Specific Objective

  1. To determine the prevalence of Diabetes among HIV infected patients
  2. To determine the prevalence of Latent TB among HIV infected patients
  3. To determine the Correlates of diabetes among HIV infected patients
  4. To determine the Correlates of latent TB among HIV infected patients

Setting up environment

Notes:The following packages were used(description shown)

library(tidyverse)#For data cleaning and organizing
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.5     v dplyr   1.0.7
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.0.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)#For plotting
library(knitr)#For use with rmarkdown oin presentation
library(lubridate)#For sdate use and conversion
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(readr)#For importing data
library(dplyr)#For making manipulations
library(rmarkdown)#For creating a sharable document
library(janitor)#For easing data cleaning
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(skimr)#For easy summary

IMPORT THE DATA(PREPARE)

Notes: Just the first 6 rows & then look at the structure

LabDatadf<-read.csv("C:\\Users\\Lusui\\Downloads\\Viral Load DMLTBi Demographic and Laboratory Data (1) (1).csv",stringsAsFactors = F)

PREVIEW THE DATA AND FIND THE STRUCTURE

Notes: Just the first 6 rows & then look at the structure

head(LabDatadf)
##   DemographicData.Interviewer_Name DemographicData.participants_ID
## 1                                1                             383
## 2                                2                             686
## 3                                3                            2357
## 4                                4                            2375
## 5                                5                            3845
## 6                                6                            1510
##   DemographicData.participants_residence DemographicData.participants_gender
## 1                                Dandora                                Male
## 2                                South B                                Male
## 3                              Kitengela                              Female
## 4                            UMOJA 1 Q61                              Female
## 5                                Gatundu                                Male
## 6                   Mlango Kubwa Pangani                              Female
##   Sputum.Results LBTi.QFT.Results Random.Blood.Sugar HbA1c eAG.mg.dL.
## 1    No AFB seen                0               10.3 0.101        243
## 2    No AFB seen                1                3.5                 
## 3    No AFB seen                0                  4 0.066        143
## 4    No AFB seen                0                1.2                 
## 5    No AFB seen                0                5.3                 
## 6    No AFB seen                0                6.1                 
##   Viral.Load.cp.ml.
## 1                 0
## 2                 0
## 3                 0
## 4                 0
## 5                 0
## 6                 0
tail(LabDatadf)
##     DemographicData.Interviewer_Name DemographicData.participants_ID
## 268                              301                             604
## 269                              302                            1636
## 270                              303                            2305
## 271                              304                            3754
## 272                              305                            2597
## 273                              306                             815
##     DemographicData.participants_residence DemographicData.participants_gender
## 268                       Dagoretti Corner                                Male
## 269                             Githunguri                                Male
## 270                                Utawala                              Female
## 271                            Ng'ong road                              Female
## 272                              Kitengela                              Female
## 273                                  Kitui                              Female
##     Sputum.Results LBTi.QFT.Results Random.Blood.Sugar HbA1c eAG.mg.dL.
## 268    No AFB seen                1                6.8 0.073        163
## 269    No AFB seen                1                4.3                 
## 270    No AFB seen                0                  1  0.06        126
## 271   Falcon empty                0                4.5                 
## 272    No AFB seen                1                4.1                 
## 273    No AFB seen                0                  3                 
##     Viral.Load.cp.ml.
## 268                 0
## 269                 0
## 270                 0
## 271                 0
## 272                 0
## 273                 0
#Structure
str(LabDatadf)
## 'data.frame':    273 obs. of  10 variables:
##  $ DemographicData.Interviewer_Name      : int  1 2 3 4 5 6 7 9 10 11 ...
##  $ DemographicData.participants_ID       : int  383 686 2357 2375 3845 1510 1152 2809 3854 3239 ...
##  $ DemographicData.participants_residence: chr  "Dandora" "South B" "Kitengela" "UMOJA 1 Q61" ...
##  $ DemographicData.participants_gender   : chr  "Male" "Male" "Female" "Female" ...
##  $ Sputum.Results                        : chr  "No AFB seen" "No AFB seen" "No AFB seen" "No AFB seen" ...
##  $ LBTi.QFT.Results                      : chr  "0" "1" "0" "0" ...
##  $ Random.Blood.Sugar                    : chr  "10.3" "3.5" "4" "1.2" ...
##  $ HbA1c                                 : chr  "0.101" "" "0.066" "" ...
##  $ eAG.mg.dL.                            : chr  "243" "" "143" "" ...
##  $ Viral.Load.cp.ml.                     : chr  "0" "0" "0" "0" ...

