (1.4%)
7 5 (1.7%)
Ethnicity
1 222 (76.8%)
2 7 (2.4%)
3 5 (1.7%)
4 51 (17.6%)
7 3 (1.0%)
8 1 (0.3%)
Ethnic_Origin
2 16 (5.5%)
3 200 (69.2%)
4 6 (2.1%)
5 7 (2.4%)
7 50 (17.3%)
8 10 (3.5%)
Experiment_2_demographics$Gender <- as.factor(Experiment_2_demographics$Gender)
ggplot(Experiment_2_demographics, aes(x = Gender, fill = Gender)) +
  geom_histogram(stat = "count") +
  labs(x = "Gender2") +
  scale_x_discrete(labels = c("Female", "Male", "Gender \nNon-Binary", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 160, 10), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

d2 <- Experiment_2_demographics_Gender %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Gender")), ~ as.factor(recode(., "1" = "Female", "2" = "Male"))) %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Ethnicity")), ~ as.factor(recode(.,
    "1" = "White",
    "2" = "Mixed  or  Multi-ethnic",
    "3" = "Asian  or  Asian Scottish  or  Asian British",
    "4" = "African",
    "5" = "Caribbean  or  Black",
    "6" = "Arab ",
    "7" = "Other ethnicity",
    "8" = "Prefer not  to respond"
  ))) %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Ethnic_Origin")), ~ as.factor(recode(.,
    "1" = "Scottish",
    "2" = "English",
    "3" = "European",
    "4" = "Latin American",
    "5" = "Asian",
    "6" = "Arab",
    "7" = "African",
    "8" = "Other",
    "9" = "Prefer not to respond"
  ))) %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Education")), ~ as.factor(recode(.,
    "1" = "Primary School ",
    "2" = "GCSEs  or  Equivalent",
    "3" = "A-Levels  or  Equivalent",
    "4" = "University  Undergraduate  Program",
    "5" = "University  Post-Graduate  Program",
    "6" = "Doctoral  Degree",
    "7" = "Prefer not  to respond"
  )))
Experiment_2_demographics_Gender$Gender <- as.factor(Experiment_2_demographics_Gender$Gender)
d2 <- Experiment_2_demographics_Gender %>%
  mutate_at(vars(locfunc(Experiment_2_demographics_Gender, "Gender")), ~ as.factor(recode(., "1" = "Female", "2" = "Male")))
age_plot <- ggplot(d2, aes(x = Age, fill = Gender)) +
  geom_bar(data = subset(d2, Gender == "Female")) +
  geom_bar(data = subset(d2, Gender == "Male"), aes(y = ..count.. * (-1))) +
  scale_y_continuous(breaks = seq(-30, 30, 1), labels = abs(seq(-30, 30, 1))) +
  scale_x_continuous(breaks = seq(20, 80, 5)) +
  ylab("Number of Participants") +
  xlab("Age of Participants (In years)") +
  geom_hline(yintercept = 0) +
  coord_flip()
ggplotly(age_plot)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
Experiment_2_demographics$Ethnicity <- as.factor(Experiment_2_demographics$Ethnicity)
ggplot(Experiment_2_demographics, aes(x = Ethnicity, fill = Ethnicity)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("White ", "Mixed \nor \nMulti-ethnic ", "Asian \nor \nAsian Scottish \nor \nAsian British", "African", "Caribbean \nor \nBlack", "Arab ", "Other ethnicity", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Experiment_2_demographics$Ethnic_Origin <- as.factor(Experiment_2_demographics$Ethnic_Origin)
ggplot(Experiment_2_demographics, aes(x = Ethnic_Origin, fill = Ethnic_Origin)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("Scottish", "English", "European", "Latin \nAmerican", "Asian", "Arab", "African", "Other", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

Experiment_2_demographics$Education <- as.factor(Experiment_2_demographics$Education)
ggplot(Experiment_2_demographics, aes(x = Education, fill = Education)) +
  geom_histogram(stat = "count") +
  scale_x_discrete(labels = c("Primary School ", "GCSEs \nor \nEquivalent", "A-Levels \nor \nEquivalent", "University \nUndergraduate \nProgram", "University \nPost-Graduate \nProgram", "Doctoral \nDegree", "Prefer not \nto respond"), guide = "prism_offset") +
  scale_y_continuous(breaks = seq(0, 250, 20), guide = "prism_offset") +
  theme(legend.position = "none")
## Warning: Ignoring unknown parameters: binwidth, bins, pad

## B-PNI distribution

B_PNI_1 <- ggplot(Experiment_2_demographics, aes(x = Age, y = PNI_Sum)) +
  geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
  geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8)
ggplotly(B_PNI_1)
## brms SEM attempt
riska <- lm(riskBenefitSum ~ riskSum, data = Experiment_2_demographics)
riskb <- lm(riskBenefitSum ~ riskPerceptionSum, data = Experiment_2_demographics)
Experiment_2_demographics$generalRiskPreference <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2]) + (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])

Experiment_2_demographics$generalExpectedBenefits <- (Experiment_2_J_Analysis[, "riskBenefitSum"] * riska$coefficients[2])
Experiment_2_demographics$generalPerceievedRisk <- (Experiment_2_J_Analysis[, "riskPerceptionSum"] * riskb$coefficients[2])

Experiment_2_demographics$generalRiskPreference_z <- scale(Experiment_2_demographics$generalRiskPreference)
Experiment_2_demographics$generalExpectedBenefits_z <- scale(Experiment_2_demographics$generalExpectedBenefits)
Experiment_2_demographics$generalPerceievedRisk_z <- scale(Experiment_2_demographics$generalPerceievedRisk)

Experiment_2_demographics$UMSSum_z <- scale(Experiment_2_demographics$UMSSum)
Experiment_2_demographics$UMSAffiliationSum_z <- scale(Experiment_2_demographics$UMSAffiliationSum)
Experiment_2_demographics$UMSIntimacySum_z <- scale(Experiment_2_demographics$UMSIntimacySum)


Experiment_2_demographics_Gender <- Experiment_2_demographics[!(Experiment_2_demographics$Gender == "3" | Experiment_2_demographics$Gender == "6"), ]

B-PNI distribution: DoPL

B_PNI_1 <- ggplot(Experiment_2_demographics, aes(x = Age, y = PNI_Sum)) +
  geom_point(size = 0.7, alpha = 0.8, position = "jitter") +
  geom_smooth(method = "lm", se = FALSE, size = 2, alpha = 0.8) +
  labs(x = "Age of Participant (in Years)", y = "Brief-Pathological Narcissism Inventory") +
  scale_x_continuous(breaks = seq(20, 80, 5)) +
  scale_y_continuous(breaks = seq(50, 150, 10))

ggplotly(B_PNI_1)
## `geom_smooth()` using formula 'y ~ x'

Gender Interaction

gen_mod_1 <- brm(generalRiskPreference ~ prestige_Sum + leadership_Sum + dominance_Sum + Gender + Age,
  data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, backend = "cmdstanr", cores = parallel::detectCores(),
  prior = c(
    prior(normal(0, 1), class = "Intercept"),
    prior(normal(1.04, 4.92), class = "b", coef = "dominance_Sum"),
    prior(normal(-1.86, 2.04), class = "b", coef = "prestige_Sum"),
    prior(normal(-3.87, 0.04), class = "b", coef = "leadership_Sum"),
    prior(normal(-3, 1), class = "b", coef = "Gender2"),
    prior(normal(-3, 1), class = "b", coef = "Age")
  )
)

saveRDS(gen_mod_1, "gen_mod_1.rds")
summary(gen_mod_1)

gen_mod_2 <- brm(generalRiskPreference ~ prestige_Sum + PNI_Sum_z + leadership_Sum + dominance_Sum + Gender + Age,
  data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, backend = "cmdstanr", cores = parallel::detectCores(),
  prior = c(
    prior(normal(0, 1), class = "Intercept"),
    prior(normal(1.04, 4.92), class = "b", coef = "dominance_Sum"),
    prior(normal(-1.86, 2.04), class = "b", coef = "prestige_Sum"),
    prior(normal(-3.87, 0.04), class = "b", coef = "leadership_Sum"),
    prior(normal(0, 1), class = "b", coef = "PNI_Sum_z"),
    prior(normal(-3, 1), class = "b", coef = "Gender2"),
    prior(normal(-3, 1), class = "b", coef = "Age")
  )
)

saveRDS(gen_mod_2, "gen_mod_2.rds")
summary(gen_mod_2)

correlation_df <- Experiment_2_demographics[, grepl("_z", names(Experiment_2_demographics))]

correlation_df$dominance_Sum_z <- Experiment_2_demographics$dominance_Sum_z
correlation_df$prestige_Sum_z <- Experiment_2_demographics$prestige_Sum_z
correlation_df$leadership_Sum_z <- Experiment_2_demographics$leadership_Sum_z

corr_1 <- cor(correlation_df)

corrplot(corr_1, method = "circle", type = "lower")
summary(gen_mod_1)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ prestige_Sum + leadership_Sum + dominance_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         18.87      2.38    14.11    23.49 1.00    54522    28136
## prestige_Sum       0.17      0.73    -1.27     1.59 1.00    51247    28839
## leadership_Sum    -3.86      0.04    -3.94    -3.78 1.00    55727    26813
## dominance_Sum      4.23      0.77     2.72     5.75 1.00    50773    27529
## Gender2           -1.48      0.84    -3.11     0.14 1.00    54450    27704
## Age               -0.23      0.08    -0.38    -0.08 1.00    53863    27704
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    12.28      0.64    11.09    13.63 1.00    40760    30058
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(gen_mod_2)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ prestige_Sum + PNI_Sum_z + leadership_Sum + dominance_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         18.85      2.40    14.08    23.50 1.00    55990    28431
## prestige_Sum       0.16      0.75    -1.31     1.62 1.00    55288    27642
## PNI_Sum_z          0.06      0.68    -1.29     1.39 1.00    55284    29946
## leadership_Sum    -3.86      0.04    -3.94    -3.78 1.00    60132    26255
## dominance_Sum      4.20      0.81     2.62     5.78 1.00    50874    28587
## Gender2           -1.48      0.85    -3.14     0.18 1.00    52557    27254
## Age               -0.23      0.08    -0.38    -0.08 1.00    57117    28831
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    12.30      0.64    11.12    13.62 1.00    43697    30530
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
ggcorrplot(corr_1, type = "lower") +
  scale_x_discrete(labels = c(seq(1, 26, 1))) +
  scale_y_discrete(labels = corr_labels) +
  theme(axis.text.x = element_text(angle = 0, hjust = 1))

Gender Interaction: DOSPERT

m1_int <- brm(generalRiskPreference ~ dominance_Sum * Gender + leadership_Sum * Gender + prestige_Sum * Gender + Age,
  data = Experiment_2_demographics_Gender, warmup = 1000, iter = 10000, backend = "cmdstanr",
  prior = c(
    prior(normal(0, 1), class = "Intercept"),
    prior(normal(1.04, 4.92), class = "b", coef = "dominance_Sum"),
    prior(normal(-1.86, 2.04), class = "b", coef = "prestige_Sum"),
    prior(normal(-3.87, 0.04), class = "b", coef = "leadership_Sum"),
    prior(normal(-1.93, 1.91), class = "b", coef = "dominance_Sum:Gender2"),
    prior(normal(-1.85, 1.98), class = "b", coef = "Gender2:prestige_Sum"),
    prior(normal(-1.88, 1.98), class = "b", coef = "Gender2:leadership_Sum"),
    prior(normal(-4.74, 1), class = "b", coef = "Age")
  ), save_pars = save_pars(all = T)
)
summary(m1_int)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ dominance_Sum * Gender + leadership_Sum * Gender + prestige_Sum * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                 18.80      2.35    14.13    23.35 1.00    47266
## dominance_Sum              3.81      1.02     1.82     5.80 1.00    28559
## Gender2                    2.36      1.46    -0.52     5.22 1.00    43123
## leadership_Sum            -3.86      0.04    -3.94    -3.79 1.00    49052
## prestige_Sum               0.48      0.87    -1.24     2.20 1.00    30005
## Age                       -0.28      0.07    -0.43    -0.14 1.00    44484
## dominance_Sum:Gender2     -0.63      1.18    -2.96     1.70 1.00    28801
## Gender2:leadership_Sum     2.84      0.93     1.01     4.65 1.00    41985
## Gender2:prestige_Sum      -1.30      1.14    -3.54     0.94 1.00    32773
##                        Tail_ESS
## Intercept                 27942
## dominance_Sum             27922
## Gender2                   27833
## leadership_Sum            28005
## prestige_Sum              26850
## Age                       27664
## dominance_Sum:Gender2     28769
## Gender2:leadership_Sum    28878
## Gender2:prestige_Sum      29251
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    11.77      0.62    10.63    13.05 1.00    32830    28713
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m1_int_hdi <- bayestestR::hdi(m1_int, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_hdi[
  sign(m1_int_hdi$CI_low) == sign(m1_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 14.19 23.40
b_dominance_Sum 0.95 1.82 5.80
b_leadership_Sum 0.95 -3.94 -3.78
b_Age 0.95 -0.43 -0.14
b_Gender2:leadership_Sum 0.95 0.99 4.63
m_gen <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ Gender + Age)

m1 <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
  prior = prior_test_1, warmup = 1000, iter = 40000, save_pars = save_pars(all = TRUE)
)
summary(m1)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 40000; warmup = 1000; thin = 1;
##          total post-warmup draws = 156000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## ethicalPreferencez_Intercept                  0.19      0.23    -0.26     0.64
## financialPreferencez_Intercept                0.01      0.25    -0.48     0.51
## socialPreferencez_Intercept                   1.24      0.23     0.78     1.69
## healthAndSafetyPreferencez_Intercept          0.52      0.24     0.04     1.00
## recreationalPreferencez_Intercept             0.51      0.24     0.03     0.99
## ethicalPreferencez_dominance_Sum              0.33      0.06     0.21     0.45
## ethicalPreferencez_prestige_Sum              -0.05      0.06    -0.17     0.07
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06
## ethicalPreferencez_Gender                     0.27      0.11     0.05     0.48
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01
## financialPreferencez_dominance_Sum            0.09      0.06    -0.04     0.21
## financialPreferencez_prestige_Sum            -0.05      0.07    -0.18     0.08
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22
## financialPreferencez_Gender                   0.19      0.12    -0.05     0.42
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00
## socialPreferencez_dominance_Sum               0.01      0.06    -0.11     0.13
## socialPreferencez_prestige_Sum                0.01      0.06    -0.11     0.13
## socialPreferencez_leadership_Sum              0.28      0.06     0.15     0.40
## socialPreferencez_Gender                     -0.45      0.11    -0.67    -0.24
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.01
## healthAndSafetyPreferencez_dominance_Sum      0.30      0.06     0.18     0.42
## healthAndSafetyPreferencez_prestige_Sum      -0.24      0.06    -0.36    -0.11
## healthAndSafetyPreferencez_leadership_Sum     0.00      0.06    -0.12     0.13
## healthAndSafetyPreferencez_Gender             0.01      0.12    -0.21     0.24
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01
## recreationalPreferencez_dominance_Sum         0.16      0.06     0.04     0.28
## recreationalPreferencez_prestige_Sum         -0.27      0.06    -0.39    -0.16
## recreationalPreferencez_leadership_Sum        0.18      0.06     0.05     0.30
## recreationalPreferencez_Gender                0.23      0.12    -0.00     0.45
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02
##                                           Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept              1.00   212551   133987
## financialPreferencez_Intercept            1.00   228435   131270
## socialPreferencez_Intercept               1.00   220488   135807
## healthAndSafetyPreferencez_Intercept      1.00   207755   137383
## recreationalPreferencez_Intercept         1.00   219477   135665
## ethicalPreferencez_dominance_Sum          1.00   184984   130137
## ethicalPreferencez_prestige_Sum           1.00   177533   129800
## ethicalPreferencez_leadership_Sum         1.00   179079   133837
## ethicalPreferencez_Gender                 1.00   197403   131456
## ethicalPreferencez_Age                    1.00   204831   134759
## financialPreferencez_dominance_Sum        1.00   197536   129809
## financialPreferencez_prestige_Sum         1.00   196888   131918
## financialPreferencez_leadership_Sum       1.00   193177   130283
## financialPreferencez_Gender               1.00   211525   132426
## financialPreferencez_Age                  1.00   223451   130857
## socialPreferencez_dominance_Sum           1.00   200558   135972
## socialPreferencez_prestige_Sum            1.00   192297   130284
## socialPreferencez_leadership_Sum          1.00   188379   130679
## socialPreferencez_Gender                  1.00   204118   132949
## socialPreferencez_Age                     1.00   209135   136084
## healthAndSafetyPreferencez_dominance_Sum  1.00   164714   130272
## healthAndSafetyPreferencez_prestige_Sum   1.00   166704   130732
## healthAndSafetyPreferencez_leadership_Sum 1.00   163164   133531
## healthAndSafetyPreferencez_Gender         1.00   179963   134646
## healthAndSafetyPreferencez_Age            1.00   193445   132048
## recreationalPreferencez_dominance_Sum     1.00   183480   134769
## recreationalPreferencez_prestige_Sum      1.00   190445   134418
## recreationalPreferencez_leadership_Sum    1.00   179093   130894
## recreationalPreferencez_Gender            1.00   194446   130133
## recreationalPreferencez_Age               1.00   203011   133743
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00
## sigma_financialPreferencez           0.98      0.04     0.90     1.06 1.00
## sigma_socialPreferencez              0.90      0.04     0.83     0.98 1.00
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00
##                                  Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez           215952   127953
## sigma_financialPreferencez         240264   126716
## sigma_socialPreferencez            238825   122865
## sigma_healthAndSafetyPreferencez   202093   133684
## sigma_recreationalPreferencez      223714   129971
## 
## Residual Correlations: 
##                                                            Estimate Est.Error
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06
## rescor(financialPreferencez,socialPreferencez)                 0.23      0.06
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06
## rescor(socialPreferencez,recreationalPreferencez)              0.38      0.05
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05
##                                                            l-95% CI u-95% CI
## rescor(ethicalPreferencez,financialPreferencez)                0.25     0.46
## rescor(ethicalPreferencez,socialPreferencez)                   0.01     0.24
## rescor(financialPreferencez,socialPreferencez)                 0.12     0.34
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.41     0.58
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.09     0.32
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.20     0.42
## rescor(ethicalPreferencez,recreationalPreferencez)             0.07     0.30
## rescor(financialPreferencez,recreationalPreferencez)           0.10     0.32
## rescor(socialPreferencez,recreationalPreferencez)              0.28     0.48
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.35     0.54
##                                                            Rhat Bulk_ESS
## rescor(ethicalPreferencez,financialPreferencez)            1.00   225531
## rescor(ethicalPreferencez,socialPreferencez)               1.00   215552
## rescor(financialPreferencez,socialPreferencez)             1.00   216115
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)      1.00   193681
## rescor(financialPreferencez,healthAndSafetyPreferencez)    1.00   206857
## rescor(socialPreferencez,healthAndSafetyPreferencez)       1.00   212954
## rescor(ethicalPreferencez,recreationalPreferencez)         1.00   196279
## rescor(financialPreferencez,recreationalPreferencez)       1.00   203114
## rescor(socialPreferencez,recreationalPreferencez)          1.00   199639
## rescor(healthAndSafetyPreferencez,recreationalPreferencez) 1.00   201961
##                                                            Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)              126597
## rescor(ethicalPreferencez,socialPreferencez)                 132800
## rescor(financialPreferencez,socialPreferencez)               128669
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)        135547
## rescor(financialPreferencez,healthAndSafetyPreferencez)      132917
## rescor(socialPreferencez,healthAndSafetyPreferencez)         127137
## rescor(ethicalPreferencez,recreationalPreferencez)           134270
## rescor(financialPreferencez,recreationalPreferencez)         131793
## rescor(socialPreferencez,recreationalPreferencez)            130658
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)   130657
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m1_hdi <- bayestestR::hdi(m1, effects = "fixed", component = "conditional", ci = .95)
kable(m1_hdi[
  sign(m1_hdi$CI_low) == sign(m1_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_dominance_Sum 0.95 0.21 0.44
b_ethicalPreferencez_leadership_Sum 0.95 -0.30 -0.06
b_ethicalPreferencez_Gender 0.95 0.05 0.48
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.78 1.69
b_socialPreferencez_leadership_Sum 0.95 0.15 0.40
b_socialPreferencez_Gender 0.95 -0.67 -0.23
b_socialPreferencez_Age 0.95 -0.03 -0.01
b_healthAndSafetyPreferencez_Intercept 0.95 0.04 1.00
b_healthAndSafetyPreferencez_dominance_Sum 0.95 0.18 0.43
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.36 -0.11
b_healthAndSafetyPreferencez_Age 0.95 -0.03 -0.01
b_recreationalPreferencez_Intercept 0.95 0.04 0.99
b_recreationalPreferencez_dominance_Sum 0.95 0.04 0.28
b_recreationalPreferencez_prestige_Sum 0.95 -0.39 -0.16
b_recreationalPreferencez_leadership_Sum 0.95 0.05 0.30
b_recreationalPreferencez_Age 0.95 -0.04 -0.02

m1_int <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
  prior = prior_gender_int, warmup = 1000, iter = 10000, save_pars = save_pars(all = TRUE)
)
summary(m1)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 40000; warmup = 1000; thin = 1;
##          total post-warmup draws = 156000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## ethicalPreferencez_Intercept                  0.19      0.23    -0.26     0.64
## financialPreferencez_Intercept                0.01      0.25    -0.48     0.51
## socialPreferencez_Intercept                   1.24      0.23     0.78     1.69
## healthAndSafetyPreferencez_Intercept          0.52      0.24     0.04     1.00
## recreationalPreferencez_Intercept             0.51      0.24     0.03     0.99
## ethicalPreferencez_dominance_Sum              0.33      0.06     0.21     0.45
## ethicalPreferencez_prestige_Sum              -0.05      0.06    -0.17     0.07
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06
## ethicalPreferencez_Gender                     0.27      0.11     0.05     0.48
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01
## financialPreferencez_dominance_Sum            0.09      0.06    -0.04     0.21
## financialPreferencez_prestige_Sum            -0.05      0.07    -0.18     0.08
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22
## financialPreferencez_Gender                   0.19      0.12    -0.05     0.42
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00
## socialPreferencez_dominance_Sum               0.01      0.06    -0.11     0.13
## socialPreferencez_prestige_Sum                0.01      0.06    -0.11     0.13
## socialPreferencez_leadership_Sum              0.28      0.06     0.15     0.40
## socialPreferencez_Gender                     -0.45      0.11    -0.67    -0.24
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.01
## healthAndSafetyPreferencez_dominance_Sum      0.30      0.06     0.18     0.42
## healthAndSafetyPreferencez_prestige_Sum      -0.24      0.06    -0.36    -0.11
## healthAndSafetyPreferencez_leadership_Sum     0.00      0.06    -0.12     0.13
## healthAndSafetyPreferencez_Gender             0.01      0.12    -0.21     0.24
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01
## recreationalPreferencez_dominance_Sum         0.16      0.06     0.04     0.28
## recreationalPreferencez_prestige_Sum         -0.27      0.06    -0.39    -0.16
## recreationalPreferencez_leadership_Sum        0.18      0.06     0.05     0.30
## recreationalPreferencez_Gender                0.23      0.12    -0.00     0.45
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02
##                                           Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept              1.00   212551   133987
## financialPreferencez_Intercept            1.00   228435   131270
## socialPreferencez_Intercept               1.00   220488   135807
## healthAndSafetyPreferencez_Intercept      1.00   207755   137383
## recreationalPreferencez_Intercept         1.00   219477   135665
## ethicalPreferencez_dominance_Sum          1.00   184984   130137
## ethicalPreferencez_prestige_Sum           1.00   177533   129800
## ethicalPreferencez_leadership_Sum         1.00   179079   133837
## ethicalPreferencez_Gender                 1.00   197403   131456
## ethicalPreferencez_Age                    1.00   204831   134759
## financialPreferencez_dominance_Sum        1.00   197536   129809
## financialPreferencez_prestige_Sum         1.00   196888   131918
## financialPreferencez_leadership_Sum       1.00   193177   130283
## financialPreferencez_Gender               1.00   211525   132426
## financialPreferencez_Age                  1.00   223451   130857
## socialPreferencez_dominance_Sum           1.00   200558   135972
## socialPreferencez_prestige_Sum            1.00   192297   130284
## socialPreferencez_leadership_Sum          1.00   188379   130679
## socialPreferencez_Gender                  1.00   204118   132949
## socialPreferencez_Age                     1.00   209135   136084
## healthAndSafetyPreferencez_dominance_Sum  1.00   164714   130272
## healthAndSafetyPreferencez_prestige_Sum   1.00   166704   130732
## healthAndSafetyPreferencez_leadership_Sum 1.00   163164   133531
## healthAndSafetyPreferencez_Gender         1.00   179963   134646
## healthAndSafetyPreferencez_Age            1.00   193445   132048
## recreationalPreferencez_dominance_Sum     1.00   183480   134769
## recreationalPreferencez_prestige_Sum      1.00   190445   134418
## recreationalPreferencez_leadership_Sum    1.00   179093   130894
## recreationalPreferencez_Gender            1.00   194446   130133
## recreationalPreferencez_Age               1.00   203011   133743
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00
## sigma_financialPreferencez           0.98      0.04     0.90     1.06 1.00
## sigma_socialPreferencez              0.90      0.04     0.83     0.98 1.00
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00
##                                  Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez           215952   127953
## sigma_financialPreferencez         240264   126716
## sigma_socialPreferencez            238825   122865
## sigma_healthAndSafetyPreferencez   202093   133684
## sigma_recreationalPreferencez      223714   129971
## 
## Residual Correlations: 
##                                                            Estimate Est.Error
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06
## rescor(financialPreferencez,socialPreferencez)                 0.23      0.06
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06
## rescor(socialPreferencez,recreationalPreferencez)              0.38      0.05
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05
##                                                            l-95% CI u-95% CI
## rescor(ethicalPreferencez,financialPreferencez)                0.25     0.46
## rescor(ethicalPreferencez,socialPreferencez)                   0.01     0.24
## rescor(financialPreferencez,socialPreferencez)                 0.12     0.34
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.41     0.58
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.09     0.32
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.20     0.42
## rescor(ethicalPreferencez,recreationalPreferencez)             0.07     0.30
## rescor(financialPreferencez,recreationalPreferencez)           0.10     0.32
## rescor(socialPreferencez,recreationalPreferencez)              0.28     0.48
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.35     0.54
##                                                            Rhat Bulk_ESS
## rescor(ethicalPreferencez,financialPreferencez)            1.00   225531
## rescor(ethicalPreferencez,socialPreferencez)               1.00   215552
## rescor(financialPreferencez,socialPreferencez)             1.00   216115
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)      1.00   193681
## rescor(financialPreferencez,healthAndSafetyPreferencez)    1.00   206857
## rescor(socialPreferencez,healthAndSafetyPreferencez)       1.00   212954
## rescor(ethicalPreferencez,recreationalPreferencez)         1.00   196279
## rescor(financialPreferencez,recreationalPreferencez)       1.00   203114
## rescor(socialPreferencez,recreationalPreferencez)          1.00   199639
## rescor(healthAndSafetyPreferencez,recreationalPreferencez) 1.00   201961
##                                                            Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)              126597
## rescor(ethicalPreferencez,socialPreferencez)                 132800
## rescor(financialPreferencez,socialPreferencez)               128669
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)        135547
## rescor(financialPreferencez,healthAndSafetyPreferencez)      132917
## rescor(socialPreferencez,healthAndSafetyPreferencez)         127137
## rescor(ethicalPreferencez,recreationalPreferencez)           134270
## rescor(financialPreferencez,recreationalPreferencez)         131793
## rescor(socialPreferencez,recreationalPreferencez)            130658
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)   130657
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m1_int_hdi <- bayestestR::hdi(m1_int, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_hdi[
  sign(m1_int_hdi$CI_low) == sign(m1_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 14.19 23.40
b_dominance_Sum 0.95 1.82 5.80
b_leadership_Sum 0.95 -3.94 -3.78
b_Age 0.95 -0.43 -0.14
b_Gender2:leadership_Sum 0.95 0.99 4.63
mod_pni <- brm(generalRiskPreference ~ dominance_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Age + Gender,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
  warmup = 1000, iter = 10000,
  prior = prior_int_mod, save_pars = save_pars(all = TRUE)
)
summary(mod_pni)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ dominance_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Age + Gender 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              20.82      2.30    16.32    25.33 1.00    50211    29054
## dominance_Sum           3.42      0.76     1.93     4.91 1.00    48863    28430
## grandiosity_Sum_z       0.15      0.63    -1.09     1.37 1.00    49593    27430
## vulnerability_Sum_z    -0.70      0.65    -1.97     0.58 1.00    46426    28813
## Age                    -0.27      0.07    -0.41    -0.12 1.00    50055    27877
## Gender2                -2.34      0.84    -4.00    -0.70 1.00    50374    28745
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    11.62      0.62    10.47    12.91 1.00    38564    29013
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
mod_pni_hdi <- bayestestR::hdi(mod_pni, effects = "fixed", component = "conditional", ci = .95)
kable(mod_pni_hdi[
  sign(mod_pni_hdi$CI_low) == sign(mod_pni_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 16.28 25.27
b_dominance_Sum 0.95 1.94 4.92
b_Age 0.95 -0.41 -0.13
b_Gender2 0.95 -4.01 -0.71
mod_pni_gen <- brm(generalRiskPreference ~ dominance_Sum * Gender + grandiosity_Sum_z * Gender + vulnerability_Sum_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), backend = "cmdstanr",
  warmup = 1000, iter = 10000,
  prior = prior_int_gen_mod, save_pars = save_pars(all = TRUE)
)
summary(mod_pni_gen)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: generalRiskPreference ~ dominance_Sum * Gender + grandiosity_Sum_z * Gender + vulnerability_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                      18.93      2.26    14.47    23.31 1.00    51105
## dominance_Sum                   1.62      0.67     0.32     2.93 1.00    43740
## Gender2                         1.16      0.82    -0.45     2.76 1.00    59917
## grandiosity_Sum_z               0.38      0.66    -0.91     1.66 1.00    45491
## vulnerability_Sum_z            -0.18      0.69    -1.52     1.18 1.00    43823
## Age                            -0.26      0.07    -0.40    -0.12 1.00    50372
## dominance_Sum:Gender2           0.99      0.77    -0.52     2.50 1.00    45531
## Gender2:grandiosity_Sum_z      -0.13      0.79    -1.65     1.41 1.00    49076
## Gender2:vulnerability_Sum_z    -0.30      0.77    -1.83     1.19 1.00    47214
##                             Tail_ESS
## Intercept                      27531
## dominance_Sum                  30445
## Gender2                        26858
## grandiosity_Sum_z              29178
## vulnerability_Sum_z            29889
## Age                            27873
## dominance_Sum:Gender2          29552
## Gender2:grandiosity_Sum_z      29500
## Gender2:vulnerability_Sum_z    28688
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    11.28      0.59    10.19    12.52 1.00    38592    28728
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
mod_pni_gen_hdi <- bayestestR::hdi(mod_pni_gen, effects = "fixed", component = "conditional", ci = .95)
kable(mod_pni_gen_hdi[
  sign(mod_pni_gen_hdi$CI_low) == sign(mod_pni_gen_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 14.45 23.29
b_dominance_Sum 0.95 0.32 2.93
b_Age 0.95 -0.41 -0.12
m3 <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m3,
  save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
saveRDS(m3, "m3.rds")
summary(m3)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          prestige_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          leadership_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## dominanceSum_Intercept                        0.06      0.26    -0.43     0.57
## prestigeSum_Intercept                         1.00      0.28     0.47     1.55
## leadershipSum_Intercept                       0.30      0.26    -0.21     0.82
## dominanceSum_ethicalPreference_z              0.29      0.07     0.16     0.42
## dominanceSum_financialPreference_z           -0.18      0.02    -0.21    -0.15
## dominanceSum_socialPreference_z              -0.06      0.07    -0.19     0.07
## dominanceSum_healthAndSafetyPreference_z      0.05      0.05    -0.05     0.14
## dominanceSum_recreationalPreference_z         0.03      0.06    -0.09     0.14
## dominanceSum_Gender                           0.27      0.12     0.03     0.51
## dominanceSum_Age                             -0.02      0.01    -0.03    -0.00
## prestigeSum_ethicalPreference_z               0.02      0.08    -0.13     0.17
## prestigeSum_financialPreference_z             0.02      0.06    -0.10     0.14
## prestigeSum_socialPreference_z               -0.24      0.01    -0.26    -0.21
## prestigeSum_healthAndSafetyPreference_z      -0.05      0.06    -0.18     0.08
## prestigeSum_recreationalPreference_z         -0.08      0.06    -0.20     0.04
## prestigeSum_Gender                           -0.15      0.13    -0.41     0.11
## prestigeSum_Age                              -0.03      0.01    -0.04    -0.01
## leadershipSum_ethicalPreference_z            -0.14      0.07    -0.28     0.00
## leadershipSum_financialPreference_z           0.03      0.05    -0.07     0.14
## leadershipSum_socialPreference_z              0.03      0.05    -0.08     0.13
## leadershipSum_healthAndSafetyPreference_z     0.05      0.06    -0.07     0.16
## leadershipSum_recreationalPreference_z       -0.05      0.05    -0.14     0.04
## leadershipSum_Gender                         -0.09      0.13    -0.34     0.16
## leadershipSum_Age                            -0.01      0.01    -0.02     0.01
##                                           Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                    1.00    43108    30289
## prestigeSum_Intercept                     1.00    46976    30549
## leadershipSum_Intercept                   1.00    43748    30563
## dominanceSum_ethicalPreference_z          1.00    41604    28252
## dominanceSum_financialPreference_z        1.00    49934    25993
## dominanceSum_socialPreference_z           1.00    38332    28424
## dominanceSum_healthAndSafetyPreference_z  1.00    46005    29959
## dominanceSum_recreationalPreference_z     1.00    42718    27766
## dominanceSum_Gender                       1.00    40142    29811
## dominanceSum_Age                          1.00    42386    30528
## prestigeSum_ethicalPreference_z           1.00    38609    29534
## prestigeSum_financialPreference_z         1.00    46280    29297
## prestigeSum_socialPreference_z            1.00    53317    27882
## prestigeSum_healthAndSafetyPreference_z   1.00    42732    29870
## prestigeSum_recreationalPreference_z      1.00    43773    29034
## prestigeSum_Gender                        1.00    40388    29559
## prestigeSum_Age                           1.00    44319    31444
## leadershipSum_ethicalPreference_z         1.00    38352    30119
## leadershipSum_financialPreference_z       1.00    46189    29843
## leadershipSum_socialPreference_z          1.00    43874    30655
## leadershipSum_healthAndSafetyPreference_z 1.00    42668    29996
## leadershipSum_recreationalPreference_z    1.00    44470    29437
## leadershipSum_Gender                      1.00    38622    28561
## leadershipSum_Age                         1.00    41458    30285
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.96      0.04     0.88     1.05 1.00    43621    29634
## sigma_prestigeSum       1.07      0.05     0.98     1.17 1.00    43522    30237
## sigma_leadershipSum     1.00      0.05     0.92     1.10 1.00    38264    29259
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.34      0.06     0.22     0.45 1.00
## rescor(dominanceSum,leadershipSum)     0.38      0.05     0.27     0.48 1.00
## rescor(prestigeSum,leadershipSum)      0.51      0.05     0.41     0.60 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      35973    30300
## rescor(dominanceSum,leadershipSum)    34850    29072
## rescor(prestigeSum,leadershipSum)     38731    29413
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m3_hdi <- bayestestR::hdi(m3, effects = "fixed", component = "conditional", ci = .95)
## Warning: Identical densities found along different segments of the distribution,
## choosing rightmost.
kable(m3_hdi[
  sign(m3_hdi$CI_low) == sign(m3_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_ethicalPreference_z 0.95 0.17 0.42
b_dominanceSum_financialPreference_z 0.95 -0.21 -0.15
b_dominanceSum_Gender 0.95 0.03 0.51
b_dominanceSum_Age 0.95 -0.03 0.00
b_prestigeSum_Intercept 0.95 0.46 1.54
b_prestigeSum_socialPreference_z 0.95 -0.26 -0.21
b_prestigeSum_Age 0.95 -0.04 -0.01
m3_exp_2 <- fixef(m3)