CLEANING(PROCESS)

CHECK FOR ANY DUPLICATES AND MISSING VALUES

CLEAN COLUMN NAMES

Notes: Check is done by different simple functions

#cleaning column names
LD2<-clean_names(LabDatadf)

#changing character values to numerical
LD3 <- LD2 %>%
  mutate_at(c('hb_a1c','random_blood_sugar','e_ag_mg_d_l','viral_load_cp_ml','lb_ti_qft_results','sputum_results'), as.numeric)
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion

## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion

## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion

## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion

## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion

## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
#confirming if the attributes have changed
str(LD3)
## 'data.frame':    273 obs. of  10 variables:
##  $ demographic_data_interviewer_name      : int  1 2 3 4 5 6 7 9 10 11 ...
##  $ demographic_data_participants_id       : int  383 686 2357 2375 3845 1510 1152 2809 3854 3239 ...
##  $ demographic_data_participants_residence: chr  "Dandora" "South B" "Kitengela" "UMOJA 1 Q61" ...
##  $ demographic_data_participants_gender   : chr  "Male" "Male" "Female" "Female" ...
##  $ sputum_results                         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ lb_ti_qft_results                      : num  0 1 0 0 0 0 0 0 1 0 ...
##  $ random_blood_sugar                     : num  10.3 3.5 4 1.2 5.3 6.1 3.1 4.7 8.4 3.3 ...
##  $ hb_a1c                                 : num  0.101 NA 0.066 NA NA NA NA NA 0.057 NA ...
##  $ e_ag_mg_d_l                            : num  243 NA 143 NA NA NA NA NA 117 NA ...
##  $ viral_load_cp_ml                       : num  0 0 0 0 0 0 0 0 0 0 ...
#changing the induced nas to zero
LD3[is.na(LD3)]=0

#check for any na values
sum(is.na(LD3))
## [1] 0
#check for duplicates
sum(duplicated(LD3))
## [1] 0
#Conclusuion:there are no missing values in the data set
#The nas,negative,LD3,NO AFB were changed to zero
#Indeterminate and positives were changed to 1

Summary of the cleaning process involved

1)The names were changed to a readable format(to the r studio)

2)Upon looking at the structure of the columns the HbA1c,Random Blood sugar eAg Viral Load Latent Tb results and Sputum results were formatted as a character data type they were changed to numeric data type. Naturally this introduced a lot of Nas

3)On the sputum results column All “No AFB seen” were changed to zero since absence is implied for this specific term

4)On the eAg column all Nas were introduced by coercion on the 2nd step. They were originally zeros and this was maintained by converting the nas on this row to zero

5)On the viral load column, All positives were changed to 1s and negatives to 0s.The goal was to operate with boolean values *In addition to this all indeterminates were changed to 1s since viral load was present but at normal levels. All this wa done on spreadsheets

6)There are no duplicates or missing values in our dataset since they were all dealt with

ANALYZING OUR DATA

Correlates of diabetes among HIV infected patients

Correlates of latent TB among HIV infected patients

Notes:We Get summaries of our data

# is there a relation between blood sugar and viral load in blood?
cor(LD3$random_blood_sugar,LD3$viral_load_cp_ml,use = "complete.obs")
## [1] 0.04229719
# 4.2% relation(minimal relation)

# is there a relation between hbA1c Levels and viral load in blood?
cor(LD3$hb_a1c,LD3$viral_load_cp_ml,use = "complete.obs")
## [1] -0.03421149
# -3.2% relation(no relatrion)

# is there a relation between Latent TB and viral load in blood?
cor(LD3$viral_load_cp_ml,LD3$lb_ti_qft_results,use = "complete.obs")
## [1] 0.08953833
#7.4% relation(little)

# is there a relation between sputum results and viral load in blood?
cor(LD3$viral_load_cp_ml,LD3$sputum_results ,use = "complete.obs")
## Warning in cor(LD3$viral_load_cp_ml, LD3$sputum_results, use = "complete.obs"):
## the standard deviation is zero
## [1] NA
#-0.8(absolutely no relation)

Results of our correlation analysis

Conclusion:Given the size of the data set and sample sizesthe folowing was observed;