saveRDS(m3_exp_2, "m3_exp_2.rds")
m7_fixef <- fixef(m7_DoPL_DOSPERT)

m3_int_gender <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m3_int_gender,
  save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
m3_int_gender_fixef <- fixef(m3_int_gender)
saveRDS(m3_int_gender, "m3_int_gender.rds")
saveRDS(m3_int_gender_fixef, "m3_int_gender_fixef.rds")
write.csv(m3_int_gender_fixef, "m3_int_gender_fixef.csv")
summary(m3_int_gender)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          prestige_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          leadership_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI
## dominanceSum_Intercept                              -0.13      0.26    -0.63
## prestigeSum_Intercept                                0.54      0.27     0.02
## leadershipSum_Intercept                              0.04      0.26    -0.47
## dominanceSum_ethicalPreference_z                     0.02      0.16    -0.30
## dominanceSum_Gender                                  0.34      0.12     0.10
## dominanceSum_financialPreference_z                  -0.19      0.02    -0.22
## dominanceSum_socialPreference_z                     -0.08      0.15    -0.38
## dominanceSum_healthAndSafetyPreference_z            -0.04      0.06    -0.16
## dominanceSum_recreationalPreference_z               -0.05      0.10    -0.25
## dominanceSum_Age                                    -0.01      0.01    -0.03
## dominanceSum_ethicalPreference_z:Gender              0.11      0.10    -0.08
## dominanceSum_Gender:financialPreference_z            0.10      0.04     0.02
## dominanceSum_Gender:socialPreference_z               0.09      0.10    -0.10
## dominanceSum_Gender:healthAndSafetyPreference_z      0.09      0.06    -0.03
## dominanceSum_Gender:recreationalPreference_z         0.03      0.07    -0.11
## prestigeSum_ethicalPreference_z                     -0.04      0.16    -0.35
## prestigeSum_Gender                                   0.08      0.13    -0.17
## prestigeSum_financialPreference_z                   -0.08      0.13    -0.33
## prestigeSum_socialPreference_z                      -0.25      0.01    -0.28
## prestigeSum_healthAndSafetyPreference_z             -0.06      0.10    -0.25
## prestigeSum_recreationalPreference_z                -0.10      0.10    -0.30
## prestigeSum_Age                                     -0.02      0.01    -0.03
## prestigeSum_ethicalPreference_z:Gender               0.04      0.10    -0.15
## prestigeSum_Gender:financialPreference_z             0.07      0.08    -0.08
## prestigeSum_Gender:socialPreference_z                0.31      0.05     0.22
## prestigeSum_Gender:healthAndSafetyPreference_z      -0.05      0.08    -0.20
## prestigeSum_Gender:recreationalPreference_z         -0.02      0.07    -0.16
## leadershipSum_ethicalPreference_z                   -0.08      0.17    -0.42
## leadershipSum_Gender                                 0.04      0.13    -0.21
## leadershipSum_financialPreference_z                 -0.08      0.09    -0.26
## leadershipSum_socialPreference_z                    -0.14      0.07    -0.29
## leadershipSum_healthAndSafetyPreference_z            0.06      0.10    -0.13
## leadershipSum_recreationalPreference_z              -0.15      0.06    -0.27
## leadershipSum_Age                                   -0.00      0.01    -0.01
## leadershipSum_ethicalPreference_z:Gender            -0.04      0.10    -0.24
## leadershipSum_Gender:financialPreference_z           0.11      0.06    -0.02
## leadershipSum_Gender:socialPreference_z              0.30      0.06     0.18
## leadershipSum_Gender:healthAndSafetyPreference_z    -0.06      0.07    -0.21
## leadershipSum_Gender:recreationalPreference_z        0.09      0.06    -0.01
##                                                  u-95% CI Rhat Bulk_ESS
## dominanceSum_Intercept                               0.38 1.00    60311
## prestigeSum_Intercept                                1.06 1.00    55460
## leadershipSum_Intercept                              0.55 1.00    54450
## dominanceSum_ethicalPreference_z                     0.34 1.00    39555
## dominanceSum_Gender                                  0.58 1.00    60987
## dominanceSum_financialPreference_z                  -0.16 1.00    81451
## dominanceSum_socialPreference_z                      0.21 1.00    38003
## dominanceSum_healthAndSafetyPreference_z             0.09 1.00    51911
## dominanceSum_recreationalPreference_z                0.15 1.00    40757
## dominanceSum_Age                                    -0.00 1.00    62665
## dominanceSum_ethicalPreference_z:Gender              0.31 1.00    37779
## dominanceSum_Gender:financialPreference_z            0.18 1.00    64844
## dominanceSum_Gender:socialPreference_z               0.29 1.00    36694
## dominanceSum_Gender:healthAndSafetyPreference_z      0.21 1.00    48764
## dominanceSum_Gender:recreationalPreference_z         0.17 1.00    38005
## prestigeSum_ethicalPreference_z                      0.28 1.00    38355
## prestigeSum_Gender                                   0.34 1.00    50359
## prestigeSum_financialPreference_z                    0.17 1.00    39406
## prestigeSum_socialPreference_z                      -0.22 1.00    84103
## prestigeSum_healthAndSafetyPreference_z              0.14 1.00    42767
## prestigeSum_recreationalPreference_z                 0.10 1.00    42002
## prestigeSum_Age                                     -0.01 1.00    59756
## prestigeSum_ethicalPreference_z:Gender               0.24 1.00    36641
## prestigeSum_Gender:financialPreference_z             0.23 1.00    37583
## prestigeSum_Gender:socialPreference_z                0.40 1.00    59282
## prestigeSum_Gender:healthAndSafetyPreference_z       0.10 1.00    38228
## prestigeSum_Gender:recreationalPreference_z          0.12 1.00    38638
## leadershipSum_ethicalPreference_z                    0.25 1.00    35587
## leadershipSum_Gender                                 0.28 1.00    49559
## leadershipSum_financialPreference_z                  0.09 1.00    45054
## leadershipSum_socialPreference_z                     0.01 1.00    45591
## leadershipSum_healthAndSafetyPreference_z            0.25 1.00    45420
## leadershipSum_recreationalPreference_z              -0.03 1.00    52884
## leadershipSum_Age                                    0.01 1.00    56744
## leadershipSum_ethicalPreference_z:Gender             0.17 1.00    34003
## leadershipSum_Gender:financialPreference_z           0.23 1.00    42619
## leadershipSum_Gender:socialPreference_z              0.42 1.00    39614
## leadershipSum_Gender:healthAndSafetyPreference_z     0.08 1.00    42070
## leadershipSum_Gender:recreationalPreference_z        0.20 1.00    46407
##                                                  Tail_ESS
## dominanceSum_Intercept                              28813
## prestigeSum_Intercept                               30671
## leadershipSum_Intercept                             29788
## dominanceSum_ethicalPreference_z                    28419
## dominanceSum_Gender                                 29332
## dominanceSum_financialPreference_z                  28314
## dominanceSum_socialPreference_z                     27738
## dominanceSum_healthAndSafetyPreference_z            30155
## dominanceSum_recreationalPreference_z               28528
## dominanceSum_Age                                    31245
## dominanceSum_ethicalPreference_z:Gender             28381
## dominanceSum_Gender:financialPreference_z           27567
## dominanceSum_Gender:socialPreference_z              27615
## dominanceSum_Gender:healthAndSafetyPreference_z     29800
## dominanceSum_Gender:recreationalPreference_z        28942
## prestigeSum_ethicalPreference_z                     29070
## prestigeSum_Gender                                  31078
## prestigeSum_financialPreference_z                   28808
## prestigeSum_socialPreference_z                      25983
## prestigeSum_healthAndSafetyPreference_z             31207
## prestigeSum_recreationalPreference_z                28485
## prestigeSum_Age                                     30700
## prestigeSum_ethicalPreference_z:Gender              29442
## prestigeSum_Gender:financialPreference_z            27891
## prestigeSum_Gender:socialPreference_z               27962
## prestigeSum_Gender:healthAndSafetyPreference_z      29619
## prestigeSum_Gender:recreationalPreference_z         28723
## leadershipSum_ethicalPreference_z                   28717
## leadershipSum_Gender                                30301
## leadershipSum_financialPreference_z                 29233
## leadershipSum_socialPreference_z                    30501
## leadershipSum_healthAndSafetyPreference_z           29998
## leadershipSum_recreationalPreference_z              29553
## leadershipSum_Age                                   29487
## leadershipSum_ethicalPreference_z:Gender            28880
## leadershipSum_Gender:financialPreference_z          29489
## leadershipSum_Gender:socialPreference_z             29267
## leadershipSum_Gender:healthAndSafetyPreference_z    29980
## leadershipSum_Gender:recreationalPreference_z       29432
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.94      0.04     0.87     1.03 1.00    64838    29300
## sigma_prestigeSum       0.99      0.04     0.91     1.08 1.00    60362    28418
## sigma_leadershipSum     0.97      0.04     0.89     1.06 1.00    58382    27522
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.31      0.06     0.20     0.42 1.00
## rescor(dominanceSum,leadershipSum)     0.37      0.05     0.26     0.47 1.00
## rescor(prestigeSum,leadershipSum)      0.46      0.05     0.37     0.55 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      47676    30279
## rescor(dominanceSum,leadershipSum)    50068    30104
## rescor(prestigeSum,leadershipSum)     53187    29608
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m3_int_gender_hdi <- bayestestR::hdi(m3_int_gender, effects = "fixed", component = "conditional", ci = .95)
kable(m3_int_gender_hdi[
  sign(m3_int_gender_hdi$CI_low) == sign(m3_int_gender_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_Gender 0.95 0.11 0.59
b_dominanceSum_financialPreference_z 0.95 -0.22 -0.16
b_dominanceSum_Age 0.95 -0.03 0.00
b_dominanceSum_Gender:financialPreference_z 0.95 0.02 0.18
b_prestigeSum_Intercept 0.95 0.01 1.06
b_prestigeSum_socialPreference_z 0.95 -0.28 -0.22
b_prestigeSum_Age 0.95 -0.03 -0.01
b_prestigeSum_Gender:socialPreference_z 0.95 0.22 0.40
b_leadershipSum_recreationalPreference_z 0.95 -0.28 -0.04
b_leadershipSum_Gender:socialPreference_z 0.95 0.17 0.42
# future::plan("multicore")
# bla_mod_1 <- "general_Preference =~ generalRiskPreference + prestige_Sum + leadership_Sum + dominance_Sum
# general_2Preference =~ generalRiskPreference + PNI_Sum + dominance_Sum + Gender"

# fit <- blavaan(bla_mod_1, data = Experiment_2_demographics_Gender, n.chains = 4, auto.var = TRUE, auto.fix.first = TRUE, auto.cov.lv.x = TRUE, target = "cmdstanr", bcontrol = list(cores = parallel::detectCores()))

# fit_1 <- bcfa(bla_mod_1, data = Experiment_2_demographics_Gender, n.chains = 4, auto.var = TRUE, auto.fix.first = TRUE, auto.cov.lv.x = TRUE, target = "cmdstanr", sample = 5000, bcontrol = list(cores = parallel::detectCores()))

# fit <- readRDS("./fit.rds")

# summary(fit)
# plot(fit)
m2 <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr",
  prior = prior_m2
)

saveRDS(m2, "m2.rds")
m2_exp_2_J <- fixef(m2)
saveRDS(m2, "m2.rds")
summary(m2)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          financialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          socialPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          recreationalPreference_z ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## ethicalPreferencez_Intercept                  0.42      0.18     0.07     0.78
## financialPreferencez_Intercept                0.23      0.20    -0.17     0.63
## socialPreferencez_Intercept                   0.67      0.19     0.30     1.03
## healthAndSafetyPreferencez_Intercept          0.48      0.19     0.09     0.85
## recreationalPreferencez_Intercept             0.70      0.19     0.33     1.09
## ethicalPreferencez_dominance_Sum              0.31      0.06     0.19     0.44
## ethicalPreferencez_prestige_Sum              -0.06      0.06    -0.19     0.06
## ethicalPreferencez_leadership_Sum            -0.18      0.06    -0.30    -0.06
## ethicalPreferencez_PNI_Sum_z                  0.05      0.07    -0.09     0.18
## ethicalPreferencez_Gender2                    0.27      0.11     0.06     0.49
## ethicalPreferencez_Age                       -0.02      0.01    -0.03    -0.01
## financialPreferencez_dominance_Sum            0.10      0.07    -0.04     0.24
## financialPreferencez_prestige_Sum            -0.04      0.07    -0.18     0.10
## financialPreferencez_leadership_Sum           0.09      0.07    -0.04     0.22
## financialPreferencez_PNI_Sum_z               -0.04      0.07    -0.19     0.11
## financialPreferencez_Gender2                  0.18      0.12    -0.05     0.42
## financialPreferencez_Age                     -0.01      0.01    -0.02     0.00
## socialPreferencez_dominance_Sum              -0.05      0.06    -0.17     0.08
## socialPreferencez_prestige_Sum               -0.04      0.06    -0.17     0.08
## socialPreferencez_leadership_Sum              0.27      0.06     0.15     0.39
## socialPreferencez_PNI_Sum_z                   0.17      0.07     0.04     0.30
## socialPreferencez_Gender2                    -0.44      0.11    -0.66    -0.22
## socialPreferencez_Age                        -0.02      0.01    -0.03    -0.00
## healthAndSafetyPreferencez_dominance_Sum      0.27      0.07     0.14     0.41
## healthAndSafetyPreferencez_prestige_Sum      -0.26      0.07    -0.39    -0.13
## healthAndSafetyPreferencez_leadership_Sum    -0.00      0.06    -0.13     0.12
## healthAndSafetyPreferencez_PNI_Sum_z          0.08      0.07    -0.06     0.22
## healthAndSafetyPreferencez_Gender2            0.02      0.12    -0.21     0.25
## healthAndSafetyPreferencez_Age               -0.02      0.01    -0.03    -0.01
## recreationalPreferencez_dominance_Sum         0.15      0.07     0.02     0.28
## recreationalPreferencez_prestige_Sum         -0.28      0.06    -0.40    -0.16
## recreationalPreferencez_leadership_Sum        0.17      0.06     0.05     0.30
## recreationalPreferencez_PNI_Sum_z             0.04      0.07    -0.10     0.18
## recreationalPreferencez_Gender2               0.23      0.12     0.00     0.46
## recreationalPreferencez_Age                  -0.03      0.01    -0.04    -0.02
##                                           Rhat Bulk_ESS Tail_ESS
## ethicalPreferencez_Intercept              1.00    55222    33696
## financialPreferencez_Intercept            1.00    61064    32045
## socialPreferencez_Intercept               1.00    57418    31651
## healthAndSafetyPreferencez_Intercept      1.00    50555    32605
## recreationalPreferencez_Intercept         1.00    57216    33904
## ethicalPreferencez_dominance_Sum          1.00    36043    31295
## ethicalPreferencez_prestige_Sum           1.00    38156    32630
## ethicalPreferencez_leadership_Sum         1.00    39557    31941
## ethicalPreferencez_PNI_Sum_z              1.00    34452    31774
## ethicalPreferencez_Gender2                1.00    42048    30612
## ethicalPreferencez_Age                    1.00    54916    33657
## financialPreferencez_dominance_Sum        1.00    42156    32241
## financialPreferencez_prestige_Sum         1.00    45641    31272
## financialPreferencez_leadership_Sum       1.00    46417    30892
## financialPreferencez_PNI_Sum_z            1.00    41125    30057
## financialPreferencez_Gender2              1.00    49413    31314
## financialPreferencez_Age                  1.00    60226    32747
## socialPreferencez_dominance_Sum           1.00    40262    30617
## socialPreferencez_prestige_Sum            1.00    45940    32174
## socialPreferencez_leadership_Sum          1.00    43397    32549
## socialPreferencez_PNI_Sum_z               1.00    40169    31388
## socialPreferencez_Gender2                 1.00    48286    29718
## socialPreferencez_Age                     1.00    54792    32771
## healthAndSafetyPreferencez_dominance_Sum  1.00    30803    29838
## healthAndSafetyPreferencez_prestige_Sum   1.00    36127    31474
## healthAndSafetyPreferencez_leadership_Sum 1.00    35167    31445
## healthAndSafetyPreferencez_PNI_Sum_z      1.00    31581    30256
## healthAndSafetyPreferencez_Gender2        1.00    38941    31152
## healthAndSafetyPreferencez_Age            1.00    48712    33058
## recreationalPreferencez_dominance_Sum     1.00    34716    31099
## recreationalPreferencez_prestige_Sum      1.00    44265    31851
## recreationalPreferencez_leadership_Sum    1.00    42618    32937
## recreationalPreferencez_PNI_Sum_z         1.00    36633    31691
## recreationalPreferencez_Gender2           1.00    39517    30924
## recreationalPreferencez_Age               1.00    55083    33804
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## sigma_ethicalPreferencez             0.89      0.04     0.82     0.97 1.00
## sigma_financialPreferencez           0.98      0.04     0.90     1.07 1.00
## sigma_socialPreferencez              0.89      0.04     0.82     0.97 1.00
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.87     1.02 1.00
## sigma_recreationalPreferencez        0.94      0.04     0.86     1.02 1.00
##                                  Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez            50845    30191
## sigma_financialPreferencez          65899    30831
## sigma_socialPreferencez             56616    29455
## sigma_healthAndSafetyPreferencez    42366    30611
## sigma_recreationalPreferencez       54699    30543
## 
## Residual Correlations: 
##                                                            Estimate Est.Error
## rescor(ethicalPreferencez,financialPreferencez)                0.36      0.05
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06
## rescor(financialPreferencez,socialPreferencez)                 0.24      0.06
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.50      0.05
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05
## rescor(ethicalPreferencez,recreationalPreferencez)             0.19      0.06
## rescor(financialPreferencez,recreationalPreferencez)           0.21      0.06
## rescor(socialPreferencez,recreationalPreferencez)              0.39      0.05
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05
##                                                            l-95% CI u-95% CI
## rescor(ethicalPreferencez,financialPreferencez)                0.26     0.46
## rescor(ethicalPreferencez,socialPreferencez)                   0.01     0.24
## rescor(financialPreferencez,socialPreferencez)                 0.13     0.35
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.41     0.58
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.10     0.32
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.20     0.41
## rescor(ethicalPreferencez,recreationalPreferencez)             0.07     0.30
## rescor(financialPreferencez,recreationalPreferencez)           0.10     0.33
## rescor(socialPreferencez,recreationalPreferencez)              0.28     0.48
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.35     0.54
##                                                            Rhat Bulk_ESS
## rescor(ethicalPreferencez,financialPreferencez)            1.00    53473
## rescor(ethicalPreferencez,socialPreferencez)               1.00    49885
## rescor(financialPreferencez,socialPreferencez)             1.00    49330
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)      1.00    40475
## rescor(financialPreferencez,healthAndSafetyPreferencez)    1.00    47756
## rescor(socialPreferencez,healthAndSafetyPreferencez)       1.00    51757
## rescor(ethicalPreferencez,recreationalPreferencez)         1.00    42957
## rescor(financialPreferencez,recreationalPreferencez)       1.00    44075
## rescor(socialPreferencez,recreationalPreferencez)          1.00    47597
## rescor(healthAndSafetyPreferencez,recreationalPreferencez) 1.00    50503
##                                                            Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)               31801
## rescor(ethicalPreferencez,socialPreferencez)                  31689
## rescor(financialPreferencez,socialPreferencez)                30136
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)         32390
## rescor(financialPreferencez,healthAndSafetyPreferencez)       31372
## rescor(socialPreferencez,healthAndSafetyPreferencez)          32591
## rescor(ethicalPreferencez,recreationalPreferencez)            32614
## rescor(financialPreferencez,recreationalPreferencez)          31690
## rescor(socialPreferencez,recreationalPreferencez)             32650
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)    30615
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m2_hdi <- bayestestR::hdi(m2, effects = "fixed", component = "conditional", ci = .95)
kable(m2_hdi[
  sign(m2_hdi$CI_low) == sign(m2_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_Intercept 0.95 0.08 0.79
b_ethicalPreferencez_dominance_Sum 0.95 0.19 0.44
b_ethicalPreferencez_leadership_Sum 0.95 -0.30 -0.06
b_ethicalPreferencez_Gender2 0.95 0.06 0.49
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.30 1.02
b_socialPreferencez_leadership_Sum 0.95 0.15 0.39
b_socialPreferencez_PNI_Sum_z 0.95 0.04 0.30
b_socialPreferencez_Gender2 0.95 -0.65 -0.22
b_socialPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_Intercept 0.95 0.10 0.86
b_healthAndSafetyPreferencez_dominance_Sum 0.95 0.14 0.41
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.39 -0.13
b_healthAndSafetyPreferencez_Age 0.95 -0.03 -0.01
b_recreationalPreferencez_Intercept 0.95 0.32 1.08
b_recreationalPreferencez_dominance_Sum 0.95 0.02 0.28
b_recreationalPreferencez_prestige_Sum 0.95 -0.41 -0.16
b_recreationalPreferencez_leadership_Sum 0.95 0.05 0.30
b_recreationalPreferencez_Gender2 0.95 0.00 0.46
b_recreationalPreferencez_Age 0.95 -0.04 -0.02
# plot(m2, ask = FALSE)
m2_int <- brm(mvbind(ethicalPreference_z, financialPreference_z, socialPreference_z, healthAndSafetyPreference_z, recreationalPreference_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr",
  prior = prior_m2_int_gen
)

saveRDS(m2_int, "m2_int.rds")
m2_int_fix <- fixef(m2_int)
saveRDS(m2_int_fix, "m2_int_fix.rds")
summary(m2_int)
##  Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: ethicalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          financialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          socialPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          healthAndSafetyPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          recreationalPreference_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                                   Estimate Est.Error l-95% CI
## ethicalPreferencez_Intercept                          0.40      0.19     0.03
## financialPreferencez_Intercept                        0.25      0.21    -0.16
## socialPreferencez_Intercept                           0.63      0.19     0.26
## healthAndSafetyPreferencez_Intercept                  0.41      0.20     0.02
## recreationalPreferencez_Intercept                     0.65      0.20     0.27
## ethicalPreferencez_dominance_Sum                      0.23      0.10     0.03
## ethicalPreferencez_Gender2                            0.28      0.11     0.07
## ethicalPreferencez_prestige_Sum                      -0.10      0.10    -0.29
## ethicalPreferencez_leadership_Sum                    -0.14      0.09    -0.33
## ethicalPreferencez_PNI_Sum_z                         -0.02      0.11    -0.23
## ethicalPreferencez_Age                               -0.02      0.01    -0.03
## ethicalPreferencez_dominance_Sum:Gender2              0.14      0.13    -0.11
## ethicalPreferencez_Gender2:prestige_Sum               0.10      0.13    -0.14
## ethicalPreferencez_Gender2:leadership_Sum            -0.05      0.12    -0.29
## ethicalPreferencez_Gender2:PNI_Sum_z                  0.13      0.13    -0.13
## financialPreferencez_dominance_Sum                    0.10      0.11    -0.12
## financialPreferencez_Gender2                          0.18      0.12    -0.06
## financialPreferencez_prestige_Sum                    -0.08      0.11    -0.29
## financialPreferencez_leadership_Sum                   0.10      0.11    -0.11
## financialPreferencez_PNI_Sum_z                       -0.13      0.12    -0.36
## financialPreferencez_Age                             -0.01      0.01    -0.02
## financialPreferencez_dominance_Sum:Gender2            0.00      0.14    -0.28
## financialPreferencez_Gender2:prestige_Sum             0.11      0.14    -0.17
## financialPreferencez_Gender2:leadership_Sum           0.01      0.14    -0.26
## financialPreferencez_Gender2:PNI_Sum_z                0.16      0.15    -0.13
## socialPreferencez_dominance_Sum                      -0.11      0.10    -0.31
## socialPreferencez_Gender2                            -0.43      0.11    -0.65
## socialPreferencez_prestige_Sum                       -0.02      0.10    -0.22
## socialPreferencez_leadership_Sum                      0.24      0.10     0.05
## socialPreferencez_PNI_Sum_z                           0.25      0.11     0.04
## socialPreferencez_Age                                -0.01      0.01    -0.03
## socialPreferencez_dominance_Sum:Gender2               0.10      0.13    -0.16
## socialPreferencez_Gender2:prestige_Sum               -0.02      0.13    -0.27
## socialPreferencez_Gender2:leadership_Sum              0.03      0.12    -0.21
## socialPreferencez_Gender2:PNI_Sum_z                  -0.13      0.14    -0.40
## healthAndSafetyPreferencez_dominance_Sum              0.17      0.11    -0.04
## healthAndSafetyPreferencez_Gender2                    0.03      0.12    -0.20
## healthAndSafetyPreferencez_prestige_Sum              -0.44      0.10    -0.63
## healthAndSafetyPreferencez_leadership_Sum             0.05      0.10    -0.14
## healthAndSafetyPreferencez_PNI_Sum_z                  0.27      0.11     0.06
## healthAndSafetyPreferencez_Age                       -0.02      0.01    -0.03
## healthAndSafetyPreferencez_dominance_Sum:Gender2      0.17      0.14    -0.10
## healthAndSafetyPreferencez_Gender2:prestige_Sum       0.32      0.13     0.06
## healthAndSafetyPreferencez_Gender2:leadership_Sum    -0.09      0.13    -0.35
## healthAndSafetyPreferencez_Gender2:PNI_Sum_z         -0.30      0.14    -0.58
## recreationalPreferencez_dominance_Sum                 0.11      0.11    -0.09
## recreationalPreferencez_Gender2                       0.23      0.11     0.00
## recreationalPreferencez_prestige_Sum                 -0.41      0.08    -0.57
## recreationalPreferencez_leadership_Sum                0.19      0.09     0.00
## recreationalPreferencez_PNI_Sum_z                     0.32      0.11     0.11
## recreationalPreferencez_Age                          -0.03      0.01    -0.04
## recreationalPreferencez_dominance_Sum:Gender2         0.05      0.13    -0.22
## recreationalPreferencez_Gender2:prestige_Sum          0.23      0.12    -0.01
## recreationalPreferencez_Gender2:leadership_Sum       -0.07      0.12    -0.31
## recreationalPreferencez_Gender2:PNI_Sum_z            -0.48      0.14    -0.76
##                                                   u-95% CI Rhat Bulk_ESS
## ethicalPreferencez_Intercept                          0.76 1.00    52152
## financialPreferencez_Intercept                        0.65 1.00    55167
## socialPreferencez_Intercept                           1.00 1.00    55660
## healthAndSafetyPreferencez_Intercept                  0.80 1.00    52192
## recreationalPreferencez_Intercept                     1.04 1.00    49708
## ethicalPreferencez_dominance_Sum                      0.43 1.00    26542
## ethicalPreferencez_Gender2                            0.50 1.00    52514
## ethicalPreferencez_prestige_Sum                       0.09 1.00    27657
## ethicalPreferencez_leadership_Sum                     0.04 1.00    31473
## ethicalPreferencez_PNI_Sum_z                          0.19 1.00    25452
## ethicalPreferencez_Age                               -0.01 1.00    55942
## ethicalPreferencez_dominance_Sum:Gender2              0.40 1.00    26852
## ethicalPreferencez_Gender2:prestige_Sum               0.35 1.00    29118
## ethicalPreferencez_Gender2:leadership_Sum             0.19 1.00    31046
## ethicalPreferencez_Gender2:PNI_Sum_z                  0.40 1.00    26174
## financialPreferencez_dominance_Sum                    0.33 1.00    28497
## financialPreferencez_Gender2                          0.42 1.00    58199
## financialPreferencez_prestige_Sum                     0.14 1.00    33052
## financialPreferencez_leadership_Sum                   0.30 1.00    35467
## financialPreferencez_PNI_Sum_z                        0.11 1.00    27943
## financialPreferencez_Age                              0.00 1.00    60199
## financialPreferencez_dominance_Sum:Gender2            0.28 1.00    28325
## financialPreferencez_Gender2:prestige_Sum             0.39 1.00    31588
## financialPreferencez_Gender2:leadership_Sum           0.28 1.00    35748
## financialPreferencez_Gender2:PNI_Sum_z                0.45 1.00    27723
## socialPreferencez_dominance_Sum                       0.09 1.00    28368
## socialPreferencez_Gender2                            -0.21 1.00    53960
## socialPreferencez_prestige_Sum                        0.17 1.00    32388
## socialPreferencez_leadership_Sum                      0.42 1.00    35232
## socialPreferencez_PNI_Sum_z                           0.46 1.00    25586
## socialPreferencez_Age                                -0.00 1.00    58290
## socialPreferencez_dominance_Sum:Gender2               0.36 1.00    29080
## socialPreferencez_Gender2:prestige_Sum                0.24 1.00    31070
## socialPreferencez_Gender2:leadership_Sum              0.28 1.00    34946
## socialPreferencez_Gender2:PNI_Sum_z                   0.14 1.00    27409
## healthAndSafetyPreferencez_dominance_Sum              0.38 1.00    24190
## healthAndSafetyPreferencez_Gender2                    0.26 1.00    47426
## healthAndSafetyPreferencez_prestige_Sum              -0.24 1.00    28025
## healthAndSafetyPreferencez_leadership_Sum             0.24 1.00    28196
## healthAndSafetyPreferencez_PNI_Sum_z                  0.50 1.00    23803
## healthAndSafetyPreferencez_Age                       -0.00 1.00    55259
## healthAndSafetyPreferencez_dominance_Sum:Gender2      0.43 1.00    23920
## healthAndSafetyPreferencez_Gender2:prestige_Sum       0.58 1.00    29012
## healthAndSafetyPreferencez_Gender2:leadership_Sum     0.16 1.00    28072
## healthAndSafetyPreferencez_Gender2:PNI_Sum_z         -0.02 1.00    24219
## recreationalPreferencez_dominance_Sum                 0.32 1.00    24661
## recreationalPreferencez_Gender2                       0.46 1.00    50472
## recreationalPreferencez_prestige_Sum                 -0.24 1.00    32612
## recreationalPreferencez_leadership_Sum                0.37 1.00    33296
## recreationalPreferencez_PNI_Sum_z                     0.53 1.00    25334
## recreationalPreferencez_Age                          -0.02 1.00    53947
## recreationalPreferencez_dominance_Sum:Gender2         0.31 1.00    25249
## recreationalPreferencez_Gender2:prestige_Sum          0.47 1.00    33029
## recreationalPreferencez_Gender2:leadership_Sum        0.18 1.00    32617
## recreationalPreferencez_Gender2:PNI_Sum_z            -0.21 1.00    27063
##                                                   Tail_ESS
## ethicalPreferencez_Intercept                         33147
## financialPreferencez_Intercept                       32029
## socialPreferencez_Intercept                          32933
## healthAndSafetyPreferencez_Intercept                 33352
## recreationalPreferencez_Intercept                    33397
## ethicalPreferencez_dominance_Sum                     30039
## ethicalPreferencez_Gender2                           32451
## ethicalPreferencez_prestige_Sum                      30097
## ethicalPreferencez_leadership_Sum                    30782
## ethicalPreferencez_PNI_Sum_z                         28987
## ethicalPreferencez_Age                               32973
## ethicalPreferencez_dominance_Sum:Gender2             29442
## ethicalPreferencez_Gender2:prestige_Sum              30853
## ethicalPreferencez_Gender2:leadership_Sum            30507
## ethicalPreferencez_Gender2:PNI_Sum_z                 29651
## financialPreferencez_dominance_Sum                   29169
## financialPreferencez_Gender2                         31040
## financialPreferencez_prestige_Sum                    31117
## financialPreferencez_leadership_Sum                  30789
## financialPreferencez_PNI_Sum_z                       29955
## financialPreferencez_Age                             32761
## financialPreferencez_dominance_Sum:Gender2           30629
## financialPreferencez_Gender2:prestige_Sum            30345
## financialPreferencez_Gender2:leadership_Sum          30748
## financialPreferencez_Gender2:PNI_Sum_z               30146
## socialPreferencez_dominance_Sum                      28331
## socialPreferencez_Gender2                            31321
## socialPreferencez_prestige_Sum                       30614
## socialPreferencez_leadership_Sum                     31854
## socialPreferencez_PNI_Sum_z                          27840
## socialPreferencez_Age                                33933
## socialPreferencez_dominance_Sum:Gender2              29260
## socialPreferencez_Gender2:prestige_Sum               30396
## socialPreferencez_Gender2:leadership_Sum             30517
## socialPreferencez_Gender2:PNI_Sum_z                  29451
## healthAndSafetyPreferencez_dominance_Sum             29492
## healthAndSafetyPreferencez_Gender2                   32567
## healthAndSafetyPreferencez_prestige_Sum              30188
## healthAndSafetyPreferencez_leadership_Sum            30428
## healthAndSafetyPreferencez_PNI_Sum_z                 27715
## healthAndSafetyPreferencez_Age                       31622
## healthAndSafetyPreferencez_dominance_Sum:Gender2     28847
## healthAndSafetyPreferencez_Gender2:prestige_Sum      30540
## healthAndSafetyPreferencez_Gender2:leadership_Sum    30590
## healthAndSafetyPreferencez_Gender2:PNI_Sum_z         28774
## recreationalPreferencez_dominance_Sum                28818
## recreationalPreferencez_Gender2                      32180
## recreationalPreferencez_prestige_Sum                 29138
## recreationalPreferencez_leadership_Sum               30881
## recreationalPreferencez_PNI_Sum_z                    29240
## recreationalPreferencez_Age                          33965
## recreationalPreferencez_dominance_Sum:Gender2        29207
## recreationalPreferencez_Gender2:prestige_Sum         29962
## recreationalPreferencez_Gender2:leadership_Sum       29940
## recreationalPreferencez_Gender2:PNI_Sum_z            29576
## 
## Family Specific Parameters: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## sigma_ethicalPreferencez             0.88      0.04     0.81     0.96 1.00
## sigma_financialPreferencez           0.98      0.04     0.90     1.07 1.00
## sigma_socialPreferencez              0.89      0.04     0.82     0.97 1.00
## sigma_healthAndSafetyPreferencez     0.94      0.04     0.86     1.02 1.00
## sigma_recreationalPreferencez        0.93      0.04     0.85     1.01 1.00
##                                  Bulk_ESS Tail_ESS
## sigma_ethicalPreferencez            55872    30254
## sigma_financialPreferencez          71205    30822
## sigma_socialPreferencez             61243    32080
## sigma_healthAndSafetyPreferencez    53095    32399
## sigma_recreationalPreferencez       60429    32747
## 
## Residual Correlations: 
##                                                            Estimate Est.Error
## rescor(ethicalPreferencez,financialPreferencez)                0.35      0.05
## rescor(ethicalPreferencez,socialPreferencez)                   0.13      0.06
## rescor(financialPreferencez,socialPreferencez)                 0.25      0.06
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.51      0.05
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.21      0.06
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.31      0.05
## rescor(ethicalPreferencez,recreationalPreferencez)             0.22      0.06
## rescor(financialPreferencez,recreationalPreferencez)           0.24      0.06
## rescor(socialPreferencez,recreationalPreferencez)              0.39      0.05
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.45      0.05
##                                                            l-95% CI u-95% CI
## rescor(ethicalPreferencez,financialPreferencez)                0.24     0.45
## rescor(ethicalPreferencez,socialPreferencez)                   0.01     0.24
## rescor(financialPreferencez,socialPreferencez)                 0.13     0.36
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)          0.41     0.59
## rescor(financialPreferencez,healthAndSafetyPreferencez)        0.10     0.33
## rescor(socialPreferencez,healthAndSafetyPreferencez)           0.20     0.41
## rescor(ethicalPreferencez,recreationalPreferencez)             0.10     0.33
## rescor(financialPreferencez,recreationalPreferencez)           0.13     0.35
## rescor(socialPreferencez,recreationalPreferencez)              0.28     0.48
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)     0.35     0.54
##                                                            Rhat Bulk_ESS
## rescor(ethicalPreferencez,financialPreferencez)            1.00    60011
## rescor(ethicalPreferencez,socialPreferencez)               1.00    55977
## rescor(financialPreferencez,socialPreferencez)             1.00    56156
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)      1.00    46976
## rescor(financialPreferencez,healthAndSafetyPreferencez)    1.00    53473
## rescor(socialPreferencez,healthAndSafetyPreferencez)       1.00    58950
## rescor(ethicalPreferencez,recreationalPreferencez)         1.00    50048
## rescor(financialPreferencez,recreationalPreferencez)       1.00    51036
## rescor(socialPreferencez,recreationalPreferencez)          1.00    54955
## rescor(healthAndSafetyPreferencez,recreationalPreferencez) 1.00    55945
##                                                            Tail_ESS
## rescor(ethicalPreferencez,financialPreferencez)               32318
## rescor(ethicalPreferencez,socialPreferencez)                  31708
## rescor(financialPreferencez,socialPreferencez)                31528
## rescor(ethicalPreferencez,healthAndSafetyPreferencez)         31337
## rescor(financialPreferencez,healthAndSafetyPreferencez)       32201
## rescor(socialPreferencez,healthAndSafetyPreferencez)          31895
## rescor(ethicalPreferencez,recreationalPreferencez)            32997
## rescor(financialPreferencez,recreationalPreferencez)          32087
## rescor(socialPreferencez,recreationalPreferencez)             31920
## rescor(healthAndSafetyPreferencez,recreationalPreferencez)    31716
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m2_int_hdi <- bayestestR::hdi(m2_int, effects = "fixed", component = "conditional", ci = .95)
## Warning: Identical densities found along different segments of the distribution,
## choosing rightmost.
kable(m2_int_hdi[
  sign(m2_int_hdi$CI_low) == sign(m2_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_ethicalPreferencez_Intercept 0.95 0.03 0.76
b_ethicalPreferencez_dominance_Sum 0.95 0.03 0.43
b_ethicalPreferencez_Gender2 0.95 0.07 0.50
b_ethicalPreferencez_Age 0.95 -0.03 -0.01
b_socialPreferencez_Intercept 0.95 0.27 1.01
b_socialPreferencez_Gender2 0.95 -0.65 -0.21
b_socialPreferencez_leadership_Sum 0.95 0.05 0.43
b_socialPreferencez_PNI_Sum_z 0.95 0.04 0.46
b_socialPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_Intercept 0.95 0.02 0.80
b_healthAndSafetyPreferencez_prestige_Sum 0.95 -0.64 -0.24
b_healthAndSafetyPreferencez_PNI_Sum_z 0.95 0.05 0.49
b_healthAndSafetyPreferencez_Age 0.95 -0.03 0.00
b_healthAndSafetyPreferencez_Gender2:prestige_Sum 0.95 0.06 0.58
b_healthAndSafetyPreferencez_Gender2:PNI_Sum_z 0.95 -0.57 -0.02
b_recreationalPreferencez_Intercept 0.95 0.27 1.04
b_recreationalPreferencez_Gender2 0.95 0.01 0.46
b_recreationalPreferencez_prestige_Sum 0.95 -0.57 -0.24
b_recreationalPreferencez_leadership_Sum 0.95 0.01 0.37
b_recreationalPreferencez_PNI_Sum_z 0.95 0.10 0.53
b_recreationalPreferencez_Age 0.95 -0.04 -0.02
b_recreationalPreferencez_Gender2:PNI_Sum_z 0.95 -0.75 -0.21
# plot(m2_int, ask = FALSE)
dopl_PNI_1 <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ grandiose_fantasy_Sum_z + cse_Sum_z + hts_Sum_z + ssse_Sum_z + entitlement_rage_Sum_z + devaluing_Sum_z + exploitativeness_Sum_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr",
  prior = dopl_PNI_1_priors
)

saveRDS(dopl_PNI_1, "dopl_PNI_1.rds")
dopl_PNI_1_fix <- fixef(dopl_PNI_1)
saveRDS(dopl_PNI_1_fix, "dopl_PNI_1_fix.rds")
summary(dopl_PNI_1)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ grandiose_fantasy_Sum_z + cse_Sum_z + hts_Sum_z + ssse_Sum_z + entitlement_rage_Sum_z + devaluing_Sum_z + exploitativeness_Sum_z + Gender + Age 
##          prestige_Sum ~ grandiose_fantasy_Sum_z + cse_Sum_z + hts_Sum_z + ssse_Sum_z + entitlement_rage_Sum_z + devaluing_Sum_z + exploitativeness_Sum_z + Gender + Age 
##          leadership_Sum ~ grandiose_fantasy_Sum_z + cse_Sum_z + hts_Sum_z + ssse_Sum_z + entitlement_rage_Sum_z + devaluing_Sum_z + exploitativeness_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                       Estimate Est.Error l-95% CI u-95% CI Rhat
## dominanceSum_Intercept                   -0.08      0.16    -0.40     0.24 1.00
## prestigeSum_Intercept                     0.19      0.17    -0.15     0.53 1.00
## leadershipSum_Intercept                  -0.06      0.17    -0.40     0.28 1.00
## dominanceSum_grandiose_fantasy_Sum_z     -0.08      0.06    -0.19     0.02 1.00
## dominanceSum_cse_Sum_z                    0.07      0.07    -0.06     0.20 1.00
## dominanceSum_hts_Sum_z                    0.06      0.06    -0.07     0.18 1.00
## dominanceSum_ssse_Sum_z                  -0.09      0.06    -0.20     0.03 1.00
## dominanceSum_entitlement_rage_Sum_z       0.41      0.07     0.28     0.55 1.00
## dominanceSum_devaluing_Sum_z             -0.03      0.07    -0.16     0.11 1.00
## dominanceSum_exploitativeness_Sum_z       0.35      0.05     0.25     0.45 1.00
## dominanceSum_Gender2                      0.31      0.10     0.12     0.50 1.00
## dominanceSum_Age                         -0.00      0.01    -0.01     0.01 1.00
## prestigeSum_grandiose_fantasy_Sum_z       0.19      0.06     0.07     0.30 1.00
## prestigeSum_cse_Sum_z                     0.14      0.07     0.00     0.28 1.00
## prestigeSum_hts_Sum_z                    -0.19      0.07    -0.32    -0.06 1.00
## prestigeSum_ssse_Sum_z                    0.28      0.06     0.16     0.41 1.00
## prestigeSum_entitlement_rage_Sum_z        0.23      0.07     0.09     0.37 1.00
## prestigeSum_devaluing_Sum_z              -0.11      0.07    -0.26     0.03 1.00
## prestigeSum_exploitativeness_Sum_z        0.19      0.06     0.08     0.29 1.00
## prestigeSum_Gender2                      -0.15      0.10    -0.35     0.05 1.00
## prestigeSum_Age                          -0.00      0.01    -0.01     0.01 1.00
## leadershipSum_grandiose_fantasy_Sum_z     0.13      0.06     0.02     0.25 1.00
## leadershipSum_cse_Sum_z                  -0.09      0.07    -0.23     0.04 1.00
## leadershipSum_hts_Sum_z                  -0.09      0.07    -0.22     0.04 1.00
## leadershipSum_ssse_Sum_z                  0.17      0.06     0.05     0.29 1.00
## leadershipSum_entitlement_rage_Sum_z      0.10      0.07    -0.05     0.24 1.00
## leadershipSum_devaluing_Sum_z            -0.07      0.07    -0.21     0.06 1.00
## leadershipSum_exploitativeness_Sum_z      0.49      0.06     0.39     0.60 1.00
## leadershipSum_Gender2                    -0.32      0.10    -0.52    -0.12 1.00
## leadershipSum_Age                         0.01      0.01    -0.00     0.02 1.00
##                                       Bulk_ESS Tail_ESS
## dominanceSum_Intercept                   68193    30049
## prestigeSum_Intercept                    72559    31890
## leadershipSum_Intercept                  71865    30283
## dominanceSum_grandiose_fantasy_Sum_z     60756    30777
## dominanceSum_cse_Sum_z                   61185    30479
## dominanceSum_hts_Sum_z                   62322    31015
## dominanceSum_ssse_Sum_z                  59822    30447
## dominanceSum_entitlement_rage_Sum_z      61419    31166
## dominanceSum_devaluing_Sum_z             65451    30931
## dominanceSum_exploitativeness_Sum_z      63888    31320
## dominanceSum_Gender2                     66531    30317
## dominanceSum_Age                         64869    30767
## prestigeSum_grandiose_fantasy_Sum_z      61713    31972
## prestigeSum_cse_Sum_z                    54228    29417
## prestigeSum_hts_Sum_z                    55015    29157
## prestigeSum_ssse_Sum_z                   57524    31022
## prestigeSum_entitlement_rage_Sum_z       53868    32087
## prestigeSum_devaluing_Sum_z              50206    31703
## prestigeSum_exploitativeness_Sum_z       55313    31295
## prestigeSum_Gender2                      60207    31271
## prestigeSum_Age                          69130    33456
## leadershipSum_grandiose_fantasy_Sum_z    62024    30040
## leadershipSum_cse_Sum_z                  58904    32571
## leadershipSum_hts_Sum_z                  57272    32648
## leadershipSum_ssse_Sum_z                 59019    30585
## leadershipSum_entitlement_rage_Sum_z     52012    31455
## leadershipSum_devaluing_Sum_z            50605    31411
## leadershipSum_exploitativeness_Sum_z     58285    31393
## leadershipSum_Gender2                    61189    31455
## leadershipSum_Age                        69090    32873
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.78      0.03     0.72     0.85 1.00    74017    28486
## sigma_prestigeSum       0.83      0.04     0.76     0.90 1.00    66074    27998
## sigma_leadershipSum     0.82      0.04     0.75     0.89 1.00    71983    30990
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.10      0.06    -0.02     0.22 1.00
## rescor(dominanceSum,leadershipSum)     0.13      0.06     0.01     0.25 1.00
## rescor(prestigeSum,leadershipSum)      0.30      0.06     0.19     0.40 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      68943    29601
## rescor(dominanceSum,leadershipSum)    69489    30211
## rescor(prestigeSum,leadershipSum)     60574    30401
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
dopl_PNI_1_hdi <- bayestestR::hdi(dopl_PNI_1, effects = "fixed", component = "conditional", ci = .95)
kable(dopl_PNI_1_hdi[
  sign(dopl_PNI_1_hdi$CI_low) == sign(dopl_PNI_1_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_entitlement_rage_Sum_z 0.95 0.28 0.55
b_dominanceSum_exploitativeness_Sum_z 0.95 0.24 0.45
b_dominanceSum_Gender2 0.95 0.12 0.50
b_prestigeSum_grandiose_fantasy_Sum_z 0.95 0.07 0.30
b_prestigeSum_cse_Sum_z 0.95 0.00 0.27
b_prestigeSum_hts_Sum_z 0.95 -0.32 -0.06
b_prestigeSum_ssse_Sum_z 0.95 0.16 0.40
b_prestigeSum_entitlement_rage_Sum_z 0.95 0.08 0.37
b_prestigeSum_exploitativeness_Sum_z 0.95 0.08 0.29
b_leadershipSum_grandiose_fantasy_Sum_z 0.95 0.02 0.25
b_leadershipSum_ssse_Sum_z 0.95 0.06 0.29
b_leadershipSum_exploitativeness_Sum_z 0.95 0.39 0.60
b_leadershipSum_Gender2 0.95 -0.52 -0.12
dopl_PNI_1_int <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ grandiose_fantasy_Sum_z * Gender + cse_Sum_z * Gender + hts_Sum_z * Gender + ssse_Sum_z * Gender + entitlement_rage_Sum_z * Gender + devaluing_Sum_z * Gender + exploitativeness_Sum_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr",
  prior = dopl_PNI_1_int_priors
)

saveRDS(dopl_PNI_1_int, "dopl_PNI_1_int.rds")
dopl_PNI_1_int_fix <- fixef(dopl_PNI_1_int)
saveRDS(dopl_PNI_1_int_fix, "dopl_PNI_1_int_fix.rds")
summary(dopl_PNI_1_int)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ grandiose_fantasy_Sum_z * Gender + cse_Sum_z * Gender + hts_Sum_z * Gender + ssse_Sum_z * Gender + entitlement_rage_Sum_z * Gender + devaluing_Sum_z * Gender + exploitativeness_Sum_z * Gender + Age 
##          prestige_Sum ~ grandiose_fantasy_Sum_z * Gender + cse_Sum_z * Gender + hts_Sum_z * Gender + ssse_Sum_z * Gender + entitlement_rage_Sum_z * Gender + devaluing_Sum_z * Gender + exploitativeness_Sum_z * Gender + Age 
##          leadership_Sum ~ grandiose_fantasy_Sum_z * Gender + cse_Sum_z * Gender + hts_Sum_z * Gender + ssse_Sum_z * Gender + entitlement_rage_Sum_z * Gender + devaluing_Sum_z * Gender + exploitativeness_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                               Estimate Est.Error l-95% CI
## dominanceSum_Intercept                           -0.10      0.17    -0.43
## prestigeSum_Intercept                             0.20      0.18    -0.14
## leadershipSum_Intercept                          -0.03      0.17    -0.36
## dominanceSum_grandiose_fantasy_Sum_z             -0.02      0.08    -0.19
## dominanceSum_Gender2                              0.30      0.10     0.11
## dominanceSum_cse_Sum_z                            0.11      0.09    -0.06
## dominanceSum_hts_Sum_z                            0.07      0.10    -0.11
## dominanceSum_ssse_Sum_z                          -0.01      0.09    -0.20
## dominanceSum_entitlement_rage_Sum_z               0.28      0.10     0.08
## dominanceSum_devaluing_Sum_z                     -0.01      0.10    -0.20
## dominanceSum_exploitativeness_Sum_z               0.37      0.07     0.22
## dominanceSum_Age                                 -0.00      0.01    -0.01
## dominanceSum_grandiose_fantasy_Sum_z:Gender2     -0.13      0.11    -0.35
## dominanceSum_Gender2:cse_Sum_z                   -0.03      0.13    -0.29
## dominanceSum_Gender2:hts_Sum_z                   -0.08      0.13    -0.34
## dominanceSum_Gender2:ssse_Sum_z                  -0.14      0.12    -0.37
## dominanceSum_Gender2:entitlement_rage_Sum_z       0.28      0.14     0.01
## dominanceSum_Gender2:devaluing_Sum_z             -0.03      0.13    -0.29
## dominanceSum_Gender2:exploitativeness_Sum_z      -0.07      0.10    -0.27
## prestigeSum_grandiose_fantasy_Sum_z               0.27      0.09     0.09
## prestigeSum_Gender2                              -0.15      0.10    -0.35
## prestigeSum_cse_Sum_z                             0.20      0.09     0.02
## prestigeSum_hts_Sum_z                            -0.23      0.10    -0.43
## prestigeSum_ssse_Sum_z                            0.24      0.10     0.05
## prestigeSum_entitlement_rage_Sum_z                0.22      0.10     0.02
## prestigeSum_devaluing_Sum_z                      -0.05      0.10    -0.25
## prestigeSum_exploitativeness_Sum_z                0.20      0.08     0.05
## prestigeSum_Age                                  -0.00      0.01    -0.01
## prestigeSum_grandiose_fantasy_Sum_z:Gender2      -0.14      0.12    -0.37
## prestigeSum_Gender2:cse_Sum_z                    -0.14      0.14    -0.41
## prestigeSum_Gender2:hts_Sum_z                     0.08      0.14    -0.19
## prestigeSum_Gender2:ssse_Sum_z                    0.06      0.13    -0.19
## prestigeSum_Gender2:entitlement_rage_Sum_z       -0.01      0.15    -0.29
## prestigeSum_Gender2:devaluing_Sum_z              -0.09      0.14    -0.37
## prestigeSum_Gender2:exploitativeness_Sum_z       -0.05      0.11    -0.27
## leadershipSum_grandiose_fantasy_Sum_z             0.22      0.09     0.05
## leadershipSum_Gender2                            -0.32      0.10    -0.52
## leadershipSum_cse_Sum_z                           0.11      0.09    -0.07
## leadershipSum_hts_Sum_z                          -0.13      0.10    -0.33
## leadershipSum_ssse_Sum_z                          0.08      0.10    -0.11
## leadershipSum_entitlement_rage_Sum_z             -0.07      0.10    -0.27
## leadershipSum_devaluing_Sum_z                     0.03      0.10    -0.16
## leadershipSum_exploitativeness_Sum_z              0.54      0.08     0.38
## leadershipSum_Age                                 0.01      0.01    -0.00
## leadershipSum_grandiose_fantasy_Sum_z:Gender2    -0.13      0.11    -0.35
## leadershipSum_Gender2:cse_Sum_z                  -0.44      0.14    -0.71
## leadershipSum_Gender2:hts_Sum_z                   0.07      0.13    -0.19
## leadershipSum_Gender2:ssse_Sum_z                  0.15      0.12    -0.10
## leadershipSum_Gender2:entitlement_rage_Sum_z      0.29      0.14     0.01
## leadershipSum_Gender2:devaluing_Sum_z            -0.12      0.14    -0.40
## leadershipSum_Gender2:exploitativeness_Sum_z     -0.09      0.11    -0.30
##                                               u-95% CI Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                            0.22 1.00    65546    29252
## prestigeSum_Intercept                             0.55 1.00    65528    31723
## leadershipSum_Intercept                           0.30 1.00    68597    31315
## dominanceSum_grandiose_fantasy_Sum_z              0.14 1.00    35228    31695
## dominanceSum_Gender2                              0.49 1.00    78606    29339
## dominanceSum_cse_Sum_z                            0.28 1.00    39615    30588
## dominanceSum_hts_Sum_z                            0.27 1.00    38974    32206
## dominanceSum_ssse_Sum_z                           0.17 1.00    36969    30454
## dominanceSum_entitlement_rage_Sum_z               0.47 1.00    33043    30853
## dominanceSum_devaluing_Sum_z                      0.18 1.00    36053    32072
## dominanceSum_exploitativeness_Sum_z               0.52 1.00    45246    30742
## dominanceSum_Age                                  0.01 1.00    62399    28445
## dominanceSum_grandiose_fantasy_Sum_z:Gender2      0.09 1.00    37145    31055
## dominanceSum_Gender2:cse_Sum_z                    0.23 1.00    43313    30763
## dominanceSum_Gender2:hts_Sum_z                    0.17 1.00    42326    30516
## dominanceSum_Gender2:ssse_Sum_z                   0.10 1.00    37691    30453
## dominanceSum_Gender2:entitlement_rage_Sum_z       0.55 1.00    33180    31533
## dominanceSum_Gender2:devaluing_Sum_z              0.24 1.00    36336    31862
## dominanceSum_Gender2:exploitativeness_Sum_z       0.14 1.00    44847    29414
## prestigeSum_grandiose_fantasy_Sum_z               0.44 1.00    34681    32077
## prestigeSum_Gender2                               0.06 1.00    61606    28872
## prestigeSum_cse_Sum_z                             0.38 1.00    37151    31852
## prestigeSum_hts_Sum_z                            -0.03 1.00    33802    31059
## prestigeSum_ssse_Sum_z                            0.44 1.00    38073    31837
## prestigeSum_entitlement_rage_Sum_z                0.43 1.00    32689    31454
## prestigeSum_devaluing_Sum_z                       0.15 1.00    34292    30933
## prestigeSum_exploitativeness_Sum_z                0.36 1.00    40542    31763
## prestigeSum_Age                                   0.01 1.00    66521    32441
## prestigeSum_grandiose_fantasy_Sum_z:Gender2       0.09 1.00    37552    31073
## prestigeSum_Gender2:cse_Sum_z                     0.14 1.00    38864    31145
## prestigeSum_Gender2:hts_Sum_z                     0.35 1.00    35884    31027
## prestigeSum_Gender2:ssse_Sum_z                    0.31 1.00    37504    31350
## prestigeSum_Gender2:entitlement_rage_Sum_z        0.27 1.00    35539    31501
## prestigeSum_Gender2:devaluing_Sum_z               0.19 1.00    37264    31855
## prestigeSum_Gender2:exploitativeness_Sum_z        0.17 1.00    42579    31378
## leadershipSum_grandiose_fantasy_Sum_z             0.39 1.00    34695    29533
## leadershipSum_Gender2                            -0.12 1.00    67368    30532
## leadershipSum_cse_Sum_z                           0.28 1.00    34608    29532
## leadershipSum_hts_Sum_z                           0.06 1.00    34957    32050
## leadershipSum_ssse_Sum_z                          0.28 1.00    35803    29514
## leadershipSum_entitlement_rage_Sum_z              0.13 1.00    29396    31029
## leadershipSum_devaluing_Sum_z                     0.23 1.00    32448    30660
## leadershipSum_exploitativeness_Sum_z              0.69 1.00    38092    31026
## leadershipSum_Age                                 0.02 1.00    67692    31093
## leadershipSum_grandiose_fantasy_Sum_z:Gender2     0.10 1.00    37841    30633
## leadershipSum_Gender2:cse_Sum_z                  -0.17 1.00    37250    30950
## leadershipSum_Gender2:hts_Sum_z                   0.33 1.00    36925    31637
## leadershipSum_Gender2:ssse_Sum_z                  0.39 1.00    36404    30926
## leadershipSum_Gender2:entitlement_rage_Sum_z      0.57 1.00    29757    30121
## leadershipSum_Gender2:devaluing_Sum_z             0.15 1.00    33607    30937
## leadershipSum_Gender2:exploitativeness_Sum_z      0.12 1.00    40784    31059
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.78      0.03     0.71     0.85 1.00    77559    29297
## sigma_prestigeSum       0.83      0.04     0.76     0.90 1.00    76189    28896
## sigma_leadershipSum     0.81      0.04     0.74     0.88 1.00    64277    28367
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.09      0.06    -0.03     0.21 1.00
## rescor(dominanceSum,leadershipSum)     0.12      0.06    -0.00     0.24 1.00
## rescor(prestigeSum,leadershipSum)      0.28      0.06     0.17     0.39 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      61651    30006
## rescor(dominanceSum,leadershipSum)    62616    30390
## rescor(prestigeSum,leadershipSum)     60740    29075
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
dopl_PNI_1_int_hdi <- bayestestR::hdi(dopl_PNI_1_int, effects = "fixed", component = "conditional", ci = .95)
kable(dopl_PNI_1_int_hdi[
  sign(dopl_PNI_1_int_hdi$CI_low) == sign(dopl_PNI_1_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_Gender2 0.95 0.11 0.50
b_dominanceSum_entitlement_rage_Sum_z 0.95 0.08 0.46
b_dominanceSum_exploitativeness_Sum_z 0.95 0.22 0.51
b_dominanceSum_Gender2:entitlement_rage_Sum_z 0.95 0.02 0.56
b_prestigeSum_grandiose_fantasy_Sum_z 0.95 0.09 0.44
b_prestigeSum_cse_Sum_z 0.95 0.02 0.38
b_prestigeSum_hts_Sum_z 0.95 -0.43 -0.03
b_prestigeSum_ssse_Sum_z 0.95 0.05 0.44
b_prestigeSum_entitlement_rage_Sum_z 0.95 0.03 0.43
b_prestigeSum_exploitativeness_Sum_z 0.95 0.05 0.36
b_leadershipSum_grandiose_fantasy_Sum_z 0.95 0.05 0.39
b_leadershipSum_Gender2 0.95 -0.52 -0.13
b_leadershipSum_exploitativeness_Sum_z 0.95 0.39 0.69
b_leadershipSum_Gender2:cse_Sum_z 0.95 -0.70 -0.16
b_leadershipSum_Gender2:entitlement_rage_Sum_z 0.95 0.02 0.58
m4 <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m4,
  save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)