Creating a model with blood sugar as our constant

This is an effort to determine a formula that will determine the prevelance of Diabetes among Hiv patients

test_mod_1 <- lm(random_blood_sugar~
                   demographic_data_interviewer_name+
                   demographic_data_participants_id+
                   demographic_data_participants_gender+
                   sputum_results+
                   lb_ti_qft_results+
                   hb_a1c+
                   e_ag_mg_d_l+
                   viral_load_cp_ml
              , data = LD3)
summary(test_mod_1)
## 
## Call:
## lm(formula = random_blood_sugar ~ demographic_data_interviewer_name + 
##     demographic_data_participants_id + demographic_data_participants_gender + 
##     sputum_results + lb_ti_qft_results + hb_a1c + e_ag_mg_d_l + 
##     viral_load_cp_ml, data = LD3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6982 -0.8116 -0.2198  0.7689 16.4260 
## 
## Coefficients: (1 not defined because of singularities)
##                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)                               4.196e+00  3.230e-01  12.991  < 2e-16
## demographic_data_interviewer_name         3.690e-04  1.377e-03   0.268    0.789
## demographic_data_participants_id          1.355e-05  6.028e-05   0.225    0.822
## demographic_data_participants_genderMale  7.828e-02  2.618e-01   0.299    0.765
## sputum_results                                   NA         NA      NA       NA
## lb_ti_qft_results                        -2.831e-01  2.485e-01  -1.139    0.256
## hb_a1c                                   -3.892e+02  6.721e+01  -5.791 1.97e-08
## e_ag_mg_d_l                               1.844e-01  2.948e-02   6.256 1.58e-09
## viral_load_cp_ml                          1.335e-05  1.398e-05   0.955    0.340
##                                             
## (Intercept)                              ***
## demographic_data_interviewer_name           
## demographic_data_participants_id            
## demographic_data_participants_genderMale    
## sputum_results                              
## lb_ti_qft_results                           
## hb_a1c                                   ***
## e_ag_mg_d_l                              ***
## viral_load_cp_ml                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.022 on 265 degrees of freedom
## Multiple R-squared:  0.2258, Adjusted R-squared:  0.2053 
## F-statistic: 11.04 on 7 and 265 DF,  p-value: 3.05e-12

ANOVA FOR THE FIRST MODEL

This is an effort to determine a formula that will determine the prevelance of Diabetes among Hiv patients

anova(test_mod_1)
## Analysis of Variance Table
## 
## Response: random_blood_sugar
##                                       Df  Sum Sq Mean Sq F value    Pr(>F)    
## demographic_data_interviewer_name      1    0.76   0.761  0.1862   0.66649    
## demographic_data_participants_id       1    0.04   0.044  0.0107   0.91777    
## demographic_data_participants_gender   1    2.94   2.944  0.7200   0.39690    
## lb_ti_qft_results                      1   17.92  17.921  4.3824   0.03726 *  
## hb_a1c                                 1  129.98 129.985 31.7864 4.402e-08 ***
## e_ag_mg_d_l                            1  160.65 160.654 39.2864 1.476e-09 ***
## viral_load_cp_ml                       1    3.73   3.729  0.9118   0.34050    
## Residuals                            265 1083.67   4.089                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The significant variables in this models were: * the intercept for random blood sugar * The Limuru Residence * Latent TB results * hbA1c results * e-ag results

Take aways from the first model

Model type= Multiple linear regression

  • The model Pvalue 0.7788>0.05 which is an indicator of non significance of the model
  • The model R squared was at 51%…we can translate this as the prevelance of this model can be described by this model correctly at a 51% rate
  • The r(r=squareroot(Multiple R)) of this model is at 7.35% this means that this model is 7% accurate
  • The significance of the variables is indicated by the stars on the model as well as the anova for this model

Conclusion

This model is not accurate enough to describe the prevalence of Diabetes in HIV infected patients

Creating a model with blood sugar as our constant

This is an effort to determine a formula that will determine the prevelance of TB among Hiv patients