saveRDS(m4, "m4.rds")
m7_fixef <- fixef(m7_DoPL_DOSPERT)

m4_int_gender <- brm(mvbind(dominance_Sum, prestige_Sum, leadership_Sum) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, prior = prior_m4_int_gender,
  save_pars = save_pars(all = TRUE), backend = "cmdstanr"
)
saveRDS(m4_int_gender, "m4_int_gender.rds")
summary(m4)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          prestige_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          leadership_Sum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## dominanceSum_Intercept                       -0.38      0.24    -0.85     0.09
## prestigeSum_Intercept                         0.49      0.25    -0.01     0.99
## leadershipSum_Intercept                      -0.04      0.26    -0.54     0.47
## dominanceSum_ethicalPreference_z              0.25      0.06     0.13     0.37
## dominanceSum_financialPreference_z           -0.18      0.02    -0.21    -0.14
## dominanceSum_socialPreference_z              -0.07      0.06    -0.19     0.05
## dominanceSum_healthAndSafetyPreference_z      0.04      0.05    -0.06     0.13
## dominanceSum_recreationalPreference_z         0.05      0.06    -0.06     0.16
## dominanceSum_PNI_Sum_z                        0.44      0.06     0.33     0.56
## dominanceSum_Gender                           0.27      0.11     0.05     0.50
## dominanceSum_Age                             -0.00      0.01    -0.01     0.01
## prestigeSum_ethicalPreference_z              -0.03      0.07    -0.17     0.10
## prestigeSum_financialPreference_z             0.06      0.06    -0.05     0.18
## prestigeSum_socialPreference_z               -0.24      0.01    -0.27    -0.21
## prestigeSum_healthAndSafetyPreference_z      -0.06      0.06    -0.18     0.06
## prestigeSum_recreationalPreference_z         -0.07      0.06    -0.18     0.05
## prestigeSum_PNI_Sum_z                         0.51      0.06     0.39     0.63
## prestigeSum_Gender                           -0.14      0.12    -0.38     0.09
## prestigeSum_Age                              -0.01      0.01    -0.02     0.00
## leadershipSum_ethicalPreference_z            -0.17      0.07    -0.30    -0.03
## leadershipSum_financialPreference_z           0.05      0.05    -0.06     0.15
## leadershipSum_socialPreference_z              0.03      0.05    -0.08     0.13
## leadershipSum_healthAndSafetyPreference_z     0.04      0.06    -0.07     0.16
## leadershipSum_recreationalPreference_z       -0.04      0.05    -0.13     0.05
## leadershipSum_PNI_Sum_z                       0.33      0.06     0.21     0.45
## leadershipSum_Gender                         -0.09      0.12    -0.32     0.15
## leadershipSum_Age                             0.01      0.01    -0.01     0.02
##                                           Rhat Bulk_ESS Tail_ESS
## dominanceSum_Intercept                    1.00    53318    29544
## prestigeSum_Intercept                     1.00    53433    29684
## leadershipSum_Intercept                   1.00    50007    30074
## dominanceSum_ethicalPreference_z          1.00    53819    29932
## dominanceSum_financialPreference_z        1.00    64165    27283
## dominanceSum_socialPreference_z           1.00    47382    30378
## dominanceSum_healthAndSafetyPreference_z  1.00    53320    28843
## dominanceSum_recreationalPreference_z     1.00    54941    28500
## dominanceSum_PNI_Sum_z                    1.00    51802    29625
## dominanceSum_Gender                       1.00    49194    30708
## dominanceSum_Age                          1.00    53189    30116
## prestigeSum_ethicalPreference_z           1.00    47042    30439
## prestigeSum_financialPreference_z         1.00    54571    28624
## prestigeSum_socialPreference_z            1.00    63867    26771
## prestigeSum_healthAndSafetyPreference_z   1.00    50923    29456
## prestigeSum_recreationalPreference_z      1.00    54568    29650
## prestigeSum_PNI_Sum_z                     1.00    51650    29241
## prestigeSum_Gender                        1.00    51286    29551
## prestigeSum_Age                           1.00    50262    31360
## leadershipSum_ethicalPreference_z         1.00    47061    29654
## leadershipSum_financialPreference_z       1.00    54406    27849
## leadershipSum_socialPreference_z          1.00    51457    28381
## leadershipSum_healthAndSafetyPreference_z 1.00    51853    30577
## leadershipSum_recreationalPreference_z    1.00    55486    28298
## leadershipSum_PNI_Sum_z                   1.00    47641    29268
## leadershipSum_Gender                      1.00    48322    29732
## leadershipSum_Age                         1.00    49673    30120
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.87      0.04     0.80     0.95 1.00    55680    27361
## sigma_prestigeSum       0.95      0.04     0.88     1.04 1.00    51474    28543
## sigma_leadershipSum     0.95      0.04     0.87     1.04 1.00    49241    30098
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.17      0.06     0.04     0.29 1.00
## rescor(dominanceSum,leadershipSum)     0.29      0.06     0.17     0.40 1.00
## rescor(prestigeSum,leadershipSum)      0.43      0.05     0.32     0.52 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      44587    30591
## rescor(dominanceSum,leadershipSum)    44324    30158
## rescor(prestigeSum,leadershipSum)     46035    28957
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
summary(m4_int_gender)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: dominance_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##          prestige_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##          leadership_Sum ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI
## dominanceSum_Intercept                              -0.48      0.23    -0.94
## prestigeSum_Intercept                                0.16      0.24    -0.31
## leadershipSum_Intercept                             -0.22      0.25    -0.71
## dominanceSum_ethicalPreference_z                     0.05      0.16    -0.26
## dominanceSum_Gender                                  0.30      0.11     0.08
## dominanceSum_financialPreference_z                  -0.19      0.02    -0.22
## dominanceSum_socialPreference_z                     -0.11      0.14    -0.39
## dominanceSum_healthAndSafetyPreference_z            -0.05      0.06    -0.17
## dominanceSum_recreationalPreference_z               -0.10      0.10    -0.30
## dominanceSum_PNI_Sum_z                               0.73      0.17     0.39
## dominanceSum_Age                                     0.00      0.01    -0.01
## dominanceSum_ethicalPreference_z:Gender              0.08      0.10    -0.11
## dominanceSum_Gender:financialPreference_z            0.11      0.04     0.04
## dominanceSum_Gender:socialPreference_z               0.04      0.10    -0.15
## dominanceSum_Gender:healthAndSafetyPreference_z      0.10      0.06    -0.01
## dominanceSum_Gender:recreationalPreference_z         0.08      0.07    -0.06
## dominanceSum_Gender:PNI_Sum_z                       -0.19      0.11    -0.40
## prestigeSum_ethicalPreference_z                     -0.04      0.15    -0.34
## prestigeSum_Gender                                   0.04      0.11    -0.19
## prestigeSum_financialPreference_z                   -0.02      0.12    -0.26
## prestigeSum_socialPreference_z                      -0.25      0.01    -0.28
## prestigeSum_healthAndSafetyPreference_z             -0.10      0.10    -0.30
## prestigeSum_recreationalPreference_z                -0.16      0.10    -0.35
## prestigeSum_PNI_Sum_z                                1.02      0.17     0.68
## prestigeSum_Age                                     -0.01      0.01    -0.02
## prestigeSum_ethicalPreference_z:Gender               0.04      0.09    -0.15
## prestigeSum_Gender:financialPreference_z             0.05      0.08    -0.10
## prestigeSum_Gender:socialPreference_z                0.25      0.04     0.17
## prestigeSum_Gender:healthAndSafetyPreference_z      -0.03      0.07    -0.17
## prestigeSum_Gender:recreationalPreference_z          0.02      0.07    -0.11
## prestigeSum_Gender:PNI_Sum_z                        -0.39      0.11    -0.60
## leadershipSum_ethicalPreference_z                   -0.09      0.17    -0.43
## leadershipSum_Gender                                 0.00      0.12    -0.23
## leadershipSum_financialPreference_z                 -0.08      0.09    -0.25
## leadershipSum_socialPreference_z                    -0.15      0.07    -0.30
## leadershipSum_healthAndSafetyPreference_z            0.04      0.10    -0.14
## leadershipSum_recreationalPreference_z              -0.16      0.06    -0.28
## leadershipSum_PNI_Sum_z                              0.73      0.18     0.37
## leadershipSum_Age                                    0.01      0.01    -0.00
## leadershipSum_ethicalPreference_z:Gender            -0.04      0.10    -0.24
## leadershipSum_Gender:financialPreference_z           0.11      0.06    -0.01
## leadershipSum_Gender:socialPreference_z              0.26      0.06     0.14
## leadershipSum_Gender:healthAndSafetyPreference_z    -0.06      0.07    -0.19
## leadershipSum_Gender:recreationalPreference_z        0.10      0.05    -0.00
## leadershipSum_Gender:PNI_Sum_z                      -0.28      0.11    -0.50
##                                                  u-95% CI Rhat Bulk_ESS
## dominanceSum_Intercept                              -0.03 1.00    67805
## prestigeSum_Intercept                                0.64 1.00    59904
## leadershipSum_Intercept                              0.27 1.00    61014
## dominanceSum_ethicalPreference_z                     0.36 1.00    35155
## dominanceSum_Gender                                  0.52 1.00    57737
## dominanceSum_financialPreference_z                  -0.16 1.00    70210
## dominanceSum_socialPreference_z                      0.18 1.00    32281
## dominanceSum_healthAndSafetyPreference_z             0.07 1.00    41923
## dominanceSum_recreationalPreference_z                0.10 1.00    33948
## dominanceSum_PNI_Sum_z                               1.06 1.00    28180
## dominanceSum_Age                                     0.01 1.00    67383
## dominanceSum_ethicalPreference_z:Gender              0.27 1.00    34063
## dominanceSum_Gender:financialPreference_z            0.18 1.00    67186
## dominanceSum_Gender:socialPreference_z               0.23 1.00    31272
## dominanceSum_Gender:healthAndSafetyPreference_z      0.21 1.00    40919
## dominanceSum_Gender:recreationalPreference_z         0.21 1.00    33233
## dominanceSum_Gender:PNI_Sum_z                        0.02 1.00    28221
## prestigeSum_ethicalPreference_z                      0.26 1.00    30409
## prestigeSum_Gender                                   0.26 1.00    46722
## prestigeSum_financialPreference_z                    0.22 1.00    34113
## prestigeSum_socialPreference_z                      -0.22 1.00    69063
## prestigeSum_healthAndSafetyPreference_z              0.10 1.00    37200
## prestigeSum_recreationalPreference_z                 0.03 1.00    34624
## prestigeSum_PNI_Sum_z                                1.36 1.00    24610
## prestigeSum_Age                                      0.00 1.00    67893
## prestigeSum_ethicalPreference_z:Gender               0.22 1.00    29008
## prestigeSum_Gender:financialPreference_z             0.21 1.00    33236
## prestigeSum_Gender:socialPreference_z                0.33 1.00    55379
## prestigeSum_Gender:healthAndSafetyPreference_z       0.12 1.00    36128
## prestigeSum_Gender:recreationalPreference_z          0.15 1.00    32912
## prestigeSum_Gender:PNI_Sum_z                        -0.17 1.00    24205
## leadershipSum_ethicalPreference_z                    0.24 1.00    32042
## leadershipSum_Gender                                 0.24 1.00    50626
## leadershipSum_financialPreference_z                  0.10 1.00    35559
## leadershipSum_socialPreference_z                    -0.01 1.00    38242
## leadershipSum_healthAndSafetyPreference_z            0.23 1.00    33978
## leadershipSum_recreationalPreference_z              -0.04 1.00    47799
## leadershipSum_PNI_Sum_z                              1.08 1.00    26329
## leadershipSum_Age                                    0.02 1.00    61372
## leadershipSum_ethicalPreference_z:Gender             0.17 1.00    30378
## leadershipSum_Gender:financialPreference_z           0.23 1.00    34759
## leadershipSum_Gender:socialPreference_z              0.39 1.00    34480
## leadershipSum_Gender:healthAndSafetyPreference_z     0.08 1.00    32256
## leadershipSum_Gender:recreationalPreference_z        0.21 1.00    40400
## leadershipSum_Gender:PNI_Sum_z                      -0.06 1.00    26340
##                                                  Tail_ESS
## dominanceSum_Intercept                              28486
## prestigeSum_Intercept                               27068
## leadershipSum_Intercept                             30136
## dominanceSum_ethicalPreference_z                    28773
## dominanceSum_Gender                                 28527
## dominanceSum_financialPreference_z                  28124
## dominanceSum_socialPreference_z                     28617
## dominanceSum_healthAndSafetyPreference_z            30574
## dominanceSum_recreationalPreference_z               28463
## dominanceSum_PNI_Sum_z                              27644
## dominanceSum_Age                                    27434
## dominanceSum_ethicalPreference_z:Gender             27880
## dominanceSum_Gender:financialPreference_z           26517
## dominanceSum_Gender:socialPreference_z              28385
## dominanceSum_Gender:healthAndSafetyPreference_z     31285
## dominanceSum_Gender:recreationalPreference_z        28701
## dominanceSum_Gender:PNI_Sum_z                       27421
## prestigeSum_ethicalPreference_z                     28755
## prestigeSum_Gender                                  29554
## prestigeSum_financialPreference_z                   29108
## prestigeSum_socialPreference_z                      27704
## prestigeSum_healthAndSafetyPreference_z             30174
## prestigeSum_recreationalPreference_z                28837
## prestigeSum_PNI_Sum_z                               26951
## prestigeSum_Age                                     28833
## prestigeSum_ethicalPreference_z:Gender              27913
## prestigeSum_Gender:financialPreference_z            28956
## prestigeSum_Gender:socialPreference_z               28801
## prestigeSum_Gender:healthAndSafetyPreference_z      29883
## prestigeSum_Gender:recreationalPreference_z         28138
## prestigeSum_Gender:PNI_Sum_z                        27215
## leadershipSum_ethicalPreference_z                   28923
## leadershipSum_Gender                                29030
## leadershipSum_financialPreference_z                 28104
## leadershipSum_socialPreference_z                    29965
## leadershipSum_healthAndSafetyPreference_z           28757
## leadershipSum_recreationalPreference_z              30766
## leadershipSum_PNI_Sum_z                             27324
## leadershipSum_Age                                   29159
## leadershipSum_ethicalPreference_z:Gender            28243
## leadershipSum_Gender:financialPreference_z          28598
## leadershipSum_Gender:socialPreference_z             29579
## leadershipSum_Gender:healthAndSafetyPreference_z    29093
## leadershipSum_Gender:recreationalPreference_z       29995
## leadershipSum_Gender:PNI_Sum_z                      27398
## 
## Family Specific Parameters: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_dominanceSum      0.85      0.04     0.78     0.92 1.00    63714    26427
## sigma_prestigeSum       0.89      0.04     0.81     0.96 1.00    56287    28101
## sigma_leadershipSum     0.92      0.04     0.85     1.00 1.00    60427    27782
## 
## Residual Correlations: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(dominanceSum,prestigeSum)       0.14      0.06     0.03     0.26 1.00
## rescor(dominanceSum,leadershipSum)     0.27      0.06     0.15     0.38 1.00
## rescor(prestigeSum,leadershipSum)      0.37      0.05     0.27     0.47 1.00
##                                    Bulk_ESS Tail_ESS
## rescor(dominanceSum,prestigeSum)      51867    28446
## rescor(dominanceSum,leadershipSum)    52577    29982
## rescor(prestigeSum,leadershipSum)     57139    29315
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m4_hdi <- bayestestR::hdi(m4, effects = "fixed", component = "conditional", ci = .95)
kable(m4_hdi[
  sign(m4_hdi$CI_low) == sign(m4_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_ethicalPreference_z 0.95 0.13 0.37
b_dominanceSum_financialPreference_z 0.95 -0.21 -0.14
b_dominanceSum_PNI_Sum_z 0.95 0.33 0.56
b_dominanceSum_Gender 0.95 0.06 0.50
b_prestigeSum_socialPreference_z 0.95 -0.27 -0.21
b_prestigeSum_PNI_Sum_z 0.95 0.39 0.63
b_leadershipSum_ethicalPreference_z 0.95 -0.30 -0.03
b_leadershipSum_PNI_Sum_z 0.95 0.21 0.45
m4_int_gender_hdi <- bayestestR::hdi(m4_int_gender, effects = "fixed", component = "conditional", ci = .95)
kable(m4_int_gender_hdi[
  sign(m4_int_gender_hdi$CI_low) == sign(m4_int_gender_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_dominanceSum_Intercept 0.95 -0.95 -0.04
b_dominanceSum_Gender 0.95 0.08 0.51
b_dominanceSum_financialPreference_z 0.95 -0.22 -0.16
b_dominanceSum_PNI_Sum_z 0.95 0.39 1.05
b_dominanceSum_Gender:financialPreference_z 0.95 0.04 0.18
b_prestigeSum_socialPreference_z 0.95 -0.28 -0.22
b_prestigeSum_PNI_Sum_z 0.95 0.68 1.36
b_prestigeSum_Gender:socialPreference_z 0.95 0.17 0.33
b_prestigeSum_Gender:PNI_Sum_z 0.95 -0.60 -0.17
b_leadershipSum_socialPreference_z 0.95 -0.29 0.00
b_leadershipSum_recreationalPreference_z 0.95 -0.28 -0.05
b_leadershipSum_PNI_Sum_z 0.95 0.36 1.07
b_leadershipSum_Gender:socialPreference_z 0.95 0.14 0.38
b_leadershipSum_Gender:PNI_Sum_z 0.95 -0.50 -0.05
m1_model <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
m2_model <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
m3_model <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum)
mediation_model <- brm(m3_model + m1_model + m2_model + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model, "mediation_model.rds")

m1_model.1 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z)
m2_model.1 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z)
m3_model.1 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z)
mediation_model.1 <- brm(m3_model.1 + m1_model.1 + m2_model.1 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.1, "mediation_model.1.rds")
m1_model.2 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z)
m2_model.2 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z)
m3_model.2 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z)
mediation_model.2 <- brm(m3_model.2 + m1_model.2 + m2_model.2 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.2, "mediation_model.2.rds")
m1_model.3 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m2_model.3 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m3_model.3 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
mediation_model.3 <- brm(m3_model.3 + m1_model.3 + m2_model.3 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.3, "mediation_model.3.rds")
m1_model.4 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m2_model.4 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m3_model.4 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
mediation_model.4 <- brm(m3_model.4 + m1_model.4 + m2_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))

m1_model.5 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum_z + Age)
m2_model.5 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum_z + Age)
m3_model.5 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum + Gender + PNI_Sum_z + Age)
mediation_model.5 <- brm(m3_model.5 + m1_model.5 + m2_model.5 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))

m1_model.6 <- bf(riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum_z + Age)
m2_model.6 <- bf(riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum_z + Age)
m3_model.6 <- bf(riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Gender + PNI_Sum_z + Age)
mediation_model.6 <- brm(m3_model.6 + m1_model.6 + m2_model.6 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.6, "mediation_model.6.rds")


m1_model.4 <- bf(riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m2_model.4 <- bf(riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
m3_model.4 <- bf(riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + PNI_Sum_z + Age)
mediation_model.4 <- brm(m3_model.4 + m1_model.4 + m2_model.4 + set_rescor(FALSE), warmup = 1000, iter = 10000, data = d1, backend = "cmdstanr", save_pars = save_pars(all = TRUE))
saveRDS(mediation_model.5, "mediation_model.5.rds")
mediation_test.2 <- loo(mediation_model.5, mediation_model.6)
mediation_comparison.2 <- bayesfactor_models(mediation_model.5, mediation_model.6, denominator = 2)
d1 <- Experiment_2_demographics_Gender[complete.cases(Experiment_2_demographics_Gender), ]

mediation_test.1 <- loo(mediation_model, mediation_model.1, mediation_model.2, mediation_model.3, mediation_model.4)

mediation_comparison <- bayesfactor_models(mediation_model, mediation_model.1, mediation_model.2, mediation_model.3, mediation_model.4, denominator = 5)
print(mediation_test.1)
## Output of model 'mediation_model':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3597.0 25.9
## p_loo        14.7  1.2
## looic      7193.9 51.7
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.1':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3595.2 25.7
## p_loo        17.4  1.3
## looic      7190.4 51.4
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.2':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3591.1 26.1
## p_loo        20.6  1.6
## looic      7182.2 52.1
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.3':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3581.1 26.6
## p_loo        23.3  1.7
## looic      7162.1 53.2
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Output of model 'mediation_model.4':
## 
## Computed from 36000 by 279 log-likelihood matrix
## 
##          Estimate   SE
## elpd_loo  -3580.9 26.6
## p_loo        23.1  1.7
## looic      7161.9 53.2
## ------
## Monte Carlo SE of elpd_loo is 0.0.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
## 
## Model comparisons:
##                   elpd_diff se_diff
## mediation_model.4   0.0       0.0  
## mediation_model.3  -0.1       0.0  
## mediation_model.2 -10.2       6.3  
## mediation_model.1 -14.3       7.7  
## mediation_model   -16.0       8.1
print(mediation_comparison)
## Bayes Factors for Model Comparison
## 
##     Model       BF
## [1]       1.83e-13
## [2]       6.36e-10
## [3]       1.32e-04
## [4]           1.00
## 
## * Against Denominator: [5]
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
print(mediation_comparison.2)
## Bayes Factors for Model Comparison
## 
##     Model    BF
## [1]       0.002
## 
## * Against Denominator: [2]
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
# library(blavaan)

model.1 <- "Perception =~ prestige_Sum + leadership_Sum + dominance_Sum
             Preference =~ ethicalPreference_z + financialPreference_z + socialPreference_z + recreationalPreference_z + healthAndSafetyPreference_z
             Perception ~ Preference"
model.2 <- "PNI_2 =~ exploitativeness_Sum_z + grandiose_fantasy_Sum_z + ssse_Sum_z
            PNI_3 =~ cse_Sum_z + devaluing_Sum_z + entitlement_rage_Sum_z + hts_Sum_z
            PNI_2 ~ PNI_3"
model.3 <- "Preferences =~ dominance_Sum + PNI_Sum_z + prestige_Sum + leadership_Sum"

model.4 <- "Preference =~ prestige_Sum + leadership_Sum + dominance_Sum
            Preference2 =~ exploitativeness_Sum_z + grandiose_fantasy_Sum_z + ssse_Sum_z
            Preference ~ Preference2"


fit_bayes <- blavaan(
  model = model.1, data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)

fit_bayes.2 <- bsem(
  model = model.2, data = Experiment_2_demographics_Gender, n.chains = 4, seed = 1234, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)

fit_bayes.3 <- bsem(model.1,
  data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)