Here I used a logistic model in place of a multiple regression model because latent tb results are boolean

test_mod_2 <- glm(lb_ti_qft_results~.,family = "binomial", data = LD3)
summary(test_mod_2)
## 
## Call:
## glm(formula = lb_ti_qft_results ~ ., family = "binomial", data = LD3)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.70632  -0.63112  -0.00008   0.33710   2.12853  
## 
## Coefficients: (1 not defined because of singularities)
##                                                                  Estimate
## (Intercept)                                                    -1.907e+01
## demographic_data_interviewer_name                               4.367e-04
## demographic_data_participants_id                                9.236e-05
## demographic_data_participants_residenceAthi River               1.959e+01
## demographic_data_participants_residenceBaba Dogo                3.436e-01
## demographic_data_participants_residenceBurburu                  3.692e-01
## demographic_data_participants_residenceBuruburu Phase 1         3.913e+01
## demographic_data_participants_residenceBusia                    3.916e+01
## demographic_data_participants_residenceCorner                   3.872e+01
## demographic_data_participants_residenceDagoŕetti               3.534e+01
## demographic_data_participants_residenceDagoretti                1.878e+01
## demographic_data_participants_residenceDagoretti Corner         1.983e+01
## demographic_data_participants_residenceDagoretti North          3.805e+01
## demographic_data_participants_residenceDandora                  1.930e+01
## demographic_data_participants_residenceDandora Phase 2         -9.503e-02
## demographic_data_participants_residenceDonholm                  6.283e-02
## demographic_data_participants_residenceEastleigh               -3.536e-01
## demographic_data_participants_residenceEastleigh Section 1      4.417e-02
## demographic_data_participants_residenceEmbakasi                 2.040e+01
## demographic_data_participants_residenceEmbakasi South          -6.558e-01
## demographic_data_participants_residenceEmbu                     3.902e+01
## demographic_data_participants_residenceGachie                   3.897e+01
## demographic_data_participants_residenceGatundu                  1.943e+01
## demographic_data_participants_residenceGithunguri               1.881e+01
## demographic_data_participants_residenceGithurai                 1.829e+01
## demographic_data_participants_residenceGithurai 44              3.975e+01
## demographic_data_participants_residenceGumba                    3.639e-02
## demographic_data_participants_residenceHighrise                -4.675e-02
## demographic_data_participants_residenceHoma Bay                -7.767e-01
## demographic_data_participants_residenceHuruma                   1.988e+01
## demographic_data_participants_residenceHuruma Kiamaiko         -7.821e-02
## demographic_data_participants_residenceImara                    3.914e+01
## demographic_data_participants_residenceJericho                  2.054e+01
## demographic_data_participants_residenceJogoo Road              -5.091e-02
## demographic_data_participants_residenceJoska                    3.930e+01
## demographic_data_participants_residenceJuja                     3.924e+01
## demographic_data_participants_residenceKaane                   -1.673e-01
## demographic_data_participants_residenceKabete                   3.889e+01
## demographic_data_participants_residenceKahawa                   1.959e+01
## demographic_data_participants_residenceKahawa Sukari            3.861e+01
## demographic_data_participants_residenceKahawa Wendani           2.527e-01
## demographic_data_participants_residenceKahawa West              1.942e+01
## demographic_data_participants_residenceKaloleni                 3.894e+01
## demographic_data_participants_residenceKamulu                   3.899e+01
## demographic_data_participants_residenceKangemi                  1.796e+01
## demographic_data_participants_residenceKangundo Road            3.927e+01
## demographic_data_participants_residenceKariobangi North         3.905e+01
## demographic_data_participants_residenceKariobangi South         1.595e-01
## demographic_data_participants_residenceKariobangi South Sivo   -8.184e-02
## demographic_data_participants_residenceKasarani                 2.023e+01
## demographic_data_participants_residenceKasarani Mwiki           3.884e+01
## demographic_data_participants_residenceKasarani Ruai            3.873e+01
## demographic_data_participants_residenceKasarani Santon          3.878e+01
## demographic_data_participants_residenceKatani                   3.928e+01
## demographic_data_participants_residenceKatwekera                3.959e+01
## demographic_data_participants_residenceKawañgware              3.916e+01
## demographic_data_participants_residenceKawangware               1.736e+01
## demographic_data_participants_residenceKayole                   1.907e+01
## demographic_data_participants_residenceKayole Junction         -3.001e-01
## demographic_data_participants_residenceKiambu                   1.900e+01
## demographic_data_participants_residenceKibera                   