fit_bayes.4 <- bsem(model.4,
  data = Experiment_2_demographics_Gender, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)
summary(fit_bayes)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    1.089    0.272    0.686    1.778    1.026    normal(0,10)
##     dominance_Sum     0.717    0.159    0.421    1.052    1.000    normal(0,10)
##   Preference =~                                                                
##     ethiclPrfrnc_z    1.000                                                    
##     finnclPrfrnc_z    0.674    0.133    0.434    0.958    1.000    normal(0,10)
##     socialPrfrnc_z    0.640    0.141    0.388    0.948    1.001    normal(0,10)
##     rcrtnlPrfrnc_z    1.044    0.162    0.772    1.410    1.002    normal(0,10)
##     hlthAndSftyPr_    1.387    0.172    1.095    1.774    1.001    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception ~                                                                 
##     Preference        0.161    0.105   -0.034    0.369    1.003    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.000                                                    
##    .leadership_Sum    0.000                                                    
##    .dominance_Sum     0.000                                                    
##    .ethiclPrfrnc_z    0.000                                                    
##    .finnclPrfrnc_z    0.000                                                    
##    .socialPrfrnc_z    0.000                                                    
##    .rcrtnlPrfrnc_z    0.000                                                    
##    .hlthAndSftyPr_    0.000                                                    
##    .Perception        0.000                                                    
##     Preference        0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.588    0.111    0.351    0.798    1.007 gamma(1,.5)[sd]
##    .leadership_Sum    0.524    0.130    0.180    0.728    1.025 gamma(1,.5)[sd]
##    .dominance_Sum     0.810    0.088    0.649    0.997    1.006 gamma(1,.5)[sd]
##    .ethiclPrfrnc_z    0.605    0.066    0.483    0.746    1.001 gamma(1,.5)[sd]
##    .finnclPrfrnc_z    0.819    0.077    0.682    0.980    1.000 gamma(1,.5)[sd]
##    .socialPrfrnc_z    0.834    0.078    0.694    0.997    1.000 gamma(1,.5)[sd]
##    .rcrtnlPrfrnc_z    0.624    0.068    0.500    0.762    1.001 gamma(1,.5)[sd]
##    .hlthAndSftyPr_    0.327    0.079    0.172    0.483    0.999 gamma(1,.5)[sd]
##    .Perception        0.430    0.121    0.228    0.707    1.004 gamma(1,.5)[sd]
##     Preference        0.359    0.078    0.221    0.526    1.001 gamma(1,.5)[sd]
summary(fit_bayes.2)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.259
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   PNI_2 =~                                                                     
##     explttvnss_Sm_    1.000                                                    
##     grnds_fntsy_S_    1.786    0.445    1.155    2.835    1.005    normal(0,10)
##     ssse_Sum_z        2.002    0.489    1.305    3.130    1.007    normal(0,10)
##   PNI_3 =~                                                                     
##     cse_Sum_z         1.000                                                    
##     devaluing_Sm_z    1.047    0.090    0.880    1.235    1.000    normal(0,10)
##     enttlmnt_rg_S_    1.059    0.090    0.891    1.250    1.000    normal(0,10)
##     hts_Sum_z         0.966    0.089    0.804    1.149    1.001    normal(0,10)
## 
## Covariances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   PNI_2 ~~                                                                     
##     PNI_3             0.195    0.047    0.111    0.295    1.003     lkj_corr(1)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .explttvnss_Sm_    0.000                                                    
##    .grnds_fntsy_S_    0.000                                                    
##    .ssse_Sum_z        0.000                                                    
##    .cse_Sum_z         0.000                                                    
##    .devaluing_Sm_z    0.000                                                    
##    .enttlmnt_rg_S_    0.000                                                    
##    .hts_Sum_z         0.000                                                    
##     PNI_2             0.000                                                    
##     PNI_3             0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .explttvnss_Sm_    0.861    0.075    0.720    1.015    0.999 gamma(1,.5)[sd]
##    .grnds_fntsy_S_    0.610    0.074    0.475    0.760    0.999 gamma(1,.5)[sd]
##    .ssse_Sum_z        0.486    0.074    0.346    0.645    1.001 gamma(1,.5)[sd]
##    .cse_Sum_z         0.451    0.051    0.356    0.555    1.001 gamma(1,.5)[sd]
##    .devaluing_Sm_z    0.409    0.047    0.324    0.510    0.999 gamma(1,.5)[sd]
##    .enttlmnt_rg_S_    0.395    0.047    0.310    0.494    1.000 gamma(1,.5)[sd]
##    .hts_Sum_z         0.492    0.052    0.398    0.598    1.000 gamma(1,.5)[sd]
##     PNI_2             0.139    0.054    0.052    0.264    1.001 gamma(1,.5)[sd]
##     PNI_3             0.563    0.084    0.412    0.743    1.001 gamma(1,.5)[sd]
summary(fit_bayes.3)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    1.080    0.220    0.716    1.566    1.002    normal(0,10)
##     dominance_Sum     0.723    0.155    0.453    1.054    1.001    normal(0,10)
##   Preference =~                                                                
##     ethiclPrfrnc_z    1.000                                                    
##     finnclPrfrnc_z    0.668    0.130    0.428    0.948    1.000    normal(0,10)
##     socialPrfrnc_z    0.635    0.134    0.399    0.924    1.001    normal(0,10)
##     rcrtnlPrfrnc_z    1.038    0.153    0.774    1.388    1.002    normal(0,10)
##     hlthAndSftyPr_    1.385    0.169    1.095    1.766    1.000    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Perception ~                                                                 
##     Preference        0.160    0.104   -0.041    0.372    1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum     -0.000    0.062   -0.118    0.121    1.000    normal(0,32)
##    .leadership_Sum    0.001    0.061   -0.118    0.117    1.000    normal(0,32)
##    .dominance_Sum     0.002    0.061   -0.116    0.127    1.000    normal(0,32)
##    .ethiclPrfrnc_z   -0.019    0.058   -0.134    0.095    1.001    normal(0,32)
##    .finnclPrfrnc_z   -0.004    0.059   -0.119    0.110    1.000    normal(0,32)
##    .socialPrfrnc_z   -0.037    0.060   -0.152    0.078    1.000    normal(0,32)
##    .rcrtnlPrfrnc_z   -0.013    0.060   -0.131    0.105    1.000    normal(0,32)
##    .hlthAndSftyPr_   -0.019    0.060   -0.137    0.098    0.999    normal(0,32)
##    .Perception        0.000                                                    
##     Preference        0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.593    0.100    0.383    0.778    1.002 gamma(1,.5)[sd]
##    .leadership_Sum    0.531    0.110    0.293    0.736    1.000 gamma(1,.5)[sd]
##    .dominance_Sum     0.811    0.085    0.658    0.985    1.001 gamma(1,.5)[sd]
##    .ethiclPrfrnc_z    0.604    0.067    0.488    0.742    1.001 gamma(1,.5)[sd]
##    .finnclPrfrnc_z    0.823    0.076    0.685    0.981    1.000 gamma(1,.5)[sd]
##    .socialPrfrnc_z    0.836    0.078    0.697    0.990    0.999 gamma(1,.5)[sd]
##    .rcrtnlPrfrnc_z    0.625    0.068    0.494    0.762    1.002 gamma(1,.5)[sd]
##    .hlthAndSftyPr_    0.326    0.077    0.172    0.474    1.002 gamma(1,.5)[sd]
##    .Perception        0.428    0.111    0.243    0.670    1.003 gamma(1,.5)[sd]
##     Preference        0.361    0.075    0.228    0.514    1.002 gamma(1,.5)[sd]
summary(fit_bayes.4)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Preference =~                                                                
##     prestige_Sum      1.000                                                    
##     leadership_Sum    0.963    0.121    0.749    1.219    0.999    normal(0,10)
##     dominance_Sum     0.703    0.117    0.485    0.945    1.000    normal(0,10)
##   Preference2 =~                                                               
##     explttvnss_Sm_    1.000                                                    
##     grnds_fntsy_S_    0.828    0.153    0.562    1.162    1.001    normal(0,10)
##     ssse_Sum_z        0.925    0.160    0.646    1.284    1.002    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Preference ~                                                                 
##     Preference2       1.126    0.170    0.845    1.509    1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.002    0.061   -0.121    0.120    0.999    normal(0,32)
##    .leadership_Sum    0.002    0.060   -0.115    0.116    0.999    normal(0,32)
##    .dominance_Sum     0.005    0.061   -0.110    0.129    0.999    normal(0,32)
##    .explttvnss_Sm_    0.009    0.059   -0.106    0.126    1.000    normal(0,32)
##    .grnds_fntsy_S_   -0.011    0.061   -0.127    0.109    1.000    normal(0,32)
##    .ssse_Sum_z        0.010    0.059   -0.103    0.126    0.999    normal(0,32)
##    .Preference        0.000                                                    
##     Preference2       0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .prestige_Sum      0.538    0.069    0.411    0.681    1.001 gamma(1,.5)[sd]
##    .leadership_Sum    0.571    0.066    0.447    0.708    1.000 gamma(1,.5)[sd]
##    .dominance_Sum     0.792    0.077    0.653    0.952    0.999 gamma(1,.5)[sd]
##    .explttvnss_Sm_    0.618    0.071    0.483    0.771    1.001 gamma(1,.5)[sd]
##    .grnds_fntsy_S_    0.756    0.077    0.613    0.912    1.000 gamma(1,.5)[sd]
##    .ssse_Sum_z        0.666    0.070    0.537    0.814    0.999 gamma(1,.5)[sd]
##    .Preference        0.020    0.026    0.000    0.093    1.001 gamma(1,.5)[sd]
##     Preference2       0.384    0.086    0.231    0.566    1.000 gamma(1,.5)[sd]
graph_sem(fit_bayes)

graph_sem(fit_bayes.2)

graph_sem(fit_bayes.3)

graph_sem(fit_bayes.4)


Experiment_2_demographics_Gender$Gender <- as.numeric(Experiment_2_demographics_Gender$Gender)
model.5 <- "Risk_Benefit =~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age
            Risk_Sum =~ dominance_Sum*Gender + prestige_Sum*Gender + leadership_Sum*Gender + Age
            Risk_Benefit ~ Risk_Sum"



fit_bayes.5 <- bsem(model.5,
  data = Experiment_2_demographics_Gender, n.chains = 4, seed = 1234, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE, sample = 5000,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)
summary(fit_bayes.5)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.411
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Risk_Benefit =~                                                              
##     dmnnc_S           1.000                                                    
##     prstg_S           2.102    0.679    1.242    3.872    1.010    normal(0,10)
##     ldrsh_S           1.609    0.379    1.045    2.520    1.007    normal(0,10)
##     Gender           -0.046    0.277   -0.670    0.551    1.011    normal(0,10)
##     Age              -5.223    2.807  -10.915    0.590    1.006    normal(0,10)
##   Risk_Sum =~                                                                  
##     Gender  (dm_S)    1.000                                                    
##     Age               1.704    9.353  -17.154   20.360    1.004    normal(0,10)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Risk_Benefit ~                                                               
##     Risk_Sum          0.032    6.144  -13.288   13.627    1.002    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .dominance_Sum     0.006    0.060   -0.113    0.120    1.000    normal(0,32)
##    .prestige_Sum      0.002    0.061   -0.116    0.119    1.001    normal(0,32)
##    .leadership_Sum    0.005    0.063   -0.121    0.135    1.002    normal(0,32)
##    .Gender            1.557    0.031    1.495    1.617    1.005    normal(0,32)
##    .Age              29.524    0.586   28.381   30.670    1.001    normal(0,32)
##    .Risk_Benefit      0.000                                                    
##     Risk_Sum          0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .dominance_Sum     0.859    0.091    0.688    1.035    1.014 gamma(1,.5)[sd]
##    .prestige_Sum      0.415    0.149    0.036    0.661    1.006 gamma(1,.5)[sd]
##    .leadership_Sum    0.643    0.099    0.448    0.837    1.004 gamma(1,.5)[sd]
##    .Gender            0.241    0.030    0.176    0.294    1.013 gamma(1,.5)[sd]
##    .Age              92.745    8.226   78.234  109.662    1.005 gamma(1,.5)[sd]
##    .Risk_Benefit      0.095    0.070    0.001    0.253    1.009 gamma(1,.5)[sd]
##     Risk_Sum          0.022    0.042    0.000    0.142    1.035 gamma(1,.5)[sd]
graph_sem(fit_bayes.5)

m5 <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, save_pars = save_pars(all = TRUE), backend = "cmdstanr",
  prior = prior_m5
)
summary(m5)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          riskPerceptionSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##          riskBenefitSum ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                               Estimate Est.Error l-95% CI
## riskSum_Intercept                                 9.88      1.26     7.43
## riskPerceptionSum_Intercept                      13.83      1.25    11.37
## riskBenefitSum_Intercept                          7.61      0.96     5.75
## riskSum_ethicalPreference_z                      -0.07      0.23    -0.52
## riskSum_financialPreference_z                    -0.13      0.07    -0.26
## riskSum_socialPreference_z                       -0.05      0.10    -0.25
## riskSum_healthAndSafetyPreference_z              -0.09      0.20    -0.48
## riskSum_recreationalPreference_z                 -0.15      0.14    -0.42
## riskSum_PNI_Sum_z                                 1.27      0.72    -0.13
## riskSum_Gender                                    0.29      0.50    -0.69
## riskSum_Age                                      -0.03      0.01    -0.04
## riskPerceptionSum_ethicalPreference_z            -0.46      0.20    -0.84
## riskPerceptionSum_financialPreference_z          -0.39      0.25    -0.88
## riskPerceptionSum_socialPreference_z             -0.03      0.10    -0.23
## riskPerceptionSum_healthAndSafetyPreference_z    -0.22      0.02    -0.26
## riskPerceptionSum_recreationalPreference_z       -6.41      0.85    -8.06
## riskPerceptionSum_PNI_Sum_z                      -0.76      0.83    -2.39
## riskPerceptionSum_Gender                         -0.63      0.35    -1.31
## riskPerceptionSum_Age                            -0.01      0.02    -0.05
## riskBenefitSum_ethicalPreference_z                0.33      0.12     0.09
## riskBenefitSum_financialPreference_z              0.34      0.12     0.09
## riskBenefitSum_socialPreference_z                 0.10      0.06    -0.02
## riskBenefitSum_healthAndSafetyPreference_z        0.18      0.09     0.02
## riskBenefitSum_recreationalPreference_z           0.14      0.08    -0.02
## riskBenefitSum_PNI_Sum_z                          0.82      0.64    -0.45
## riskBenefitSum_Gender                            -0.05      0.05    -0.13
## riskBenefitSum_Age                               -0.00      0.00    -0.01
##                                               u-95% CI Rhat Bulk_ESS Tail_ESS
## riskSum_Intercept                                12.36 1.00    72123    30697
## riskPerceptionSum_Intercept                      16.28 1.00    82917    29142
## riskBenefitSum_Intercept                          9.49 1.00    57137    31137
## riskSum_ethicalPreference_z                       0.39 1.00    85102    26592
## riskSum_financialPreference_z                     0.01 1.00    86150    24540
## riskSum_socialPreference_z                        0.14 1.00    96780    26218
## riskSum_healthAndSafetyPreference_z               0.29 1.00    93799    26986
## riskSum_recreationalPreference_z                  0.12 1.00    88329    27659
## riskSum_PNI_Sum_z                                 2.69 1.00    60262    30914
## riskSum_Gender                                    1.27 1.00    98748    27309
## riskSum_Age                                      -0.01 1.00    83706    27591
## riskPerceptionSum_ethicalPreference_z            -0.07 1.00    85873    26295
## riskPerceptionSum_financialPreference_z           0.10 1.00    80480    27806
## riskPerceptionSum_socialPreference_z              0.16 1.00   100188    25748
## riskPerceptionSum_healthAndSafetyPreference_z    -0.19 1.00    88256    26501
## riskPerceptionSum_recreationalPreference_z       -4.73 1.00    81635    28786
## riskPerceptionSum_PNI_Sum_z                       0.87 1.00    76646    28893
## riskPerceptionSum_Gender                          0.05 1.00    98350    27165
## riskPerceptionSum_Age                             0.02 1.00    91420    28286
## riskBenefitSum_ethicalPreference_z                0.57 1.00    82592    27362
## riskBenefitSum_financialPreference_z              0.58 1.00    83311    27025
## riskBenefitSum_socialPreference_z                 0.22 1.00    92496    27209
## riskBenefitSum_healthAndSafetyPreference_z        0.35 1.00    85515    28013
## riskBenefitSum_recreationalPreference_z           0.29 1.00    88803    26428
## riskBenefitSum_PNI_Sum_z                          2.07 1.00    61314    31860
## riskBenefitSum_Gender                             0.04 1.00    98112    26616
## riskBenefitSum_Age                                0.00 1.00    36041    24182
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSum              29.57      0.40    28.80    30.35 1.00    61375
## sigma_riskPerceptionSum    38.23      0.45    37.36    39.10 1.00    66665
## sigma_riskBenefitSum       25.73      0.37    25.01    26.46 1.00    56797
##                         Tail_ESS
## sigma_riskSum              29396
## sigma_riskPerceptionSum    30650
## sigma_riskBenefitSum       31232
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI
## rescor(riskSum,riskPerceptionSum)            0.79      0.01     0.76     0.81
## rescor(riskSum,riskBenefitSum)               0.88      0.01     0.86     0.89
## rescor(riskPerceptionSum,riskBenefitSum)     0.82      0.01     0.80     0.84
##                                          Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)        1.00    71999    32042
## rescor(riskSum,riskBenefitSum)           1.00    69892    30642
## rescor(riskPerceptionSum,riskBenefitSum) 1.00    71859    32695
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m5_hdi <- bayestestR::hdi(m5, effects = "fixed", component = "conditional", ci = .95)
kable(m5_hdi[
  sign(m5_hdi$CI_low) == sign(m5_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 7.43 12.36
b_riskSum_Age 0.95 -0.04 -0.01
b_riskPerceptionSum_Intercept 0.95 11.44 16.33
b_riskPerceptionSum_ethicalPreference_z 0.95 -0.84 -0.07
b_riskPerceptionSum_healthAndSafetyPreference_z 0.95 -0.26 -0.19
b_riskPerceptionSum_recreationalPreference_z 0.95 -8.04 -4.72
b_riskBenefitSum_Intercept 0.95 5.73 9.48
b_riskBenefitSum_ethicalPreference_z 0.95 0.09 0.57
b_riskBenefitSum_financialPreference_z 0.95 0.09 0.58
b_riskBenefitSum_healthAndSafetyPreference_z 0.95 0.02 0.35
m6 <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m6)
summary(m6)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          riskPerceptionSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##          riskBenefitSum ~ dominance_Sum + prestige_Sum + leadership_Sum + PNI_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## riskSum_Intercept                    9.37      1.40     6.62    12.12 1.00
## riskPerceptionSum_Intercept         14.68      1.04    12.64    16.74 1.00
## riskBenefitSum_Intercept             9.06      1.57     5.98    12.13 1.00
## riskSum_dominance_Sum                1.04      0.51     0.04     2.03 1.00
## riskSum_prestige_Sum                 0.16      0.34    -0.49     0.82 1.00
## riskSum_leadership_Sum              -0.22      0.18    -0.56     0.13 1.00
## riskSum_PNI_Sum_z                    4.25      1.78     0.80     7.76 1.00
## riskSum_Gender                       0.37      0.52    -0.65     1.38 1.00
## riskSum_Age                         -0.02      0.02    -0.05     0.02 1.00
## riskPerceptionSum_dominance_Sum     -3.09      0.86    -4.79    -1.41 1.00
## riskPerceptionSum_prestige_Sum       0.07      0.40    -0.72     0.86 1.00
## riskPerceptionSum_leadership_Sum    -0.16      0.23    -0.61     0.29 1.00
## riskPerceptionSum_PNI_Sum_z          2.11      2.33    -2.44     6.73 1.00
## riskPerceptionSum_Gender            -0.64      0.20    -1.03    -0.24 1.00
## riskPerceptionSum_Age               -0.04      0.00    -0.05    -0.03 1.00
## riskBenefitSum_dominance_Sum         0.55      0.41    -0.25     1.35 1.00
## riskBenefitSum_prestige_Sum         -0.30      0.32    -0.92     0.31 1.00
## riskBenefitSum_leadership_Sum       -0.20      0.17    -0.54     0.14 1.00
## riskBenefitSum_PNI_Sum_z             3.53      1.57     0.45     6.62 1.00
## riskBenefitSum_Gender                0.17      0.62    -1.04     1.38 1.00
## riskBenefitSum_Age                  -0.06      0.03    -0.11    -0.00 1.00
##                                  Bulk_ESS Tail_ESS
## riskSum_Intercept                   75585    30399
## riskPerceptionSum_Intercept         72007    29691
## riskBenefitSum_Intercept            73906    27928
## riskSum_dominance_Sum               80708    25470
## riskSum_prestige_Sum                84374    27802
## riskSum_leadership_Sum              90789    27746
## riskSum_PNI_Sum_z                   33717    29857
## riskSum_Gender                      87391    27976
## riskSum_Age                         83645    27312
## riskPerceptionSum_dominance_Sum     82355    27930
## riskPerceptionSum_prestige_Sum      90829    28180
## riskPerceptionSum_leadership_Sum    89242    28447
## riskPerceptionSum_PNI_Sum_z         34866    30561
## riskPerceptionSum_Gender            89673    26947
## riskPerceptionSum_Age               45067    24737
## riskBenefitSum_dominance_Sum        83883    29329
## riskBenefitSum_prestige_Sum         78875    26889
## riskBenefitSum_leadership_Sum       83861    26634
## riskBenefitSum_PNI_Sum_z            34172    30157
## riskBenefitSum_Gender               84761    26734
## riskBenefitSum_Age                  82393    27059
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSum              29.56      0.40    28.79    30.36 1.00    66927
## sigma_riskPerceptionSum    38.42      0.45    37.54    39.30 1.00    65585
## sigma_riskBenefitSum       26.00      0.38    25.27    26.74 1.00    56606
##                         Tail_ESS
## sigma_riskSum              28314
## sigma_riskPerceptionSum    30771
## sigma_riskBenefitSum       31845
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI
## rescor(riskSum,riskPerceptionSum)            0.78      0.01     0.76     0.80
## rescor(riskSum,riskBenefitSum)               0.87      0.01     0.85     0.89
## rescor(riskPerceptionSum,riskBenefitSum)     0.78      0.01     0.76     0.81
##                                          Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)        1.00    63179    28918
## rescor(riskSum,riskBenefitSum)           1.00    76432    31033
## rescor(riskPerceptionSum,riskBenefitSum) 1.00    77337    29499
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m6_hdi <- bayestestR::hdi(m6, effects = "fixed", component = "conditional", ci = .95)
kable(m6_hdi[
  sign(m6_hdi$CI_low) == sign(m6_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 6.71 12.21
b_riskSum_dominance_Sum 0.95 0.04 2.03
b_riskSum_PNI_Sum_z 0.95 0.81 7.76
b_riskPerceptionSum_Intercept 0.95 12.63 16.72
b_riskPerceptionSum_dominance_Sum 0.95 -4.72 -1.36
b_riskPerceptionSum_Gender 0.95 -1.04 -0.25
b_riskPerceptionSum_Age 0.95 -0.05 -0.03
b_riskBenefitSum_Intercept 0.95 6.04 12.18
b_riskBenefitSum_PNI_Sum_z 0.95 0.49 6.65
b_riskBenefitSum_Age 0.95 -0.11 0.00
m6_int <- brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m6_int)
summary(m6_int)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          riskPerceptionSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##          riskBenefitSum ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                         Estimate Est.Error l-95% CI u-95% CI
## riskSum_Intercept                           9.27      1.40     6.51    12.03
## riskPerceptionSum_Intercept                14.85      1.04    12.80    16.90
## riskBenefitSum_Intercept                    9.20      1.57     6.12    12.27
## riskSum_dominance_Sum                       0.56      0.49    -0.39     1.53
## riskSum_Gender                              0.32      0.52    -0.70     1.36
## riskSum_prestige_Sum                        0.22      0.42    -0.60     1.03
## riskSum_leadership_Sum                     -0.31      0.19    -0.68     0.06
## riskSum_PNI_Sum_z                           0.39      0.88    -1.35     2.11
## riskSum_Age                                -0.01      0.02    -0.05     0.03
## riskSum_dominance_Sum:Gender                1.00      0.50     0.01     1.97
## riskSum_Gender:prestige_Sum                -0.30      0.28    -0.85     0.24
## riskSum_Gender:leadership_Sum              -0.26      0.39    -1.04     0.50
## riskSum_Gender:PNI_Sum_z                    0.78      0.70    -0.61     2.14
## riskPerceptionSum_dominance_Sum            -2.22      0.88    -3.94    -0.50
## riskPerceptionSum_Gender                   -0.63      0.20    -1.02    -0.24
## riskPerceptionSum_prestige_Sum             -0.17      0.38    -0.92     0.58
## riskPerceptionSum_leadership_Sum           -0.03      0.54    -1.09     1.02
## riskPerceptionSum_PNI_Sum_z                -0.19      0.93    -2.01     1.61
## riskPerceptionSum_Age                      -0.04      0.00    -0.05    -0.03
## riskPerceptionSum_dominance_Sum:Gender     -1.39      0.53    -2.43    -0.35
## riskPerceptionSum_Gender:prestige_Sum      -0.10      0.52    -1.11     0.91
## riskPerceptionSum_Gender:leadership_Sum     0.29      0.71    -1.11     1.68
## riskPerceptionSum_Gender:PNI_Sum_z          0.25      0.80    -1.31     1.80
## riskBenefitSum_dominance_Sum                0.46      0.46    -0.44     1.37
## riskBenefitSum_Gender                       0.12      0.62    -1.09     1.33
## riskBenefitSum_prestige_Sum                -0.26      0.45    -1.14     0.62
## riskBenefitSum_leadership_Sum              -0.34      0.18    -0.69     0.01
## riskBenefitSum_PNI_Sum_z                    0.79      0.85    -0.90     2.44
## riskBenefitSum_Age                         -0.06      0.03    -0.11    -0.01
## riskBenefitSum_dominance_Sum:Gender         0.64      0.40    -0.15     1.43
## riskBenefitSum_Gender:prestige_Sum         -0.66      0.20    -1.05    -0.27
## riskBenefitSum_Gender:leadership_Sum        0.07      0.40    -0.70     0.85
## riskBenefitSum_Gender:PNI_Sum_z             0.27      0.67    -1.03     1.58
##                                         Rhat Bulk_ESS Tail_ESS
## riskSum_Intercept                       1.00    71527    30276
## riskPerceptionSum_Intercept             1.00    73465    29965
## riskBenefitSum_Intercept                1.00    80125    29180
## riskSum_dominance_Sum                   1.00    82300    30105
## riskSum_Gender                          1.00    90760    28170
## riskSum_prestige_Sum                    1.00    85702    27969
## riskSum_leadership_Sum                  1.00    85577    27169
## riskSum_PNI_Sum_z                       1.00    65589    28183
## riskSum_Age                             1.00    77978    26858
## riskSum_dominance_Sum:Gender            1.00    66255    30249
## riskSum_Gender:prestige_Sum             1.00    78958    29089
## riskSum_Gender:leadership_Sum           1.00    66273    31633
## riskSum_Gender:PNI_Sum_z                1.00    56102    29631
## riskPerceptionSum_dominance_Sum         1.00    76158    30137
## riskPerceptionSum_Gender                1.00    83914    27246
## riskPerceptionSum_prestige_Sum          1.00    80715    26438
## riskPerceptionSum_leadership_Sum        1.00    78150    30203
## riskPerceptionSum_PNI_Sum_z             1.00    71248    28203
## riskPerceptionSum_Age                   1.00    39379    24609
## riskPerceptionSum_dominance_Sum:Gender  1.00    76112    29080
## riskPerceptionSum_Gender:prestige_Sum   1.00    85798    28884
## riskPerceptionSum_Gender:leadership_Sum 1.00    70216    29134
## riskPerceptionSum_Gender:PNI_Sum_z      1.00    64270    29994
## riskBenefitSum_dominance_Sum            1.00    76822    27601
## riskBenefitSum_Gender                   1.00    84383    27773
## riskBenefitSum_prestige_Sum             1.00    80232    29637
## riskBenefitSum_leadership_Sum           1.00    83005    28088
## riskBenefitSum_PNI_Sum_z                1.00    67907    29959
## riskBenefitSum_Age                      1.00    79270    27634
## riskBenefitSum_dominance_Sum:Gender     1.00    66260    30264
## riskBenefitSum_Gender:prestige_Sum      1.00    79002    29052
## riskBenefitSum_Gender:leadership_Sum    1.00    64258    31488
## riskBenefitSum_Gender:PNI_Sum_z         1.00    61250    30766
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSum              29.54      0.40    28.76    30.32 1.00    64333
## sigma_riskPerceptionSum    38.39      0.45    37.52    39.28 1.00    68845
## sigma_riskBenefitSum       25.97      0.37    25.26    26.71 1.00    65638
##                         Tail_ESS
## sigma_riskSum              28997
## sigma_riskPerceptionSum    30940
## sigma_riskBenefitSum       30084
## 
## Residual Correlations: 
##                                          Estimate Est.Error l-95% CI u-95% CI
## rescor(riskSum,riskPerceptionSum)            0.78      0.01     0.76     0.80
## rescor(riskSum,riskBenefitSum)               0.87      0.01     0.85     0.89
## rescor(riskPerceptionSum,riskBenefitSum)     0.79      0.01     0.77     0.81
##                                          Rhat Bulk_ESS Tail_ESS
## rescor(riskSum,riskPerceptionSum)        1.00    70332    29943
## rescor(riskSum,riskBenefitSum)           1.00    65275    30153
## rescor(riskPerceptionSum,riskBenefitSum) 1.00    77517    28418
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m6_int_hdi <- bayestestR::hdi(m6_int, effects = "fixed", component = "conditional", ci = .95)
kable(m6_int_hdi[
  sign(m6_int_hdi$CI_low) == sign(m6_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_riskSum_Intercept 0.95 6.47 11.99
b_riskPerceptionSum_Intercept 0.95 12.82 16.91
b_riskPerceptionSum_dominance_Sum 0.95 -3.94 -0.51
b_riskPerceptionSum_Gender 0.95 -1.01 -0.23
b_riskPerceptionSum_Age 0.95 -0.05 -0.03
b_riskPerceptionSum_dominance_Sum:Gender 0.95 -2.41 -0.34
b_riskBenefitSum_Intercept 0.95 6.12 12.26
b_riskBenefitSum_Age 0.95 -0.11 -0.01
b_riskBenefitSum_Gender:prestige_Sum 0.95 -1.05 -0.27
m_7 <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m7)
summary(m_7)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          grandiosity_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                               Estimate Est.Error l-95% CI
## vulnerabilitySumz_Intercept                       0.95      0.26     0.45
## grandiositySumz_Intercept                         0.12      0.25    -0.38
## vulnerabilitySumz_ethicalPreference_z             0.16      0.08     0.01
## vulnerabilitySumz_financialPreference_z          -0.12      0.06    -0.24
## vulnerabilitySumz_socialPreference_z              0.14      0.07     0.01
## vulnerabilitySumz_healthAndSafetyPreference_z     0.05      0.08    -0.10
## vulnerabilitySumz_recreationalPreference_z       -0.06      0.07    -0.20
## vulnerabilitySumz_Gender                         -0.04      0.12    -0.28
## vulnerabilitySumz_Age                            -0.03      0.01    -0.04
## grandiositySumz_ethicalPreference_z               0.04      0.08    -0.11
## grandiositySumz_financialPreference_z             0.02      0.06    -0.11
## grandiositySumz_socialPreference_z                0.36      0.07     0.22
## grandiositySumz_healthAndSafetyPreference_z      -0.08      0.08    -0.23
## grandiositySumz_recreationalPreference_z         -0.06      0.07    -0.20
## grandiositySumz_Gender                            0.30      0.12     0.06
## grandiositySumz_Age                              -0.02      0.01    -0.03
##                                               u-95% CI Rhat Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept                       1.45 1.00    49384    32369
## grandiositySumz_Intercept                         0.61 1.00    47924    32268
## vulnerabilitySumz_ethicalPreference_z             0.31 1.00    34695    30651
## vulnerabilitySumz_financialPreference_z           0.01 1.00    41035    30532
## vulnerabilitySumz_socialPreference_z              0.28 1.00    39780    31067
## vulnerabilitySumz_healthAndSafetyPreference_z     0.20 1.00    36592    30217
## vulnerabilitySumz_recreationalPreference_z        0.08 1.00    39092    30188
## vulnerabilitySumz_Gender                          0.21 1.00    43080    30148
## vulnerabilitySumz_Age                            -0.02 1.00    53041    32437
## grandiositySumz_ethicalPreference_z               0.19 1.00    33195    29780
## grandiositySumz_financialPreference_z             0.14 1.00    39576    29769
## grandiositySumz_socialPreference_z                0.48 1.00    39165    31947
## grandiositySumz_healthAndSafetyPreference_z       0.07 1.00    34549    28614
## grandiositySumz_recreationalPreference_z          0.07 1.00    38387    30900
## grandiositySumz_Gender                            0.54 1.00    42072    31012
## grandiositySumz_Age                              -0.01 1.00    50462    32810
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.94      0.04     0.86     1.02 1.00    44064
## sigma_grandiositySumz       0.93      0.04     0.86     1.01 1.00    47034
##                         Tail_ESS
## sigma_vulnerabilitySumz    29899
## sigma_grandiositySumz      29844
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.48      0.05     0.39     0.57
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    41551    30111
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m_7_hdi <- bayestestR::hdi(m_7, effects = "fixed", component = "conditional", ci = .95)
kable(m_7_hdi[
  sign(m_7_hdi$CI_low) == sign(m_7_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.45 1.46
b_vulnerabilitySumz_ethicalPreference_z 0.95 0.01 0.31
b_vulnerabilitySumz_socialPreference_z 0.95 0.01 0.28
b_vulnerabilitySumz_Age 0.95 -0.04 -0.02
b_grandiositySumz_socialPreference_z 0.95 0.23 0.49
b_grandiositySumz_Gender 0.95 0.05 0.53
b_grandiositySumz_Age 0.95 -0.03 -0.01
m_7_int <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age, data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 500, backend = "cmdstanr", save_pars = save_pars(all = TRUE), prior = prior_m7_int)
summary(m_7_int)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          grandiosity_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 500; thin = 1;
##          total post-warmup draws = 38000
## 
## Population-Level Effects: 
##                                                      Estimate Est.Error
## vulnerabilitySumz_Intercept                              0.87      0.26
## grandiositySumz_Intercept                                0.11      0.26
## vulnerabilitySumz_ethicalPreference_z                   -0.21      0.26
## vulnerabilitySumz_Gender                                -0.04      0.12
## vulnerabilitySumz_financialPreference_z                 -0.49      0.22
## vulnerabilitySumz_socialPreference_z                     0.09      0.21
## vulnerabilitySumz_healthAndSafetyPreference_z            0.23      0.25
## vulnerabilitySumz_recreationalPreference_z               0.46      0.24
## vulnerabilitySumz_Age                                   -0.03      0.01
## vulnerabilitySumz_ethicalPreference_z:Gender             0.22      0.15
## vulnerabilitySumz_Gender:financialPreference_z           0.24      0.13
## vulnerabilitySumz_Gender:socialPreference_z              0.03      0.13
## vulnerabilitySumz_Gender:healthAndSafetyPreference_z    -0.11      0.15
## vulnerabilitySumz_Gender:recreationalPreference_z       -0.32      0.14
## grandiositySumz_ethicalPreference_z                     -0.10      0.26
## grandiositySumz_Gender                                   0.27      0.12
## grandiositySumz_financialPreference_z                   -0.16      0.22
## grandiositySumz_socialPreference_z                       0.25      0.21
## grandiositySumz_healthAndSafetyPreference_z             -0.12      0.24
## grandiositySumz_recreationalPreference_z                 0.57      0.23
## grandiositySumz_Age                                     -0.02      0.01
## grandiositySumz_ethicalPreference_z:Gender               0.08      0.15
## grandiositySumz_Gender:financialPreference_z             0.12      0.13
## grandiositySumz_Gender:socialPreference_z                0.06      0.13
## grandiositySumz_Gender:healthAndSafetyPreference_z       0.03      0.15
## grandiositySumz_Gender:recreationalPreference_z         -0.39      0.14
##                                                      l-95% CI u-95% CI Rhat
## vulnerabilitySumz_Intercept                              0.37     1.37 1.00
## grandiositySumz_Intercept                               -0.39     0.62 1.00
## vulnerabilitySumz_ethicalPreference_z                   -0.73     0.30 1.00
## vulnerabilitySumz_Gender                                -0.28     0.20 1.00
## vulnerabilitySumz_financialPreference_z                 -0.91    -0.07 1.00
## vulnerabilitySumz_socialPreference_z                    -0.32     0.49 1.00
## vulnerabilitySumz_healthAndSafetyPreference_z           -0.25     0.71 1.00
## vulnerabilitySumz_recreationalPreference_z              -0.01     0.92 1.00
## vulnerabilitySumz_Age                                   -0.04    -0.02 1.00
## vulnerabilitySumz_ethicalPreference_z:Gender            -0.07     0.51 1.00
## vulnerabilitySumz_Gender:financialPreference_z          -0.01     0.48 1.00
## vulnerabilitySumz_Gender:socialPreference_z             -0.23     0.29 1.00
## vulnerabilitySumz_Gender:healthAndSafetyPreference_z    -0.40     0.18 1.00
## vulnerabilitySumz_Gender:recreationalPreference_z       -0.59    -0.05 1.00
## grandiositySumz_ethicalPreference_z                     -0.61     0.40 1.00
## grandiositySumz_Gender                                   0.03     0.51 1.00
## grandiositySumz_financialPreference_z                   -0.59     0.26 1.00
## grandiositySumz_socialPreference_z                      -0.15     0.66 1.00
## grandiositySumz_healthAndSafetyPreference_z             -0.60     0.37 1.00
## grandiositySumz_recreationalPreference_z                 0.11     1.03 1.00
## grandiositySumz_Age                                     -0.03    -0.01 1.00
## grandiositySumz_ethicalPreference_z:Gender              -0.21     0.38 1.00
## grandiositySumz_Gender:financialPreference_z            -0.13     0.37 1.00
## grandiositySumz_Gender:socialPreference_z               -0.20     0.31 1.00
## grandiositySumz_Gender:healthAndSafetyPreference_z      -0.26     0.31 1.00
## grandiositySumz_Gender:recreationalPreference_z         -0.66    -0.12 1.00
##                                                      Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept                             57775    31979
## grandiositySumz_Intercept                               53839    32163
## vulnerabilitySumz_ethicalPreference_z                   23288    25448
## vulnerabilitySumz_Gender                                54547    32102
## vulnerabilitySumz_financialPreference_z                 27895    27818
## vulnerabilitySumz_socialPreference_z                    26210    26796
## vulnerabilitySumz_healthAndSafetyPreference_z           23323    27134
## vulnerabilitySumz_recreationalPreference_z              27084    27444
## vulnerabilitySumz_Age                                   61622    30981
## vulnerabilitySumz_ethicalPreference_z:Gender            23496    26442
## vulnerabilitySumz_Gender:financialPreference_z          27810    27377
## vulnerabilitySumz_Gender:socialPreference_z             27901    27295
## vulnerabilitySumz_Gender:healthAndSafetyPreference_z    23468    26940
## vulnerabilitySumz_Gender:recreationalPreference_z       27562    28258
## grandiositySumz_ethicalPreference_z                     25568    27783
## grandiositySumz_Gender                                  52490    30492
## grandiositySumz_financialPreference_z                   27623    26643
## grandiositySumz_socialPreference_z                      26589    27501
## grandiositySumz_healthAndSafetyPreference_z             24801    27838
## grandiositySumz_recreationalPreference_z                27758    28070
## grandiositySumz_Age                                     57525    32047
## grandiositySumz_ethicalPreference_z:Gender              25806    28136
## grandiositySumz_Gender:financialPreference_z            27084    26454
## grandiositySumz_Gender:socialPreference_z               27656    28353
## grandiositySumz_Gender:healthAndSafetyPreference_z      25323    28425
## grandiositySumz_Gender:recreationalPreference_z         28019    27698
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.92      0.04     0.85     1.01 1.00    53437
## sigma_grandiositySumz       0.92      0.04     0.85     1.00 1.00    55935
##                         Tail_ESS
## sigma_vulnerabilitySumz    30868
## sigma_grandiositySumz      30877
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.47      0.05     0.37     0.56
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    52424    30488
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
m_7_int_hdi <- bayestestR::hdi(m_7_int, effects = "fixed", component = "conditional", ci = .95)
kable(m_7_int_hdi[
  sign(m_7_int_hdi$CI_low) == sign(m_7_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.37 1.37
b_vulnerabilitySumz_financialPreference_z 0.95 -0.92 -0.07
b_vulnerabilitySumz_Age 0.95 -0.04 -0.02
b_vulnerabilitySumz_Gender:recreationalPreference_z 0.95 -0.59 -0.05
b_grandiositySumz_Gender 0.95 0.03 0.51
b_grandiositySumz_recreationalPreference_z 0.95 0.11 1.02
b_grandiositySumz_Age 0.95 -0.03 0.00
b_grandiositySumz_Gender:recreationalPreference_z 0.95 -0.66 -0.12
corr_pni <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z, dominance_Sum, leadership_Sum, prestige_Sum) ~ 1,
  data = Experiment_2_demographics_Gender, family = student(), cores = parallel::detectCores(),
  prior = c(
    prior(gamma(2, 0.1), class = "nu"),
    prior(normal(0, 1), class = "Intercept"),
    prior(normal(0, 1), class = "sigma", resp = "vulnerabilitySumz"),
    prior(normal(0, 1), class = "sigma", resp = "grandiositySumz"),
    prior(normal(0.05, 0.23), class = "sigma", resp = "dominanceSum"),
    prior(normal(0.04, 0.58), class = "sigma", resp = "leadershipSum"),
    prior(normal(0.12, 0.30), class = "sigma", resp = "prestigeSum")
  ), iter = 5000, warmup = 500, backend = "cmdstanr"
)
summary(corr_pni)
##  Family: MV(student, student, student, student, student) 
##   Links: mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity
##          mu = identity; sigma = identity; nu = identity 
## Formula: vulnerability_Sum_z ~ 1 
##          grandiosity_Sum_z ~ 1 
##          dominance_Sum ~ 1 
##          leadership_Sum ~ 1 
##          prestige_Sum ~ 1 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 5000; warmup = 500; thin = 1;
##          total post-warmup draws = 18000
## 
## Population-Level Effects: 
##                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## vulnerabilitySumz_Intercept     0.01      0.06    -0.11     0.13 1.00    15855
## grandiositySumz_Intercept       0.01      0.06    -0.11     0.12 1.00    12439
## dominanceSum_Intercept          0.02      0.06    -0.10     0.14 1.00    17181
## leadershipSum_Intercept        -0.00      0.06    -0.12     0.11 1.00    15468
## prestigeSum_Intercept          -0.00      0.06    -0.12     0.11 1.00    15218
##                             Tail_ESS
## vulnerabilitySumz_Intercept    15556
## grandiositySumz_Intercept      14221
## dominanceSum_Intercept         14185
## leadershipSum_Intercept        14322
## prestigeSum_Intercept          14040
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.97      0.04     0.89     1.06 1.00    17450
## sigma_grandiositySumz       0.96      0.04     0.88     1.04 1.00    14411
## sigma_dominanceSum          0.95      0.04     0.88     1.04 1.00    19686
## sigma_leadershipSum         0.96      0.04     0.88     1.05 1.00    16469
## sigma_prestigeSum           0.95      0.04     0.87     1.04 1.00    17704
## nu                         27.91     10.78    13.74    55.42 1.00    18274
## nu_vulnerabilitySumz        1.00      0.00     1.00     1.00   NA       NA
## nu_grandiositySumz          1.00      0.00     1.00     1.00   NA       NA
## nu_dominanceSum             1.00      0.00     1.00     1.00   NA       NA
## nu_leadershipSum            1.00      0.00     1.00     1.00   NA       NA
## nu_prestigeSum              1.00      0.00     1.00     1.00   NA       NA
##                         Tail_ESS
## sigma_vulnerabilitySumz    14011
## sigma_grandiositySumz      14775
## sigma_dominanceSum         14654
## sigma_leadershipSum        13663
## sigma_prestigeSum          14889
## nu                         14594
## nu_vulnerabilitySumz          NA
## nu_grandiositySumz            NA
## nu_dominanceSum               NA
## nu_leadershipSum              NA
## nu_prestigeSum                NA
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.52      0.04     0.43     0.60
## rescor(vulnerabilitySumz,dominanceSum)        0.43      0.05     0.33     0.52
## rescor(grandiositySumz,dominanceSum)          0.35      0.05     0.25     0.45
## rescor(vulnerabilitySumz,leadershipSum)       0.12      0.06    -0.00     0.23
## rescor(grandiositySumz,leadershipSum)         0.47      0.05     0.38     0.56
## rescor(dominanceSum,leadershipSum)            0.29      0.05     0.18     0.39
## rescor(vulnerabilitySumz,prestigeSum)         0.31      0.05     0.20     0.41
## rescor(grandiositySumz,prestigeSum)           0.51      0.05     0.42     0.59
## rescor(dominanceSum,prestigeSum)              0.28      0.05     0.17     0.38
## rescor(leadershipSum,prestigeSum)             0.46      0.05     0.36     0.55
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    12767    14291
## rescor(vulnerabilitySumz,dominanceSum)    1.00    20541    14030
## rescor(grandiositySumz,dominanceSum)      1.00    20024    14438
## rescor(vulnerabilitySumz,leadershipSum)   1.00    15448    14288
## rescor(grandiositySumz,leadershipSum)     1.00    18555    14544
## rescor(dominanceSum,leadershipSum)        1.00    19590    14192
## rescor(vulnerabilitySumz,prestigeSum)     1.00    14083    12742
## rescor(grandiositySumz,prestigeSum)       1.00    19032    13671
## rescor(dominanceSum,prestigeSum)          1.00    20220    14413
## rescor(leadershipSum,prestigeSum)         1.00    18964    13670
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
bmod_1 <- "Narcissism =~ ethicalQuestionsBenefitSum + financialQuestionsBenefitSum + socialQuestionsBenefitSum + healthAndSafetyQuestionsBenefitSum + recreationalQuestionsBenefitSum
            Narcissism_int =~ ethicalQuestionsBenefitSum*Gender + financialQuestionsBenefitSum*Gender + socialQuestionsBenefitSum*Gender + healthAndSafetyQuestionsBenefitSum*Gender + recreationalQuestionsBenefitSum*Gender
            Narcissism ~ Narcissism_int"

bmod_1_fit <- bsem(bmod_1,
  data = Experiment_2_demographics_Gender, n.chains = 4, seed = 1234, target = "cmdstanr", auto.var = TRUE, auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, bcontrol = list(cores = parallel::detectCores())
)
summary(bmod_1_fit)
## blavaan (0.4-3) results of 1000 samples after 500 adapt/burnin iterations
## 
##   Number of observations                           279
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                             NA       0.000
## 
## Latent Variables:
##                     Estimate  Post.SD pi.lower pi.upper     Rhat
##   Narcissism =~                                                 
##     ethcQBS            1.000                                    
##     fnncQBS            0.642    0.119    0.432    0.892    1.000
##     sclQsBS            0.562    0.125    0.337    0.821    1.001
##     hlASQBS            1.329    0.160    1.052    1.690    1.001
##     rcrtQBS            0.982    0.140    0.740    1.284    1.001
##   Narcissism_int =~                                             
##     Gender  (eQBS)     1.000                                    
##     Prior       
##                 
##                 
##     normal(0,10)
##     normal(0,10)
##     normal(0,10)
##     normal(0,10)
##                 
##                 
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##   Narcissism ~                                                                 
##     Narcissism_int    0.182    0.090    0.011    0.362    1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .ethclQstnsBnfS   -0.020    0.058   -0.139    0.094    0.999    normal(0,32)
##    .fnnclQstnsBnfS   -0.004    0.059   -0.121    0.117    1.000    normal(0,32)
##    .sclQstnsBnftSm   -0.037    0.059   -0.154    0.078    1.000    normal(0,32)
##    .hlthAndSftyQBS   -0.020    0.060   -0.136    0.099    0.999    normal(0,32)
##    .rcrtnlQstnsBnS   -0.014    0.061   -0.132    0.104    1.000    normal(0,32)
##    .Gender            1.556    0.029    1.500    1.612    1.000    normal(0,32)
##    .Narcissism        0.000                                                    
##     Narcissism_int    0.000                                                    
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper     Rhat    Prior       
##    .ethclQstnsBnfS    0.583    0.065    0.465    0.720    1.000 gamma(1,.5)[sd]
##    .fnnclQstnsBnfS    0.821    0.076    0.685    0.981    0.999 gamma(1,.5)[sd]
##    .sclQstnsBnftSm    0.857    0.077    0.722    1.024    1.001 gamma(1,.5)[sd]
##    .hlthAndSftyQBS    0.323    0.071    0.182    0.463    1.000 gamma(1,.5)[sd]
##    .rcrtnlQstnsBnS    0.633    0.069    0.508    0.779    1.000 gamma(1,.5)[sd]
##    .Gender            0.000                                                    
##    .Narcissism        0.387    0.078    0.244    0.550    1.001 gamma(1,.5)[sd]
##     Narcissism_int    0.250    0.022    0.212    0.295    1.000 gamma(1,.5)[sd]
graph_sem(bmod_1_fit)

pni_model_dopl <- brm(PNI_Sum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_pni_model_dopl
)