1.920e+01
## demographic_data_participants_residenceKibera Lindi             3.897e+01
## demographic_data_participants_residenceKibera Mashimoni         3.855e+01
## demographic_data_participants_residenceKikoko                   3.837e+01
## demographic_data_participants_residenceKikuyu                  -1.866e-01
## demographic_data_participants_residenceKikuyu Regen             3.935e+01
## demographic_data_participants_residenceKirigiti                -1.009e-01
## demographic_data_participants_residenceKiserian                 1.092e-01
## demographic_data_participants_residenceKitengela                2.027e+01
## demographic_data_participants_residenceKitui                    1.954e+01
## demographic_data_participants_residenceKomarock                -3.620e-01
## demographic_data_participants_residenceKwa Njenga              -1.742e-01
## demographic_data_participants_residenceLakisama                -9.981e-01
## demographic_data_participants_residenceLand Mawe                3.941e+01
## demographic_data_participants_residenceLang'ata                 1.947e+01
## demographic_data_participants_residenceLavington               -1.116e+00
## demographic_data_participants_residenceLimuru                   2.110e+01
## demographic_data_participants_residenceLoitoktok                1.112e+00
## demographic_data_participants_residenceLower Kabete             3.877e+01
## demographic_data_participants_residenceMachakos                 7.722e-02
## demographic_data_participants_residenceMakongeni                3.913e+01
## demographic_data_participants_residenceMakueni                  1.958e-02
## demographic_data_participants_residenceMaringo                 -3.758e-01
## demographic_data_participants_residenceMathare Hospital         3.891e+01
## demographic_data_participants_residenceMathare North           -3.414e-01
## demographic_data_participants_residenceMatuu                    1.856e+00
## demographic_data_participants_residenceMbotela                  6.621e-01
## demographic_data_participants_residenceMlango Kubwa Pangani     5.081e-01
## demographic_data_participants_residenceMlolongo                 3.920e+01
## demographic_data_participants_residenceMombasa                  1.970e+01
## demographic_data_participants_residenceMuchatha                -3.843e-02
## demographic_data_participants_residenceMulera                   3.870e+01
## demographic_data_participants_residenceMurang'a                 1.962e+01
## demographic_data_participants_residenceMuthaiga North           3.886e+01
## demographic_data_participants_residenceMwihoko                  1.927e+01
## demographic_data_participants_residenceMwiki                    2.011e+01
## demographic_data_participants_residenceMwingi West              3.924e+01
## demographic_data_participants_residenceNaivasha                 1.962e+01
## demographic_data_participants_residenceNaivasha town           -4.361e-02
## demographic_data_participants_residenceNakuru                   1.969e+01
## demographic_data_participants_residenceNamanga                  3.941e+01
## demographic_data_participants_residenceNg'ong                   1.984e+01
## demographic_data_participants_residenceNg'ong road             -1.291e-01
## demographic_data_participants_residenceNgara                    1.896e+01
## demographic_data_participants_residenceNiavasha                 1.888e-01
## demographic_data_participants_residenceNjiiru                   3.896e+01
## demographic_data_participants_residenceNyandarua               -1.474e-02
## demographic_data_participants_residenceNyeri                    3.928e+01
## demographic_data_participants_residenceOlympic Kibera          -1.388e-01
## demographic_data_participants_residenceOng'ata Rongai           3.894e+01
## demographic_data_participants_residenceOngata Rongai           -4.934e-01
## demographic_data_participants_residencePangani                  3.886e+01
## demographic_data_participants_residencePathenias               -1.888e-01
## demographic_data_participants_residencePipeline                -1.475e-01
## demographic_data_participants_residencePsyka                   -3.652e-01
## demographic_data_participants_residenceRiruta Satellite         2.559e-01
## demographic_data_participants_residenceRiver Bank               4.266e-01
## demographic_data_participants_residenceRongai                   1.810e+01
## demographic_data_participants_residenceRuai                     1.976e+01
## demographic_data_participants_residenceRuaka                    2.823e-01
## demographic_data_participants_residenceRuiru                    2.238e+01
## demographic_data_participants_residenceSafari Park              3.907e+01
## demographic_data_participants_residenceSatellite                1.851e+01
## demographic_data_participants_residenceSavannah                 3.928e+01
## demographic_data_participants_residenceSouth B                  1.883e+01
## demographic_data_participants_residenceSouth C                  3.923e+01
## demographic_data_participants_residenceSultan Hamud             1.833e+01
## demographic_data_participants_residenceSyka                     1.916e+01