pni_model_dopl_fix <- fixef(pni_model_dopl)
saveRDS(pni_model_dopl_fix, "pni_model_dopl_fix.rds")
summary(pni_model_dopl)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: PNI_Sum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept          0.69      0.16     0.38     1.00 1.00    52918    28896
## dominance_Sum      0.33      0.05     0.23     0.43 1.00    45848    30055
## prestige_Sum       0.29      0.06     0.18     0.40 1.00    42260    29201
## leadership_Sum     0.05      0.06    -0.06     0.16 1.00    43331    29938
## Gender2           -0.07      0.10    -0.26     0.13 1.00    47543    28092
## Age               -0.02      0.00    -0.03    -0.01 1.00    51424    29968
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.80      0.03     0.73     0.87 1.00    48116    28125
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_model_dopl_hdi <- bayestestR::hdi(pni_model_dopl, effects = "fixed", component = "conditional", ci = .95)
kable(pni_model_dopl_hdi[
  sign(pni_model_dopl_hdi$CI_low) == sign(pni_model_dopl_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 0.38 1.01
b_dominance_Sum 0.95 0.23 0.43
b_prestige_Sum 0.95 0.18 0.40
b_Age 0.95 -0.03 -0.01
pni_model_dopl_int <- brm(PNI_Sum_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_pni_model_dopl_int
)
summary(pni_model_dopl_int)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: PNI_Sum_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                 0.81      0.21     0.40     1.22 1.00    48500
## dominance_Sum             0.51      0.18     0.17     0.86 1.00    25335
## Gender                   -0.10      0.10    -0.30     0.09 1.00    45121
## prestige_Sum              0.42      0.18     0.07     0.78 1.00    22489
## leadership_Sum            0.14      0.19    -0.22     0.51 1.00    22079
## Age                      -0.02      0.01    -0.03    -0.01 1.00    54284
## dominance_Sum:Gender     -0.11      0.11    -0.32     0.09 1.00    25474
## Gender:prestige_Sum      -0.10      0.11    -0.31     0.12 1.00    22975
## Gender:leadership_Sum    -0.07      0.11    -0.28     0.15 1.00    22280
##                       Tail_ESS
## Intercept                26897
## dominance_Sum            23881
## Gender                   24659
## prestige_Sum             24509
## leadership_Sum           23250
## Age                      26951
## dominance_Sum:Gender     24722
## Gender:prestige_Sum      24657
## Gender:leadership_Sum    23346
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.79      0.03     0.73     0.87 1.00    44543    25804
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_model_dopl_int_hdi <- bayestestR::hdi(pni_model_dopl_int, effects = "fixed", component = "conditional", ci = .95)
kable(pni_model_dopl_int_hdi[
  sign(pni_model_dopl_int_hdi$CI_low) == sign(pni_model_dopl_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 0.39 1.21
b_dominance_Sum 0.95 0.17 0.86
b_prestige_Sum 0.95 0.07 0.77
b_Age 0.95 -0.03 -0.01
pni_multi_dopl <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_pni_multi_dopl
)
summary(pni_multi_dopl)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##          grandiosity_Sum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## vulnerabilitySumz_Intercept          0.80      0.17     0.47     1.13 1.00
## grandiositySumz_Intercept            0.33      0.16     0.03     0.64 1.00
## vulnerabilitySumz_dominance_Sum      0.39      0.06     0.28     0.50 1.00
## vulnerabilitySumz_prestige_Sum       0.20      0.06     0.09     0.32 1.00
## vulnerabilitySumz_leadership_Sum    -0.11      0.06    -0.22     0.01 1.00
## vulnerabilitySumz_Gender2           -0.24      0.11    -0.45    -0.03 1.00
## vulnerabilitySumz_Age               -0.02      0.01    -0.03    -0.01 1.00
## grandiositySumz_dominance_Sum        0.14      0.05     0.03     0.24 1.00
## grandiositySumz_prestige_Sum         0.34      0.05     0.23     0.44 1.00
## grandiositySumz_leadership_Sum       0.28      0.05     0.18     0.39 1.00
## grandiositySumz_Gender2              0.16      0.10    -0.03     0.34 1.00
## grandiositySumz_Age                 -0.01      0.00    -0.02    -0.00 1.00
##                                  Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept         45605    29189
## grandiositySumz_Intercept           49625    29578
## vulnerabilitySumz_dominance_Sum     32744    28936
## vulnerabilitySumz_prestige_Sum      31809    28015
## vulnerabilitySumz_leadership_Sum    31141    29291
## vulnerabilitySumz_Gender2           33380    29620
## vulnerabilitySumz_Age               42763    29164
## grandiositySumz_dominance_Sum       31588    29194
## grandiositySumz_prestige_Sum        33721    28944
## grandiositySumz_leadership_Sum      31305    29025
## grandiositySumz_Gender2             33666    29582
## grandiositySumz_Age                 47156    28885
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.85      0.04     0.78     0.92 1.00    41257
## sigma_grandiositySumz       0.78      0.03     0.71     0.85 1.00    43548
##                         Tail_ESS
## sigma_vulnerabilitySumz    29481
## sigma_grandiositySumz      29199
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.42      0.05     0.32     0.51
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    37701    29118
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_multi_dopl_hdi <- bayestestR::hdi(pni_multi_dopl, effects = "fixed", component = "conditional", ci = .95)
kable(pni_multi_dopl_hdi[
  sign(pni_multi_dopl_hdi$CI_low) == sign(pni_multi_dopl_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.47 1.13
b_vulnerabilitySumz_dominance_Sum 0.95 0.28 0.50
b_vulnerabilitySumz_prestige_Sum 0.95 0.08 0.32
b_vulnerabilitySumz_Gender2 0.95 -0.44 -0.03
b_vulnerabilitySumz_Age 0.95 -0.03 -0.01
b_grandiositySumz_Intercept 0.95 0.03 0.64
b_grandiositySumz_dominance_Sum 0.95 0.04 0.24
b_grandiositySumz_prestige_Sum 0.95 0.23 0.45
b_grandiositySumz_leadership_Sum 0.95 0.17 0.39
b_grandiositySumz_Age 0.95 -0.02 0.00
pni_multi_dopl_fix <- fixef(pni_multi_dopl)
saveRDS(pni_multi_dopl_fix, "pni_multi_dopl_fix.rds")
pni_multi_dopl_int <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_pni_multi_dopl_int
)
summary(pni_multi_dopl_int)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##          grandiosity_Sum_z ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                         Estimate Est.Error l-95% CI u-95% CI
## vulnerabilitySumz_Intercept                 1.01      0.22     0.57     1.45
## grandiositySumz_Intercept                   0.24      0.20    -0.16     0.64
## vulnerabilitySumz_dominance_Sum             0.44      0.19     0.08     0.80
## vulnerabilitySumz_Gender                   -0.23      0.11    -0.44    -0.02
## vulnerabilitySumz_prestige_Sum              0.40      0.19     0.02     0.77
## vulnerabilitySumz_leadership_Sum           -0.01      0.20    -0.40     0.37
## vulnerabilitySumz_Age                      -0.02      0.01    -0.03    -0.01
## vulnerabilitySumz_dominance_Sum:Gender     -0.03      0.11    -0.25     0.19
## vulnerabilitySumz_Gender:prestige_Sum      -0.13      0.12    -0.36     0.10
## vulnerabilitySumz_Gender:leadership_Sum    -0.06      0.12    -0.30     0.17
## grandiositySumz_dominance_Sum               0.45      0.17     0.12     0.78
## grandiositySumz_Gender                      0.13      0.10    -0.06     0.31
## grandiositySumz_prestige_Sum                0.33      0.18    -0.02     0.67
## grandiositySumz_leadership_Sum              0.36      0.18     0.00     0.71
## grandiositySumz_Age                        -0.01      0.00    -0.02    -0.00
## grandiositySumz_dominance_Sum:Gender       -0.20      0.10    -0.40     0.00
## grandiositySumz_Gender:prestige_Sum        -0.01      0.11    -0.22     0.20
## grandiositySumz_Gender:leadership_Sum      -0.05      0.11    -0.26     0.16
##                                         Rhat Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept             1.00    45771    27738
## grandiositySumz_Intercept               1.00    44551    28638
## vulnerabilitySumz_dominance_Sum         1.00    17106    21611
## vulnerabilitySumz_Gender                1.00    38006    27435
## vulnerabilitySumz_prestige_Sum          1.00    15502    22670
## vulnerabilitySumz_leadership_Sum        1.00    16019    22583
## vulnerabilitySumz_Age                   1.00    51304    29164
## vulnerabilitySumz_dominance_Sum:Gender  1.00    17341    22239
## vulnerabilitySumz_Gender:prestige_Sum   1.00    15716    22553
## vulnerabilitySumz_Gender:leadership_Sum 1.00    16249    22445
## grandiositySumz_dominance_Sum           1.00    17513    22547
## grandiositySumz_Gender                  1.00    36697    28898
## grandiositySumz_prestige_Sum            1.00    14496    21410
## grandiositySumz_leadership_Sum          1.00    15228    22718
## grandiositySumz_Age                     1.00    50195    29773
## grandiositySumz_dominance_Sum:Gender    1.00    17814    22905
## grandiositySumz_Gender:prestige_Sum     1.00    14580    21364
## grandiositySumz_Gender:leadership_Sum   1.00    15317    22640
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.85      0.04     0.78     0.92 1.00    39127
## sigma_grandiositySumz       0.77      0.03     0.71     0.84 1.00    38682
##                         Tail_ESS
## sigma_vulnerabilitySumz    27164
## sigma_grandiositySumz      26832
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.42      0.05     0.31     0.51
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    36052    27391
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_multi_dopl_int_hdi <- bayestestR::hdi(pni_multi_dopl_int, effects = "fixed", component = "conditional", ci = .95)
kable(pni_multi_dopl_int_hdi[
  sign(pni_multi_dopl_int_hdi$CI_low) == sign(pni_multi_dopl_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.56 1.44
b_vulnerabilitySumz_dominance_Sum 0.95 0.07 0.80
b_vulnerabilitySumz_Gender 0.95 -0.44 -0.02
b_vulnerabilitySumz_prestige_Sum 0.95 0.01 0.77
b_vulnerabilitySumz_Age 0.95 -0.03 -0.01
b_grandiositySumz_dominance_Sum 0.95 0.11 0.78
b_grandiositySumz_leadership_Sum 0.95 0.01 0.72
b_grandiositySumz_Age 0.95 -0.02 0.00
pni_model_dospert <- brm(PNI_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = pni_dospert_prior
)
summary(pni_model_dospert)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: PNI_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                       0.71      0.25     0.21     1.20 1.00    57668
## ethicalPreference_z             0.13      0.08    -0.02     0.27 1.00    33254
## financialPreference_z          -0.07      0.06    -0.20     0.05 1.00    46053
## socialPreference_z              0.26      0.07     0.12     0.39 1.00    41702
## healthAndSafetyPreference_z    -0.00      0.08    -0.15     0.15 1.00    32941
## recreationalPreference_z       -0.07      0.07    -0.21     0.07 1.00    37323
## Gender                          0.11      0.12    -0.13     0.35 1.00    43048
## Age                            -0.03      0.01    -0.04    -0.02 1.00    59491
##                             Tail_ESS
## Intercept                      29091
## ethicalPreference_z            28666
## financialPreference_z          28255
## socialPreference_z             29096
## healthAndSafetyPreference_z    28148
## recreationalPreference_z       28833
## Gender                         29373
## Age                            28576
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.93      0.04     0.85     1.01 1.00    55388    27771
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_model_dospert_hdi <- bayestestR::hdi(pni_model_dospert, effects = "fixed", component = "conditional", ci = .95)
kable(pni_model_dospert_hdi[
  sign(pni_model_dospert_hdi$CI_low) == sign(pni_model_dospert_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 0.20 1.20
b_socialPreference_z 0.95 0.12 0.39
b_Age 0.95 -0.04 -0.02
pni_model_dospert_int <- brm(PNI_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = pni_dospert_prior_int
)
summary(pni_model_dospert_int)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: PNI_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                              0.64      0.26     0.14     1.14 1.00
## ethicalPreference_z                   -0.19      0.25    -0.69     0.31 1.00
## Gender                                 0.10      0.12    -0.14     0.34 1.00
## financialPreference_z                 -0.43      0.22    -0.85    -0.00 1.00
## socialPreference_z                     0.17      0.21    -0.23     0.57 1.00
## healthAndSafetyPreference_z            0.10      0.24    -0.37     0.58 1.00
## recreationalPreference_z               0.59      0.23     0.13     1.05 1.00
## Age                                   -0.03      0.01    -0.04    -0.01 1.00
## ethicalPreference_z:Gender             0.19      0.15    -0.10     0.48 1.00
## Gender:financialPreference_z           0.22      0.13    -0.03     0.47 1.00
## Gender:socialPreference_z              0.05      0.13    -0.20     0.30 1.00
## Gender:healthAndSafetyPreference_z    -0.06      0.15    -0.35     0.22 1.00
## Gender:recreationalPreference_z       -0.41      0.14    -0.67    -0.14 1.00
##                                    Bulk_ESS Tail_ESS
## Intercept                             45498    25907
## ethicalPreference_z                   16575    22221
## Gender                                40147    28174
## financialPreference_z                 18830    22922
## socialPreference_z                    18211    21921
## healthAndSafetyPreference_z           15169    20631
## recreationalPreference_z              18275    23080
## Age                                   47065    24826
## ethicalPreference_z:Gender            16541    22601
## Gender:financialPreference_z          18897    22611
## Gender:socialPreference_z             19280    23094
## Gender:healthAndSafetyPreference_z    15425    18705
## Gender:recreationalPreference_z       18368    23204
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.91      0.04     0.83     0.99 1.00    40602    26356
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_model_dospert_int_hdi <- bayestestR::hdi(pni_model_dospert_int, effects = "fixed", component = "conditional", ci = .95)
kable(pni_model_dospert_int_hdi[
  sign(pni_model_dospert_int_hdi$CI_low) == sign(pni_model_dospert_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_Intercept 0.95 0.15 1.15
b_financialPreference_z 0.95 -0.85 0.00
b_recreationalPreference_z 0.95 0.13 1.05
b_Age 0.95 -0.04 -0.01
b_Gender:recreationalPreference_z 0.95 -0.69 -0.15
pni_multi_dospert <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_multi_dospert_prior
)
summary(pni_multi_dospert)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          grandiosity_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                               Estimate Est.Error l-95% CI
## vulnerabilitySumz_Intercept                       0.95      0.25     0.45
## grandiositySumz_Intercept                         0.12      0.25    -0.37
## vulnerabilitySumz_ethicalPreference_z             0.16      0.08     0.01
## vulnerabilitySumz_financialPreference_z          -0.12      0.06    -0.24
## vulnerabilitySumz_socialPreference_z              0.14      0.07     0.01
## vulnerabilitySumz_healthAndSafetyPreference_z     0.05      0.08    -0.10
## vulnerabilitySumz_recreationalPreference_z       -0.06      0.07    -0.20
## vulnerabilitySumz_Gender                         -0.04      0.12    -0.28
## vulnerabilitySumz_Age                            -0.03      0.01    -0.04
## grandiositySumz_ethicalPreference_z               0.04      0.08    -0.11
## grandiositySumz_financialPreference_z             0.02      0.06    -0.11
## grandiositySumz_socialPreference_z                0.35      0.07     0.22
## grandiositySumz_healthAndSafetyPreference_z      -0.08      0.08    -0.23
## grandiositySumz_recreationalPreference_z         -0.06      0.07    -0.20
## grandiositySumz_Gender                            0.30      0.12     0.06
## grandiositySumz_Age                              -0.02      0.01    -0.03
##                                               u-95% CI Rhat Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept                       1.44 1.00    43818    30868
## grandiositySumz_Intercept                         0.61 1.00    45279    31150
## vulnerabilitySumz_ethicalPreference_z             0.31 1.00    32320    28567
## vulnerabilitySumz_financialPreference_z           0.01 1.00    38469    28727
## vulnerabilitySumz_socialPreference_z              0.28 1.00    37844    28552
## vulnerabilitySumz_healthAndSafetyPreference_z     0.20 1.00    32528    28670
## vulnerabilitySumz_recreationalPreference_z        0.08 1.00    34719    27988
## vulnerabilitySumz_Gender                          0.20 1.00    38947    29009
## vulnerabilitySumz_Age                            -0.02 1.00    45283    30136
## grandiositySumz_ethicalPreference_z               0.19 1.00    30783    27645
## grandiositySumz_financialPreference_z             0.14 1.00    38597    28630
## grandiositySumz_socialPreference_z                0.49 1.00    35848    28389
## grandiositySumz_healthAndSafetyPreference_z       0.07 1.00    30611    28390
## grandiositySumz_recreationalPreference_z          0.08 1.00    35672    27044
## grandiositySumz_Gender                            0.53 1.00    39540    29448
## grandiositySumz_Age                              -0.01 1.00    45592    29843
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.94      0.04     0.86     1.02 1.00    40419
## sigma_grandiositySumz       0.93      0.04     0.86     1.01 1.00    38788
##                         Tail_ESS
## sigma_vulnerabilitySumz    28159
## sigma_grandiositySumz      25879
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.49      0.05     0.39     0.57
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    39548    29780
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_multi_dospert_hdi <- bayestestR::hdi(pni_multi_dospert, effects = "fixed", component = "conditional", ci = .95)
kable(pni_multi_dospert_hdi[
  sign(pni_multi_dospert_hdi$CI_low) == sign(pni_multi_dospert_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.45 1.44
b_vulnerabilitySumz_ethicalPreference_z 0.95 0.01 0.31
b_vulnerabilitySumz_socialPreference_z 0.95 0.01 0.27
b_vulnerabilitySumz_Age 0.95 -0.04 -0.02
b_grandiositySumz_socialPreference_z 0.95 0.22 0.48
b_grandiositySumz_Gender 0.95 0.06 0.54
b_grandiositySumz_Age 0.95 -0.03 -0.01
pni_multi_dospert_int <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_multi_dospert_int
)
summary(pni_multi_dospert_int)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          grandiosity_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                       Estimate Est.Error
## vulnerabilitySumz_Intercept                               0.82      0.20
## grandiositySumz_Intercept                                 0.38      0.20
## vulnerabilitySumz_ethicalPreference_z                     0.01      0.13
## vulnerabilitySumz_Gender2                                -0.04      0.12
## vulnerabilitySumz_financialPreference_z                  -0.27      0.10
## vulnerabilitySumz_socialPreference_z                      0.12      0.10
## vulnerabilitySumz_healthAndSafetyPreference_z             0.12      0.12
## vulnerabilitySumz_recreationalPreference_z                0.15      0.11
## vulnerabilitySumz_Age                                    -0.03      0.01
## vulnerabilitySumz_ethicalPreference_z:Gender2             0.22      0.15
## vulnerabilitySumz_Gender2:financialPreference_z           0.25      0.13
## vulnerabilitySumz_Gender2:socialPreference_z              0.03      0.13
## vulnerabilitySumz_Gender2:healthAndSafetyPreference_z    -0.11      0.15
## vulnerabilitySumz_Gender2:recreationalPreference_z       -0.34      0.14
## grandiositySumz_ethicalPreference_z                      -0.02      0.13
## grandiositySumz_Gender2                                   0.27      0.12
## grandiositySumz_financialPreference_z                    -0.05      0.11
## grandiositySumz_socialPreference_z                        0.30      0.10
## grandiositySumz_healthAndSafetyPreference_z              -0.10      0.12
## grandiositySumz_recreationalPreference_z                  0.20      0.11
## grandiositySumz_Age                                      -0.02      0.01
## grandiositySumz_ethicalPreference_z:Gender2               0.08      0.15
## grandiositySumz_Gender2:financialPreference_z             0.13      0.13
## grandiositySumz_Gender2:socialPreference_z                0.06      0.13
## grandiositySumz_Gender2:healthAndSafetyPreference_z       0.04      0.15
## grandiositySumz_Gender2:recreationalPreference_z         -0.41      0.14
##                                                       l-95% CI u-95% CI Rhat
## vulnerabilitySumz_Intercept                               0.44     1.21 1.00
## grandiositySumz_Intercept                                -0.01     0.77 1.00
## vulnerabilitySumz_ethicalPreference_z                    -0.24     0.26 1.00
## vulnerabilitySumz_Gender2                                -0.28     0.21 1.00
## vulnerabilitySumz_financialPreference_z                  -0.47    -0.06 1.00
## vulnerabilitySumz_socialPreference_z                     -0.07     0.31 1.00
## vulnerabilitySumz_healthAndSafetyPreference_z            -0.11     0.36 1.00
## vulnerabilitySumz_recreationalPreference_z               -0.07     0.38 1.00
## vulnerabilitySumz_Age                                    -0.04    -0.02 1.00
## vulnerabilitySumz_ethicalPreference_z:Gender2            -0.08     0.53 1.00
## vulnerabilitySumz_Gender2:financialPreference_z          -0.01     0.51 1.00
## vulnerabilitySumz_Gender2:socialPreference_z             -0.23     0.29 1.00
## vulnerabilitySumz_Gender2:healthAndSafetyPreference_z    -0.41     0.20 1.00
## vulnerabilitySumz_Gender2:recreationalPreference_z       -0.62    -0.07 1.00
## grandiositySumz_ethicalPreference_z                      -0.27     0.23 1.00
## grandiositySumz_Gender2                                   0.03     0.51 1.00
## grandiositySumz_financialPreference_z                    -0.26     0.15 1.00
## grandiositySumz_socialPreference_z                        0.11     0.49 1.00
## grandiositySumz_healthAndSafetyPreference_z              -0.33     0.14 1.00
## grandiositySumz_recreationalPreference_z                 -0.03     0.42 1.00
## grandiositySumz_Age                                      -0.03    -0.00 1.00
## grandiositySumz_ethicalPreference_z:Gender2              -0.22     0.39 1.00
## grandiositySumz_Gender2:financialPreference_z            -0.13     0.38 1.00
## grandiositySumz_Gender2:socialPreference_z               -0.20     0.32 1.00
## grandiositySumz_Gender2:healthAndSafetyPreference_z      -0.26     0.33 1.00
## grandiositySumz_Gender2:recreationalPreference_z         -0.69    -0.13 1.00
##                                                       Bulk_ESS Tail_ESS
## vulnerabilitySumz_Intercept                              45837    30295
## grandiositySumz_Intercept                                45047    28970
## vulnerabilitySumz_ethicalPreference_z                    22591    26159
## vulnerabilitySumz_Gender2                                41156    28666
## vulnerabilitySumz_financialPreference_z                  25262    27816
## vulnerabilitySumz_socialPreference_z                     25591    28083
## vulnerabilitySumz_healthAndSafetyPreference_z            22965    26441
## vulnerabilitySumz_recreationalPreference_z               24557    25870
## vulnerabilitySumz_Age                                    45971    29656
## vulnerabilitySumz_ethicalPreference_z:Gender2            23136    27545
## vulnerabilitySumz_Gender2:financialPreference_z          25747    27042
## vulnerabilitySumz_Gender2:socialPreference_z             27287    28272
## vulnerabilitySumz_Gender2:healthAndSafetyPreference_z    23352    26285
## vulnerabilitySumz_Gender2:recreationalPreference_z       25721    25444
## grandiositySumz_ethicalPreference_z                      21888    25252
## grandiositySumz_Gender2                                  41817    29507
## grandiositySumz_financialPreference_z                    27278    28105
## grandiositySumz_socialPreference_z                       25661    25771
## grandiositySumz_healthAndSafetyPreference_z              21942    25310
## grandiositySumz_recreationalPreference_z                 25081    26578
## grandiositySumz_Age                                      44220    29291
## grandiositySumz_ethicalPreference_z:Gender2              22115    25303
## grandiositySumz_Gender2:financialPreference_z            27917    28195
## grandiositySumz_Gender2:socialPreference_z               26579    28115
## grandiositySumz_Gender2:healthAndSafetyPreference_z      22593    26085
## grandiositySumz_Gender2:recreationalPreference_z         25429    26866
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.92      0.04     0.85     1.01 1.00    42091
## sigma_grandiositySumz       0.92      0.04     0.85     1.00 1.00    43368
##                         Tail_ESS
## sigma_vulnerabilitySumz    27557
## sigma_grandiositySumz      28027
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.47      0.05     0.37     0.55
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    40214    29073
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_multi_dospert_int_hdi <- bayestestR::hdi(pni_multi_dospert_int, effects = "fixed", component = "conditional", ci = .95)
kable(pni_multi_dospert_int_hdi[
  sign(pni_multi_dospert_int_hdi$CI_low) == sign(pni_multi_dospert_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.43 1.21
b_vulnerabilitySumz_financialPreference_z 0.95 -0.47 -0.06
b_vulnerabilitySumz_Age 0.95 -0.04 -0.02
b_vulnerabilitySumz_Gender2:recreationalPreference_z 0.95 -0.62 -0.07
b_grandiositySumz_Gender2 0.95 0.03 0.51
b_grandiositySumz_socialPreference_z 0.95 0.11 0.49
b_grandiositySumz_Age 0.95 -0.03 -0.01
b_grandiositySumz_Gender2:recreationalPreference_z 0.95 -0.68 -0.13
pni_multi_dospert_int_Age <- brm(mvbind(vulnerability_Sum_z, grandiosity_Sum_z) ~ ethicalPreference_z * Age + financialPreference_z * Age + socialPreference_z * Age + healthAndSafetyPreference_z * Age + recreationalPreference_z * Age + Gender,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = prior_multi_dospert_int_Age_prior
)
summary(pni_multi_dospert_int_Age)
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: vulnerability_Sum_z ~ ethicalPreference_z * Age + financialPreference_z * Age + socialPreference_z * Age + healthAndSafetyPreference_z * Age + recreationalPreference_z * Age + Gender 
##          grandiosity_Sum_z ~ ethicalPreference_z * Age + financialPreference_z * Age + socialPreference_z * Age + healthAndSafetyPreference_z * Age + recreationalPreference_z * Age + Gender 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                   Estimate Est.Error l-95% CI
## vulnerabilitySumz_Intercept                           0.86      0.27     0.34
## grandiositySumz_Intercept                             0.07      0.26    -0.45
## vulnerabilitySumz_ethicalPreference_z                -0.05      0.25    -0.54
## vulnerabilitySumz_Age                                -0.03      0.01    -0.04
## vulnerabilitySumz_financialPreference_z              -0.12      0.21    -0.53
## vulnerabilitySumz_socialPreference_z                  0.21      0.21    -0.20
## vulnerabilitySumz_healthAndSafetyPreference_z        -0.09      0.27    -0.62
## vulnerabilitySumz_recreationalPreference_z           -0.00      0.22    -0.43
## vulnerabilitySumz_Gender                             -0.02      0.13    -0.27
## vulnerabilitySumz_ethicalPreference_z:Age             0.01      0.01    -0.01
## vulnerabilitySumz_Age:financialPreference_z           0.00      0.01    -0.01
## vulnerabilitySumz_Age:socialPreference_z             -0.00      0.01    -0.02
## vulnerabilitySumz_Age:healthAndSafetyPreference_z     0.01      0.01    -0.01
## vulnerabilitySumz_Age:recreationalPreference_z       -0.00      0.01    -0.02
## grandiositySumz_ethicalPreference_z                   0.01      0.25    -0.48
## grandiositySumz_Age                                  -0.02      0.01    -0.03
## grandiositySumz_financialPreference_z                -0.14      0.21    -0.54
## grandiositySumz_socialPreference_z                    0.15      0.21    -0.26
## grandiositySumz_healthAndSafetyPreference_z          -0.24      0.27    -0.76
## grandiositySumz_recreationalPreference_z              0.37      0.21    -0.05
## grandiositySumz_Gender                                0.30      0.12     0.06
## grandiositySumz_ethicalPreference_z:Age               0.00      0.01    -0.02
## grandiositySumz_Age:financialPreference_z             0.01      0.01    -0.01
## grandiositySumz_Age:socialPreference_z                0.01      0.01    -0.01
## grandiositySumz_Age:healthAndSafetyPreference_z       0.01      0.01    -0.01
## grandiositySumz_Age:recreationalPreference_z         -0.01      0.01    -0.03
##                                                   u-95% CI Rhat Bulk_ESS
## vulnerabilitySumz_Intercept                           1.38 1.00    50294
## grandiositySumz_Intercept                             0.58 1.00    50681
## vulnerabilitySumz_ethicalPreference_z                 0.44 1.00    18284
## vulnerabilitySumz_Age                                -0.01 1.00    42989
## vulnerabilitySumz_financialPreference_z               0.29 1.00    23824
## vulnerabilitySumz_socialPreference_z                  0.62 1.00    24010
## vulnerabilitySumz_healthAndSafetyPreference_z         0.44 1.00    17958
## vulnerabilitySumz_recreationalPreference_z            0.42 1.00    23317
## vulnerabilitySumz_Gender                              0.23 1.00    46207
## vulnerabilitySumz_ethicalPreference_z:Age             0.02 1.00    18033
## vulnerabilitySumz_Age:financialPreference_z           0.01 1.00    23566
## vulnerabilitySumz_Age:socialPreference_z              0.01 1.00    24130
## vulnerabilitySumz_Age:healthAndSafetyPreference_z     0.02 1.00    18151
## vulnerabilitySumz_Age:recreationalPreference_z        0.01 1.00    22758
## grandiositySumz_ethicalPreference_z                   0.51 1.00    17745
## grandiositySumz_Age                                  -0.00 1.00    42366
## grandiositySumz_financialPreference_z                 0.27 1.00    22943
## grandiositySumz_socialPreference_z                    0.55 1.00    24316
## grandiositySumz_healthAndSafetyPreference_z           0.28 1.00    18161
## grandiositySumz_recreationalPreference_z              0.79 1.00    22139
## grandiositySumz_Gender                                0.55 1.00    44793
## grandiositySumz_ethicalPreference_z:Age               0.02 1.00    17624
## grandiositySumz_Age:financialPreference_z             0.02 1.00    22813
## grandiositySumz_Age:socialPreference_z                0.02 1.00    24034
## grandiositySumz_Age:healthAndSafetyPreference_z       0.02 1.00    18280
## grandiositySumz_Age:recreationalPreference_z         -0.00 1.00    21742
##                                                   Tail_ESS
## vulnerabilitySumz_Intercept                          29029
## grandiositySumz_Intercept                            28246
## vulnerabilitySumz_ethicalPreference_z                24269
## vulnerabilitySumz_Age                                29683
## vulnerabilitySumz_financialPreference_z              25464
## vulnerabilitySumz_socialPreference_z                 26468
## vulnerabilitySumz_healthAndSafetyPreference_z        23028
## vulnerabilitySumz_recreationalPreference_z           25130
## vulnerabilitySumz_Gender                             29369
## vulnerabilitySumz_ethicalPreference_z:Age            24570
## vulnerabilitySumz_Age:financialPreference_z          26107
## vulnerabilitySumz_Age:socialPreference_z             26096
## vulnerabilitySumz_Age:healthAndSafetyPreference_z    22440
## vulnerabilitySumz_Age:recreationalPreference_z       25658
## grandiositySumz_ethicalPreference_z                  24589
## grandiositySumz_Age                                  28951
## grandiositySumz_financialPreference_z                26242
## grandiositySumz_socialPreference_z                   25970
## grandiositySumz_healthAndSafetyPreference_z          23432
## grandiositySumz_recreationalPreference_z             25543
## grandiositySumz_Gender                               28958
## grandiositySumz_ethicalPreference_z:Age              24158
## grandiositySumz_Age:financialPreference_z            26969
## grandiositySumz_Age:socialPreference_z               25838
## grandiositySumz_Age:healthAndSafetyPreference_z      22280
## grandiositySumz_Age:recreationalPreference_z         25786
## 
## Family Specific Parameters: 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_vulnerabilitySumz     0.94      0.04     0.87     1.03 1.00    51443
## sigma_grandiositySumz       0.93      0.04     0.85     1.01 1.00    50639
##                         Tail_ESS
## sigma_vulnerabilitySumz    28529
## sigma_grandiositySumz      28460
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(vulnerabilitySumz,grandiositySumz)     0.49      0.05     0.39     0.57
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(vulnerabilitySumz,grandiositySumz) 1.00    46807    27782
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_multi_dospert_int_Age_hdi <- bayestestR::hdi(pni_multi_dospert_int_Age, effects = "fixed", component = "conditional", ci = .95)
kable(pni_multi_dospert_int_Age_hdi[
  sign(pni_multi_dospert_int_Age_hdi$CI_low) == sign(pni_multi_dospert_int_Age_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_vulnerabilitySumz_Intercept 0.95 0.35 1.39
b_vulnerabilitySumz_Age 0.95 -0.04 -0.01
b_grandiositySumz_Age 0.95 -0.03 0.00
b_grandiositySumz_Gender 0.95 0.05 0.54
b_grandiositySumz_Age:recreationalPreference_z 0.95 -0.03 0.00
multi_model_dospert <- brm(mvbind(grandiose_fantasy_Sum_z, exploitativeness_Sum_z, ssse_Sum_z) ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = multi_model_dospert_prior
)
multi_model_dospert_fix <- fixef(multi_model_dospert)
saveRDS(multi_model_dospert_fix, "multi_model_dospert_fix.rds")
summary(multi_model_dospert)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: grandiose_fantasy_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          exploitativeness_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##          ssse_Sum_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                  Estimate Est.Error l-95% CI
## grandiosefantasySumz_Intercept                       0.42      0.20     0.03
## exploitativenessSumz_Intercept                       0.19      0.20    -0.20
## ssseSumz_Intercept                                   0.30      0.20    -0.08
## grandiosefantasySumz_ethicalPreference_z             0.04      0.08    -0.11
## grandiosefantasySumz_financialPreference_z           0.03      0.07    -0.10
## grandiosefantasySumz_socialPreference_z              0.28      0.07     0.14
## grandiosefantasySumz_healthAndSafetyPreference_z    -0.18      0.08    -0.34
## grandiosefantasySumz_recreationalPreference_z       -0.03      0.07    -0.18
## grandiosefantasySumz_Gender2                         0.20      0.13    -0.05
## grandiosefantasySumz_Age                            -0.02      0.01    -0.03
## exploitativenessSumz_ethicalPreference_z            -0.00      0.08    -0.16
## exploitativenessSumz_financialPreference_z           0.00      0.07    -0.12
## exploitativenessSumz_socialPreference_z              0.22      0.07     0.09
## exploitativenessSumz_healthAndSafetyPreference_z     0.10      0.08    -0.06
## exploitativenessSumz_recreationalPreference_z       -0.02      0.07    -0.16
## exploitativenessSumz_Gender2                         0.40      0.13     0.15
## exploitativenessSumz_Age                            -0.01      0.01    -0.03
## ssseSumz_ethicalPreference_z                         0.04      0.08    -0.11
## ssseSumz_financialPreference_z                      -0.00      0.07    -0.13
## ssseSumz_socialPreference_z                          0.28      0.07     0.14
## ssseSumz_healthAndSafetyPreference_z                -0.07      0.08    -0.22
## ssseSumz_recreationalPreference_z                   -0.10      0.07    -0.24
## ssseSumz_Gender2                                     0.06      0.13    -0.19
## ssseSumz_Age                                        -0.01      0.01    -0.02
##                                                  u-95% CI Rhat Bulk_ESS
## grandiosefantasySumz_Intercept                       0.81 1.00    49619
## exploitativenessSumz_Intercept                       0.58 1.00    50228
## ssseSumz_Intercept                                   0.69 1.00    47036
## grandiosefantasySumz_ethicalPreference_z             0.20 1.00    35819
## grandiosefantasySumz_financialPreference_z           0.16 1.00    39925
## grandiosefantasySumz_socialPreference_z              0.42 1.00    41186
## grandiosefantasySumz_healthAndSafetyPreference_z    -0.03 1.00    36992
## grandiosefantasySumz_recreationalPreference_z        0.11 1.00    39273
## grandiosefantasySumz_Gender2                         0.45 1.00    41109
## grandiosefantasySumz_Age                            -0.01 1.00    47845
## exploitativenessSumz_ethicalPreference_z             0.15 1.00    39559
## exploitativenessSumz_financialPreference_z           0.13 1.00    45560
## exploitativenessSumz_socialPreference_z              0.36 1.00    44584
## exploitativenessSumz_healthAndSafetyPreference_z     0.25 1.00    40800
## exploitativenessSumz_recreationalPreference_z        0.13 1.00    42302
## exploitativenessSumz_Gender2                         0.65 1.00    44555
## exploitativenessSumz_Age                            -0.00 1.00    47767
## ssseSumz_ethicalPreference_z                         0.20 1.00    35643
## ssseSumz_financialPreference_z                       0.13 1.00    40079
## ssseSumz_socialPreference_z                          0.42 1.00    39954
## ssseSumz_healthAndSafetyPreference_z                 0.09 1.00    36715
## ssseSumz_recreationalPreference_z                    0.05 1.00    38894
## ssseSumz_Gender2                                     0.30 1.00    41415
## ssseSumz_Age                                         0.00 1.00    45491
##                                                  Tail_ESS
## grandiosefantasySumz_Intercept                      30933
## exploitativenessSumz_Intercept                      29866
## ssseSumz_Intercept                                  30437
## grandiosefantasySumz_ethicalPreference_z            29653
## grandiosefantasySumz_financialPreference_z          29344
## grandiosefantasySumz_socialPreference_z             29677
## grandiosefantasySumz_healthAndSafetyPreference_z    28504
## grandiosefantasySumz_recreationalPreference_z       30223
## grandiosefantasySumz_Gender2                        28231
## grandiosefantasySumz_Age                            30280
## exploitativenessSumz_ethicalPreference_z            29142
## exploitativenessSumz_financialPreference_z          28481
## exploitativenessSumz_socialPreference_z             29875
## exploitativenessSumz_healthAndSafetyPreference_z    29886
## exploitativenessSumz_recreationalPreference_z       29964
## exploitativenessSumz_Gender2                        29989
## exploitativenessSumz_Age                            29877
## ssseSumz_ethicalPreference_z                        29444
## ssseSumz_financialPreference_z                      29513
## ssseSumz_socialPreference_z                         29529
## ssseSumz_healthAndSafetyPreference_z                28636
## ssseSumz_recreationalPreference_z                   30234
## ssseSumz_Gender2                                    27773
## ssseSumz_Age                                        29802
## 
## Family Specific Parameters: 
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_grandiosefantasySumz     0.96      0.04     0.88     1.04 1.00    44574
## sigma_exploitativenessSumz     0.96      0.04     0.88     1.04 1.00    50486
## sigma_ssseSumz                 0.96      0.04     0.88     1.05 1.00    44574
##                            Tail_ESS
## sigma_grandiosefantasySumz    29637
## sigma_exploitativenessSumz    28745
## sigma_ssseSumz                28062
## 
## Residual Correlations: 
##                                                   Estimate Est.Error l-95% CI
## rescor(grandiosefantasySumz,exploitativenessSumz)     0.19      0.06     0.07
## rescor(grandiosefantasySumz,ssseSumz)                 0.40      0.05     0.29
## rescor(exploitativenessSumz,ssseSumz)                 0.22      0.06     0.11
##                                                   u-95% CI Rhat Bulk_ESS
## rescor(grandiosefantasySumz,exploitativenessSumz)     0.30 1.00    45882
## rescor(grandiosefantasySumz,ssseSumz)                 0.49 1.00    42546
## rescor(exploitativenessSumz,ssseSumz)                 0.33 1.00    48661
##                                                   Tail_ESS
## rescor(grandiosefantasySumz,exploitativenessSumz)    27506
## rescor(grandiosefantasySumz,ssseSumz)                28261
## rescor(exploitativenessSumz,ssseSumz)                27281
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
multi_model_dospert_hdi <- bayestestR::hdi(multi_model_dospert, effects = "fixed", component = "conditional", ci = .95)
kable(multi_model_dospert_hdi[
  sign(multi_model_dospert_hdi$CI_low) == sign(multi_model_dospert_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_grandiosefantasySumz_Intercept 0.95 0.02 0.80
b_grandiosefantasySumz_socialPreference_z 0.95 0.15 0.42
b_grandiosefantasySumz_healthAndSafetyPreference_z 0.95 -0.34 -0.03
b_grandiosefantasySumz_Age 0.95 -0.03 -0.01
b_exploitativenessSumz_socialPreference_z 0.95 0.08 0.36
b_exploitativenessSumz_Gender2 0.95 0.15 0.64
b_exploitativenessSumz_Age 0.95 -0.03 0.00
b_ssseSumz_socialPreference_z 0.95 0.15 0.42
multi_model_dospert_int <- brm(mvbind(grandiose_fantasy_Sum_z, exploitativeness_Sum_z, ssse_Sum_z) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = multi_model_dospert_int_prior
)
summary(multi_model_dospert_int)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: grandiose_fantasy_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          exploitativeness_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          ssse_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                         Estimate Est.Error
## grandiosefantasySumz_Intercept                              0.21      0.27
## exploitativenessSumz_Intercept                             -0.20      0.27
## ssseSumz_Intercept                                          0.24      0.27
## grandiosefantasySumz_ethicalPreference_z                   -0.19      0.26
## grandiosefantasySumz_Gender                                 0.19      0.13
## grandiosefantasySumz_financialPreference_z                  0.04      0.23
## grandiosefantasySumz_socialPreference_z                     0.17      0.22
## grandiosefantasySumz_healthAndSafetyPreference_z           -0.18      0.25
## grandiosefantasySumz_recreationalPreference_z               0.35      0.24
## grandiosefantasySumz_Age                                   -0.02      0.01
## grandiosefantasySumz_ethicalPreference_z:Gender             0.14      0.15
## grandiosefantasySumz_Gender:financialPreference_z          -0.00      0.13
## grandiosefantasySumz_Gender:socialPreference_z              0.06      0.14
## grandiosefantasySumz_Gender:healthAndSafetyPreference_z     0.00      0.15
## grandiosefantasySumz_Gender:recreationalPreference_z       -0.24      0.14
## exploitativenessSumz_ethicalPreference_z                   -0.16      0.27
## exploitativenessSumz_Gender                                 0.37      0.13
## exploitativenessSumz_financialPreference_z                 -0.13      0.22
## exploitativenessSumz_socialPreference_z                     0.02      0.21
## exploitativenessSumz_healthAndSafetyPreference_z           -0.01      0.25
## exploitativenessSumz_recreationalPreference_z               0.69      0.24
## exploitativenessSumz_Age                                   -0.01      0.01
## exploitativenessSumz_ethicalPreference_z:Gender             0.10      0.15
## exploitativenessSumz_Gender:financialPreference_z           0.09      0.13
## exploitativenessSumz_Gender:socialPreference_z              0.12      0.13
## exploitativenessSumz_Gender:healthAndSafetyPreference_z     0.07      0.15
## exploitativenessSumz_Gender:recreationalPreference_z       -0.43      0.14
## ssseSumz_ethicalPreference_z                                0.13      0.27
## ssseSumz_Gender                                             0.04      0.13
## ssseSumz_financialPreference_z                             -0.31      0.23
## ssseSumz_socialPreference_z                                 0.36      0.21
## ssseSumz_healthAndSafetyPreference_z                       -0.02      0.25
## ssseSumz_recreationalPreference_z                           0.22      0.24
## ssseSumz_Age                                               -0.01      0.01
## ssseSumz_ethicalPreference_z:Gender                        -0.05      0.15
## ssseSumz_Gender:financialPreference_z                       0.19      0.13
## ssseSumz_Gender:socialPreference_z                         -0.05      0.13
## ssseSumz_Gender:healthAndSafetyPreference_z                -0.03      0.15
## ssseSumz_Gender:recreationalPreference_z                   -0.19      0.14
##                                                         l-95% CI u-95% CI Rhat
## grandiosefantasySumz_Intercept                             -0.32     0.74 1.00
## exploitativenessSumz_Intercept                             -0.73     0.32 1.00
## ssseSumz_Intercept                                         -0.29     0.76 1.00
## grandiosefantasySumz_ethicalPreference_z                   -0.71     0.33 1.00
## grandiosefantasySumz_Gender                                -0.06     0.44 1.00
## grandiosefantasySumz_financialPreference_z                 -0.40     0.48 1.00
## grandiosefantasySumz_socialPreference_z                    -0.25     0.59 1.00
## grandiosefantasySumz_healthAndSafetyPreference_z           -0.68     0.32 1.00
## grandiosefantasySumz_recreationalPreference_z              -0.12     0.83 1.00
## grandiosefantasySumz_Age                                   -0.03    -0.00 1.00
## grandiosefantasySumz_ethicalPreference_z:Gender            -0.16     0.44 1.00
## grandiosefantasySumz_Gender:financialPreference_z          -0.26     0.26 1.00
## grandiosefantasySumz_Gender:socialPreference_z             -0.20     0.32 1.00
## grandiosefantasySumz_Gender:healthAndSafetyPreference_z    -0.30     0.30 1.00
## grandiosefantasySumz_Gender:recreationalPreference_z       -0.52     0.04 1.00
## exploitativenessSumz_ethicalPreference_z                   -0.69     0.36 1.00
## exploitativenessSumz_Gender                                 0.12     0.62 1.00
## exploitativenessSumz_financialPreference_z                 -0.56     0.31 1.00
## exploitativenessSumz_socialPreference_z                    -0.40     0.44 1.00
## exploitativenessSumz_healthAndSafetyPreference_z           -0.50     0.49 1.00
## exploitativenessSumz_recreationalPreference_z               0.21     1.15 1.00
## exploitativenessSumz_Age                                   -0.02     0.00 1.00
## exploitativenessSumz_ethicalPreference_z:Gender            -0.20     0.40 1.00
## exploitativenessSumz_Gender:financialPreference_z          -0.17     0.34 1.00
## exploitativenessSumz_Gender:socialPreference_z             -0.14     0.39 1.00
## exploitativenessSumz_Gender:healthAndSafetyPreference_z    -0.23     0.36 1.00
## exploitativenessSumz_Gender:recreationalPreference_z       -0.70    -0.15 1.00
## ssseSumz_ethicalPreference_z                               -0.39     0.65 1.00
## ssseSumz_Gender                                            -0.21     0.29 1.00
## ssseSumz_financialPreference_z                             -0.75     0.13 1.00
## ssseSumz_socialPreference_z                                -0.06     0.78 1.00
## ssseSumz_healthAndSafetyPreference_z                       -0.51     0.48 1.00
## ssseSumz_recreationalPreference_z                          -0.26     0.70 1.00
## ssseSumz_Age                                               -0.02     0.00 1.00
## ssseSumz_ethicalPreference_z:Gender                        -0.35     0.25 1.00
## ssseSumz_Gender:financialPreference_z                      -0.07     0.45 1.00
## ssseSumz_Gender:socialPreference_z                         -0.32     0.21 1.00
## ssseSumz_Gender:healthAndSafetyPreference_z                -0.33     0.26 1.00
## ssseSumz_Gender:recreationalPreference_z                   -0.47     0.09 1.00
##                                                         Bulk_ESS Tail_ESS
## grandiosefantasySumz_Intercept                             55578    28987
## exploitativenessSumz_Intercept                             62198    28628
## ssseSumz_Intercept                                         52953    30356
## grandiosefantasySumz_ethicalPreference_z                   27046    27357
## grandiosefantasySumz_Gender                                58864    29123
## grandiosefantasySumz_financialPreference_z                 33804    27815
## grandiosefantasySumz_socialPreference_z                    32660    28806
## grandiosefantasySumz_healthAndSafetyPreference_z           26373    28008
## grandiosefantasySumz_recreationalPreference_z              29881    27937
## grandiosefantasySumz_Age                                   58052    30009
## grandiosefantasySumz_ethicalPreference_z:Gender            27048    28011
## grandiosefantasySumz_Gender:financialPreference_z          34445    26736
## grandiosefantasySumz_Gender:socialPreference_z             33144    28090
## grandiosefantasySumz_Gender:healthAndSafetyPreference_z    26333    27883
## grandiosefantasySumz_Gender:recreationalPreference_z       29446    27541
## exploitativenessSumz_ethicalPreference_z                   29799    27793
## exploitativenessSumz_Gender                                62927    26605
## exploitativenessSumz_financialPreference_z                 36202    27605
## exploitativenessSumz_socialPreference_z                    32617    27163
## exploitativenessSumz_healthAndSafetyPreference_z           26897    27175
## exploitativenessSumz_recreationalPreference_z              34061    28480
## exploitativenessSumz_Age                                   63522    29275
## exploitativenessSumz_ethicalPreference_z:Gender            29922    27715
## exploitativenessSumz_Gender:financialPreference_z          36545    27918
## exploitativenessSumz_Gender:socialPreference_z             33627    27545
## exploitativenessSumz_Gender:healthAndSafetyPreference_z    26877    27196
## exploitativenessSumz_Gender:recreationalPreference_z       34180    27946
## ssseSumz_ethicalPreference_z                               25840    26426
## ssseSumz_Gender                                            55688    30258
## ssseSumz_financialPreference_z                             31771    26884
## ssseSumz_socialPreference_z                                31446    28194
## ssseSumz_healthAndSafetyPreference_z                       26056    25947
## ssseSumz_recreationalPreference_z                          30948    27845
## ssseSumz_Age                                               57468    30257
## ssseSumz_ethicalPreference_z:Gender                        25826    26890
## ssseSumz_Gender:financialPreference_z                      31731    27813
## ssseSumz_Gender:socialPreference_z                         32591    28682
## ssseSumz_Gender:healthAndSafetyPreference_z                26567    26837
## ssseSumz_Gender:recreationalPreference_z                   31084    27180
## 
## Family Specific Parameters: 
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_grandiosefantasySumz     0.96      0.04     0.88     1.04 1.00    61376
## sigma_exploitativenessSumz     0.95      0.04     0.87     1.03 1.00    65407
## sigma_ssseSumz                 0.96      0.04     0.88     1.05 1.00    60518
##                            Tail_ESS
## sigma_grandiosefantasySumz    27531
## sigma_exploitativenessSumz    27054
## sigma_ssseSumz                29353
## 
## Residual Correlations: 
##                                                   Estimate Est.Error l-95% CI
## rescor(grandiosefantasySumz,exploitativenessSumz)     0.17      0.06     0.05
## rescor(grandiosefantasySumz,ssseSumz)                 0.39      0.05     0.29
## rescor(exploitativenessSumz,ssseSumz)                 0.21      0.06     0.09
##                                                   u-95% CI Rhat Bulk_ESS
## rescor(grandiosefantasySumz,exploitativenessSumz)     0.28 1.00    64327
## rescor(grandiosefantasySumz,ssseSumz)                 0.49 1.00    57499
## rescor(exploitativenessSumz,ssseSumz)                 0.32 1.00    62018
##                                                   Tail_ESS
## rescor(grandiosefantasySumz,exploitativenessSumz)    28237
## rescor(grandiosefantasySumz,ssseSumz)                30542
## rescor(exploitativenessSumz,ssseSumz)                29486
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
multi_model_dospert_int_hdi <- bayestestR::hdi(multi_model_dospert_int, effects = "fixed", component = "conditional", ci = .95)
## Warning: Identical densities found along different segments of the distribution,
## choosing rightmost.
kable(multi_model_dospert_int_hdi[
  sign(multi_model_dospert_int_hdi$CI_low) == sign(multi_model_dospert_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_grandiosefantasySumz_Age 0.95 -0.03 0.00
b_exploitativenessSumz_Gender 0.95 0.13 0.63
b_exploitativenessSumz_recreationalPreference_z 0.95 0.22 1.16
b_exploitativenessSumz_Gender:recreationalPreference_z 0.95 -0.70 -0.15
multi_2_model_dospert_int <- brm(mvbind(cse_Sum_z, devaluing_Sum_z, entitlement_rage_Sum_z, hts_Sum_z) ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = multi_2_model_dospert_int_prior
)

multi_2_model_dospert_int_fixef <- fixef(multi_2_model_dospert_int)
summary(multi_2_model_dospert_int)
##  Family: MV(gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: cse_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          devaluing_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          entitlement_rage_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##          hts_Sum_z ~ ethicalPreference_z * Gender + financialPreference_z * Gender + socialPreference_z * Gender + healthAndSafetyPreference_z * Gender + recreationalPreference_z * Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                                         Estimate Est.Error
## cseSumz_Intercept                                           0.74      0.20
## devaluingSumz_Intercept                                     0.79      0.20
## entitlementrageSumz_Intercept                               0.70      0.20
## htsSumz_Intercept                                           0.53      0.20
## cseSumz_ethicalPreference_z                                 0.22      0.13
## cseSumz_Gender2                                             0.12      0.12
## cseSumz_financialPreference_z                              -0.34      0.10
## cseSumz_socialPreference_z                                  0.14      0.10
## cseSumz_healthAndSafetyPreference_z                        -0.03      0.12
## cseSumz_recreationalPreference_z                            0.15      0.11
## cseSumz_Age                                                -0.03      0.01
## cseSumz_ethicalPreference_z:Gender2                         0.00      0.15
## cseSumz_Gender2:financialPreference_z                       0.27      0.13
## cseSumz_Gender2:socialPreference_z                         -0.03      0.13
## cseSumz_Gender2:healthAndSafetyPreference_z                 0.00      0.15
## cseSumz_Gender2:recreationalPreference_z                   -0.27      0.14
## devaluingSumz_ethicalPreference_z                          -0.22      0.13
## devaluingSumz_Gender2                                      -0.09      0.13
## devaluingSumz_financialPreference_z                         0.01      0.11
## devaluingSumz_socialPreference_z                            0.02      0.10
## devaluingSumz_healthAndSafetyPreference_z                   0.28      0.12
## devaluingSumz_recreationalPreference_z                     -0.01      0.12
## devaluingSumz_Age                                          -0.02      0.01
## devaluingSumz_ethicalPreference_z:Gender2                   0.38      0.15
## devaluingSumz_Gender2:financialPreference_z                 0.05      0.13
## devaluingSumz_Gender2:socialPreference_z                    0.10      0.14
## devaluingSumz_Gender2:healthAndSafetyPreference_z          -0.18      0.15
## devaluingSumz_Gender2:recreationalPreference_z             -0.19      0.14
## entitlementrageSumz_ethicalPreference_z                     0.06      0.13
## entitlementrageSumz_Gender2                                 0.02      0.13
## entitlementrageSumz_financialPreference_z                  -0.17      0.11
## entitlementrageSumz_socialPreference_z                      0.18      0.10
## entitlementrageSumz_healthAndSafetyPreference_z            -0.07      0.12
## entitlementrageSumz_recreationalPreference_z                0.08      0.12
## entitlementrageSumz_Age                                    -0.02      0.01
## entitlementrageSumz_ethicalPreference_z:Gender2             0.17      0.16
## entitlementrageSumz_Gender2:financialPreference_z           0.17      0.13
## entitlementrageSumz_Gender2:socialPreference_z             -0.01      0.14
## entitlementrageSumz_Gender2:healthAndSafetyPreference_z     0.01      0.15
## entitlementrageSumz_Gender2:recreationalPreference_z       -0.25      0.14
## htsSumz_ethicalPreference_z                                 0.00      0.13
## htsSumz_Gender2                                            -0.12      0.13
## htsSumz_financialPreference_z                              -0.34      0.11
## htsSumz_socialPreference_z                                  0.06      0.10
## htsSumz_healthAndSafetyPreference_z                         0.16      0.12
## htsSumz_recreationalPreference_z                            0.26      0.12
## htsSumz_Age                                                -0.02      0.01
## htsSumz_ethicalPreference_z:Gender2                         0.14      0.16
## htsSumz_Gender2:financialPreference_z                       0.29      0.13
## htsSumz_Gender2:socialPreference_z                          0.04      0.14
## htsSumz_Gender2:healthAndSafetyPreference_z                -0.14      0.15
## htsSumz_Gender2:recreationalPreference_z                   -0.38      0.14
##                                                         l-95% CI u-95% CI Rhat
## cseSumz_Intercept                                           0.35     1.13 1.00
## devaluingSumz_Intercept                                     0.39     1.18 1.00
## entitlementrageSumz_Intercept                               0.30     1.09 1.00
## htsSumz_Intercept                                           0.13     0.92 1.00
## cseSumz_ethicalPreference_z                                -0.02     0.47 1.00
## cseSumz_Gender2                                            -0.12     0.36 1.00
## cseSumz_financialPreference_z                              -0.55    -0.14 1.00
## cseSumz_socialPreference_z                                 -0.05     0.32 1.00
## cseSumz_healthAndSafetyPreference_z                        -0.26     0.20 1.00
## cseSumz_recreationalPreference_z                           -0.08     0.37 1.00
## cseSumz_Age                                                -0.04    -0.01 1.00
## cseSumz_ethicalPreference_z:Gender2                        -0.30     0.30 1.00
## cseSumz_Gender2:financialPreference_z                       0.01     0.52 1.00
## cseSumz_Gender2:socialPreference_z                         -0.29     0.23 1.00
## cseSumz_Gender2:healthAndSafetyPreference_z                -0.29     0.30 1.00
## cseSumz_Gender2:recreationalPreference_z                   -0.55     0.01 1.00
## devaluingSumz_ethicalPreference_z                          -0.47     0.04 1.00
## devaluingSumz_Gender2                                      -0.33     0.16 1.00
## devaluingSumz_financialPreference_z                        -0.20     0.22 1.00
## devaluingSumz_socialPreference_z                           -0.17     0.21 1.00
## devaluingSumz_healthAndSafetyPreference_z                   0.05     0.52 1.00
## devaluingSumz_recreationalPreference_z                     -0.24     0.21 1.00
## devaluingSumz_Age                                          -0.04    -0.01 1.00
## devaluingSumz_ethicalPreference_z:Gender2                   0.07     0.67 1.00
## devaluingSumz_Gender2:financialPreference_z                -0.21     0.31 1.00
## devaluingSumz_Gender2:socialPreference_z                   -0.16     0.37 1.00
## devaluingSumz_Gender2:healthAndSafetyPreference_z          -0.48     0.12 1.00
## devaluingSumz_Gender2:recreationalPreference_z             -0.47     0.09 1.00
## entitlementrageSumz_ethicalPreference_z                    -0.19     0.32 1.00
## entitlementrageSumz_Gender2                                -0.23     0.27 1.00
## entitlementrageSumz_financialPreference_z                  -0.38     0.04 1.00
## entitlementrageSumz_socialPreference_z                     -0.02     0.37 1.00
## entitlementrageSumz_healthAndSafetyPreference_z            -0.30     0.17 1.00
## entitlementrageSumz_recreationalPreference_z               -0.15     0.31 1.00
## entitlementrageSumz_Age                                    -0.04    -0.01 1.00
## entitlementrageSumz_ethicalPreference_z:Gender2            -0.13     0.48 1.00
## entitlementrageSumz_Gender2:financialPreference_z          -0.09     0.43 1.00
## entitlementrageSumz_Gender2:socialPreference_z             -0.28     0.25 1.00
## entitlementrageSumz_Gender2:healthAndSafetyPreference_z    -0.28     0.32 1.00
## entitlementrageSumz_Gender2:recreationalPreference_z       -0.53     0.04 1.00
## htsSumz_ethicalPreference_z                                -0.25     0.26 1.00
## htsSumz_Gender2                                            -0.37     0.12 1.00
## htsSumz_financialPreference_z                              -0.55    -0.13 1.00
## htsSumz_socialPreference_z                                 -0.14     0.25 1.00
## htsSumz_healthAndSafetyPreference_z                        -0.07     0.40 1.00
## htsSumz_recreationalPreference_z                            0.03     0.49 1.00
## htsSumz_Age                                                -0.03    -0.00 1.00
## htsSumz_ethicalPreference_z:Gender2                        -0.16     0.45 1.00
## htsSumz_Gender2:financialPreference_z                       0.03     0.55 1.00
## htsSumz_Gender2:socialPreference_z                         -0.23     0.31 1.00
## htsSumz_Gender2:healthAndSafetyPreference_z                -0.44     0.17 1.00
## htsSumz_Gender2:recreationalPreference_z                   -0.66    -0.10 1.00
##                                                         Bulk_ESS Tail_ESS
## cseSumz_Intercept                                          38165    30763
## devaluingSumz_Intercept                                    34845    29277
## entitlementrageSumz_Intercept                              37733    30959
## htsSumz_Intercept                                          38242    32141
## cseSumz_ethicalPreference_z                                18363    24816
## cseSumz_Gender2                                            33310    30538
## cseSumz_financialPreference_z                              21032    26705
## cseSumz_socialPreference_z                                 20768    26417
## cseSumz_healthAndSafetyPreference_z                        18934    25104
## cseSumz_recreationalPreference_z                           19874    25748
## cseSumz_Age                                                38483    30729
## cseSumz_ethicalPreference_z:Gender2                        18803    24569
## cseSumz_Gender2:financialPreference_z                      21246    26182
## cseSumz_Gender2:socialPreference_z                         22286    28598
## cseSumz_Gender2:healthAndSafetyPreference_z                19674    25646
## cseSumz_Gender2:recreationalPreference_z                   20147    26411
## devaluingSumz_ethicalPreference_z                          17255    23862
## devaluingSumz_Gender2                                      29951    29126
## devaluingSumz_financialPreference_z                        19851    25850
## devaluingSumz_socialPreference_z                           17980    24965
## devaluingSumz_healthAndSafetyPreference_z                  18175    25003
## devaluingSumz_recreationalPreference_z                     18158    25308
## devaluingSumz_Age                                          35175    30589
## devaluingSumz_ethicalPreference_z:Gender2                  17846    23927
## devaluingSumz_Gender2:financialPreference_z                19397    25710
## devaluingSumz_Gender2:socialPreference_z                   19799    26625
## devaluingSumz_Gender2:healthAndSafetyPreference_z          18745    25113
## devaluingSumz_Gender2:recreationalPreference_z             18889    25016
## entitlementrageSumz_ethicalPreference_z                    18002    23706
## entitlementrageSumz_Gender2                                32122    30231
## entitlementrageSumz_financialPreference_z                  20647    26796
## entitlementrageSumz_socialPreference_z                     19390    25349
## entitlementrageSumz_healthAndSafetyPreference_z            18577    25271
## entitlementrageSumz_recreationalPreference_z               18799    25361
## entitlementrageSumz_Age                                    38096    31567
## entitlementrageSumz_ethicalPreference_z:Gender2            18218    24035
## entitlementrageSumz_Gender2:financialPreference_z          20348    25562
## entitlementrageSumz_Gender2:socialPreference_z             21330    27539
## entitlementrageSumz_Gender2:healthAndSafetyPreference_z    19272    25653
## entitlementrageSumz_Gender2:recreationalPreference_z       18903    26280
## htsSumz_ethicalPreference_z                                18768    24986
## htsSumz_Gender2                                            32617    27957
## htsSumz_financialPreference_z                              22443    27411
## htsSumz_socialPreference_z                                 20303    26507
## htsSumz_healthAndSafetyPreference_z                        18998    26111
## htsSumz_recreationalPreference_z                           19665    26045
## htsSumz_Age                                                38652    31140
## htsSumz_ethicalPreference_z:Gender2                        19686    25084
## htsSumz_Gender2:financialPreference_z                      22030    26824
## htsSumz_Gender2:socialPreference_z                         22574    28140
## htsSumz_Gender2:healthAndSafetyPreference_z                19767    25200
## htsSumz_Gender2:recreationalPreference_z                   19574    25847
## 
## Family Specific Parameters: 
##                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_cseSumz                 0.93      0.04     0.85     1.01 1.00    42949
## sigma_devaluingSumz           0.94      0.04     0.87     1.03 1.00    38758
## sigma_entitlementrageSumz     0.95      0.04     0.87     1.03 1.00    39495
## sigma_htsSumz                 0.95      0.04     0.87     1.03 1.00    45081
##                           Tail_ESS
## sigma_cseSumz                28149
## sigma_devaluingSumz          29967
## sigma_entitlementrageSumz    28611
## sigma_htsSumz                29007
## 
## Residual Correlations: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## rescor(cseSumz,devaluingSumz)                 0.50      0.05     0.41     0.59
## rescor(cseSumz,entitlementrageSumz)           0.50      0.05     0.41     0.59
## rescor(devaluingSumz,entitlementrageSumz)     0.59      0.04     0.50     0.66
## rescor(cseSumz,htsSumz)                       0.50      0.05     0.40     0.58
## rescor(devaluingSumz,htsSumz)                 0.54      0.04     0.45     0.62
## rescor(entitlementrageSumz,htsSumz)           0.44      0.05     0.33     0.53
##                                           Rhat Bulk_ESS Tail_ESS
## rescor(cseSumz,devaluingSumz)             1.00    32923    30474
## rescor(cseSumz,entitlementrageSumz)       1.00    36417    29786
## rescor(devaluingSumz,entitlementrageSumz) 1.00    42045    30154
## rescor(cseSumz,htsSumz)                   1.00    36651    28149
## rescor(devaluingSumz,htsSumz)             1.00    42024    28754
## rescor(entitlementrageSumz,htsSumz)       1.00    42229    28873
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
multi_2_model_dospert_int_hdi_est <- bayestestR::hdi(multi_2_model_dospert_int, effects = "fixed", component = "conditional", ci = .95)
kable(multi_2_model_dospert_int_hdi[
  sign(multi_2_model_dospert_int_hdi$CI_low) == sign(multi_2_model_dospert_int_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_cseSumz_Intercept 0.95 0.36 1.14
b_cseSumz_financialPreference_z 0.95 -0.54 -0.14
b_cseSumz_Age 0.95 -0.04 -0.01
b_cseSumz_Gender2:financialPreference_z 0.95 0.02 0.52
b_devaluingSumz_Intercept 0.95 0.39 1.17
b_devaluingSumz_healthAndSafetyPreference_z 0.95 0.05 0.52
b_devaluingSumz_Age 0.95 -0.04 -0.01
b_devaluingSumz_ethicalPreference_z:Gender2 0.95 0.07 0.67
b_entitlementrageSumz_Intercept 0.95 0.30 1.09
b_entitlementrageSumz_Age 0.95 -0.04 -0.01
b_htsSumz_Intercept 0.95 0.14 0.93
b_htsSumz_financialPreference_z 0.95 -0.54 -0.13
b_htsSumz_recreationalPreference_z 0.95 0.04 0.49
b_htsSumz_Age 0.95 -0.03 0.00
b_htsSumz_Gender2:financialPreference_z 0.95 0.03 0.55
b_htsSumz_Gender2:recreationalPreference_z 0.95 -0.66 -0.10
pni_risk_dospert <- brm(mvbind(riskSum_z, riskPerceptionSum_z, riskBenefitSum_z) ~ dominance_Sum + prestige_Sum + leadership_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Gender + Age,
  data = Experiment_2_demographics_Gender, cores = parallel::detectCores(), iter = 10000, warmup = 1000, backend = "cmdstanr", save_pars = save_pars(all = TRUE),
  prior = pni_risk_dospert_multi_prior
)
saveRDS(pni_risk_dospert, "pni_risk_dospert.rds")
pni_risk_dospert_fixef <- fixef(pni_risk_dospert)
saveRDS(pni_risk_dospert_fix, "pni_risk_dospert_fix.rds")
summary(pni_risk_dospert)
##  Family: MV(gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: riskSum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Gender + Age 
##          riskPerceptionSum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Gender + Age 
##          riskBenefitSum_z ~ dominance_Sum + prestige_Sum + leadership_Sum + grandiosity_Sum_z + vulnerability_Sum_z + Gender + Age 
##    Data: Experiment_2_demographics_Gender (Number of observations: 279) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                        Estimate Est.Error l-95% CI u-95% CI
## riskSumz_Intercept                         0.19      0.19    -0.19     0.57
## riskPerceptionSumz_Intercept              -0.04      0.20    -0.43     0.35
## riskBenefitSumz_Intercept                  0.73      0.19     0.35     1.10
## riskSumz_dominance_Sum                     0.27      0.07     0.13     0.40
## riskSumz_prestige_Sum                      0.01      0.07    -0.13     0.14
## riskSumz_leadership_Sum                   -0.01      0.07    -0.14     0.13
## riskSumz_grandiosity_Sum_z                 0.14      0.08    -0.01     0.30
## riskSumz_vulnerability_Sum_z              -0.02      0.07    -0.16     0.12
## riskSumz_Gender2                           0.25      0.12     0.02     0.48
## riskSumz_Age                              -0.01      0.01    -0.02     0.00
## riskPerceptionSumz_dominance_Sum          -0.25      0.07    -0.38    -0.11
## riskPerceptionSumz_prestige_Sum            0.03      0.07    -0.11     0.17
## riskPerceptionSumz_leadership_Sum          0.09      0.07    -0.05     0.24
## riskPerceptionSumz_grandiosity_Sum_z       0.03      0.08    -0.13     0.19
## riskPerceptionSumz_vulnerability_Sum_z     0.12      0.08    -0.03     0.27
## riskPerceptionSumz_Gender2                -0.33      0.12    -0.57    -0.09
## riskPerceptionSumz_Age                     0.01      0.01    -0.00     0.02
## riskBenefitSumz_dominance_Sum              0.22      0.07     0.09     0.35
## riskBenefitSumz_prestige_Sum              -0.14      0.07    -0.27    -0.00
## riskBenefitSumz_leadership_Sum             0.09      0.07    -0.05     0.23
## riskBenefitSumz_grandiosity_Sum_z          0.10      0.08    -0.06     0.25
## riskBenefitSumz_vulnerability_Sum_z       -0.02      0.07    -0.16     0.13
## riskBenefitSumz_Gender2                    0.15      0.12    -0.07     0.38
## riskBenefitSumz_Age                       -0.03      0.01    -0.04    -0.02
##                                        Rhat Bulk_ESS Tail_ESS
## riskSumz_Intercept                     1.00    49833    30687
## riskPerceptionSumz_Intercept           1.00    61091    29309
## riskBenefitSumz_Intercept              1.00    55376    28464
## riskSumz_dominance_Sum                 1.00    38070    30140
## riskSumz_prestige_Sum                  1.00    41360    27597
## riskSumz_leadership_Sum                1.00    33832    30711
## riskSumz_grandiosity_Sum_z             1.00    32854    30033
## riskSumz_vulnerability_Sum_z           1.00    31708    28217
## riskSumz_Gender2                       1.00    40124    29682
## riskSumz_Age                           1.00    50415    29928
## riskPerceptionSumz_dominance_Sum       1.00    45150    28938
## riskPerceptionSumz_prestige_Sum        1.00    52208    29808
## riskPerceptionSumz_leadership_Sum      1.00    44069    30293
## riskPerceptionSumz_grandiosity_Sum_z   1.00    41618    29030
## riskPerceptionSumz_vulnerability_Sum_z 1.00    40129    30024
## riskPerceptionSumz_Gender2             1.00    46599    29433
## riskPerceptionSumz_Age                 1.00    60734    29516
## riskBenefitSumz_dominance_Sum          1.00    41705    29591
## riskBenefitSumz_prestige_Sum           1.00    47194    28802
## riskBenefitSumz_leadership_Sum         1.00    37779    30262
## riskBenefitSumz_grandiosity_Sum_z      1.00    35084    29829
## riskBenefitSumz_vulnerability_Sum_z    1.00    34189    29024
## riskBenefitSumz_Gender2                1.00    44194    29459
## riskBenefitSumz_Age                    1.00    55823    31142
## 
## Family Specific Parameters: 
##                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_riskSumz               0.92      0.04     0.85     1.00 1.00    55858
## sigma_riskPerceptionSumz     0.96      0.04     0.88     1.05 1.00    63096
## sigma_riskBenefitSumz        0.92      0.04     0.85     1.00 1.00    60726
##                          Tail_ESS
## sigma_riskSumz              30911
## sigma_riskPerceptionSumz    29697
## sigma_riskBenefitSumz       28271
## 
## Residual Correlations: 
##                                            Estimate Est.Error l-95% CI u-95% CI
## rescor(riskSumz,riskPerceptionSumz)           -0.36      0.05    -0.46    -0.26
## rescor(riskSumz,riskBenefitSumz)               0.49      0.05     0.40     0.58
## rescor(riskPerceptionSumz,riskBenefitSumz)    -0.18      0.06    -0.29    -0.06
##                                            Rhat Bulk_ESS Tail_ESS
## rescor(riskSumz,riskPerceptionSumz)        1.00    60910    27765
## rescor(riskSumz,riskBenefitSumz)           1.00    54171    31124
## rescor(riskPerceptionSumz,riskBenefitSumz) 1.00    63078    27302
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pni_risk_dospert_hdi <- bayestestR::hdi(pni_risk_dospert, effects = "fixed", component = "conditional", ci = .95)
kable(pni_risk_dospert_hdi[
  sign(pni_risk_dospert_hdi$CI_low) == sign(pni_risk_dospert_hdi$CI_high),
  c("Parameter", "CI", "CI_low", "CI_high")
], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = T) %>%
  remove_column(1)
Parameter CI CI_low CI_high
b_riskSumz_dominance_Sum 0.95 0.13 0.40
b_riskSumz_Gender2 0.95 0.02 0.48
b_riskPerceptionSumz_dominance_Sum 0.95 -0.38 -0.11
b_riskPerceptionSumz_Gender2 0.95 -0.57 -0.09
b_riskBenefitSumz_Intercept 0.95 0.35 1.10
b_riskBenefitSumz_dominance_Sum 0.95 0.09 0.35
b_riskBenefitSumz_prestige_Sum 0.95 -0.27 0.00
b_riskBenefitSumz_Age 0.95 -0.04 -0.02
hdi_tables <- mget(ls(pattern = "_hdi"))
hdi_tables <- data.table(hdi_tables)

for (i in hdi_tables) {
  i <- i %>%
    mutate(
      Parameter = gsub("z_", " * ", Parameter),
      Parameter = gsub("_Sum", " ", Parameter),
      Parameter = gsub("Risk", "Risk ", Parameter),
      Parameter = gsub("b_", " ", Parameter),
      Parameter = gsub("Sum_", " * ", Parameter)
    )
}
for (i in hdi_tables) {
  data.table(hdi_tables)
}

for (i in c()) {
  assign(i, transform(get(i), Parameter = gsub("z_", " * ", Parameter)))
}

for (i in hdi_tables) {
  i <- as.data.table(i)
}
list2env(
  lapply(mget(ls(pattern = "_hdi")), function(w) transform(w, Parameter = gsub("z_", " * ", Parameter))),
  envir = .GlobalEnv
)
model_bayes.1 <- "
#Measurement
Preference_1 = ~ dominance_Sum + prestige_Sum + leadership_Sum + Gender + Age
Preference_2 = ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + Age
Preference_3 = ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z + Age
Preference_4 = ~ dominance_Sum * Gender + prestige_Sum * Gender + leadership_Sum * Gender + PNI_Sum_z * Gender + Age

# Structure
Preference_3 ~ Preference_2 + Preference_1
Preference_4 ~ Preference_2 + Preference_3

Preference_1 ~~ Preference_2
Preference_3 ~~ Preference_4
"
future::plan("multisession")
# options(future.globals.maxSize = 10485760000)
test_bayes_fit <- blavaan::bsem(
  model = model_bayes.1, data = Experiment_2_demographics_Gender, auto.var = TRUE, auto.fix.first = TRUE, n.chains = 4, seed = 1234, target = "cmdstan",
  auto.cov.lv.x = TRUE, ordered = "Gender"
)
bmod_blavaan <- "
# equation where dopl is predicted by dospert
generalRiskPreference_z ~ ethicalPreference_z + financialPreference_z + socialPreference_z + healthAndSafetyPreference_z + recreationalPreference_z + Gender + Age
generalExpectedBenefits_z ~ vulnerability_Sum_z + grandiosity_Sum_z
generalPerceievedRisk_z ~ cse_Sum_z + devaluing_Sum_z + entitlement_rage_Sum_z + hts_Sum_z + Gender + Age
dominance_Sum ~ financialPreference_z + vulnerability_Sum_z + grandiosity_Sum_z + Gender + Age

generalRiskPreference_z ~ ~ generalExpectedBenefits_z
generalPerceievedRisk_z ~ ~ dominance_Sum
generalRiskPreference_z ~ ~ dominance_Sum
generalPerceievedRisk_z ~ ~ generalExpectedBenefits_z
generalRiskPreference_z ~ ~ generalPerceievedRisk_z
generalExpectedBenefits_z ~ ~ dominance_Sum

"

# Blavaan analysis

blavaan_fit <- blavaan(bmod_blavaan, data = Experiment_2_demographics_Gender, bcontrol = list(cores = parallel::detectCores()), auto.var = T, auto.fix.first = T, n.chains = 4, seed = 1234, target = "cmdstan", auto.cov.lv.x = T, ordered = "Gender")

saveRDS(blavaan_fit, "blavaan_fit.rds")
summary(blavaan_fit)
graph_sem(blavaan_fit)
all.fi <- list.files("../Analyzable data/", pattern = "DOSPERT", full.names = TRUE)
library(readr)
ans <- sapply(all.fi, function(i) {
  eachline <- fread(i, select = "time_elapsed")

  return(ans)
})
write_lines(ans, "/Output_Files/output.csv")
matrix_list.fi <- data.frame(matrix(unlist(fileList)), stringsAsFactors = F)
matrix_list.fi <- data.frame(Reduce(rbind, ans))