## demographic_data_participants_residenceSyokimau                 1.924e+01
## demographic_data_participants_residenceThika                    1.927e+01
## demographic_data_participants_residenceThika Road               3.556e-03
## demographic_data_participants_residenceThindigua                1.967e+01
## demographic_data_participants_residenceThome                   -7.671e-02
## demographic_data_participants_residenceUhuru Estate             1.361e-02
## demographic_data_participants_residenceUmoja                    1.892e+01
## demographic_data_participants_residenceUmoja 1                  3.900e+01
## demographic_data_participants_residenceUMOJA 1 Q61             -4.892e-01
## demographic_data_participants_residenceUmoja II                -3.555e-02
## demographic_data_participants_residenceUtawala                  1.853e+01
## demographic_data_participants_residenceUthiru                   3.906e+01
## demographic_data_participants_residenceVihiga                   3.903e+01
## demographic_data_participants_residenceWaiyaki Way             -4.725e-01
## demographic_data_participants_residenceWangige                  3.909e+01
## demographic_data_participants_residenceWestlands Spring valley  3.877e+01
## demographic_data_participants_residenceWiathaka                 3.945e+01
## demographic_data_participants_residenceZambezi                  3.887e+01
## demographic_data_participants_residenceZimmerman               -1.836e-01
## demographic_data_participants_genderMale                        2.825e-01
## sputum_results                                                         NA
## random_blood_sugar                                             -1.874e-01
## hb_a1c                                                          1.246e+02
## e_ag_mg_d_l                                                    -5.865e-02
## viral_load_cp_ml                                                1.331e-04
##                                                                Std. Error
## (Intercept)                                                     1.075e+04
## demographic_data_interviewer_name                               2.379e-03
## demographic_data_participants_id                                9.139e-05
## demographic_data_participants_residenceAthi River               1.075e+04
## demographic_data_participants_residenceBaba Dogo                1.521e+04
## demographic_data_participants_residenceBurburu                  1.521e+04
## demographic_data_participants_residenceBuruburu Phase 1         1.521e+04
## demographic_data_participants_residenceBusia                    1.521e+04
## demographic_data_participants_residenceCorner                   1.521e+04
## demographic_data_participants_residenceDagoŕetti               1.521e+04
## demographic_data_participants_residenceDagoretti                1.075e+04
## demographic_data_participants_residenceDagoretti Corner         1.075e+04
## demographic_data_participants_residenceDagoretti North          1.521e+04
## demographic_data_participants_residenceDandora                  1.075e+04
## demographic_data_participants_residenceDandora Phase 2          1.521e+04
## demographic_data_participants_residenceDonholm                  1.521e+04
## demographic_data_participants_residenceEastleigh                1.521e+04
## demographic_data_participants_residenceEastleigh Section 1      1.521e+04
## demographic_data_participants_residenceEmbakasi                 1.075e+04
## demographic_data_participants_residenceEmbakasi South           1.521e+04
## demographic_data_participants_residenceEmbu                     1.316e+04
## demographic_data_participants_residenceGachie                   1.521e+04
## demographic_data_participants_residenceGatundu                  1.075e+04
## demographic_data_participants_residenceGithunguri               1.075e+04
## demographic_data_participants_residenceGithurai                 1.075e+04
## demographic_data_participants_residenceGithurai 44              1.521e+04
## demographic_data_participants_residenceGumba                    1.317e+04
## demographic_data_participants_residenceHighrise                 1.521e+04
## demographic_data_participants_residenceHoma Bay                 1.521e+04
## demographic_data_participants_residenceHuruma                   1.075e+04
## demographic_data_participants_residenceHuruma Kiamaiko          1.521e+04
## demographic_data_participants_residenceImara                    1.521e+04
## demographic_data_participants_residenceJericho                  1.075e+04
## demographic_data_participants_residenceJogoo Road               1.521e+04
## demographic_data_participants_residenceJoska                    1.521e+04
## demographic_data_participants_residenceJuja                     1.521e+04
## demographic_data_participants_residenceKaane                    1.521e+04
## demographic_data_participants_residenceKabete                   1.521e+04
## demographic_data_participants_residenceKahawa                   1.075e+04
## demographic_data_participants_residenceKahawa Sukari            1.521e+04
## demographic_data_participants_residenceKahawa Wendani           1.521e+04
## demographic_data_participants_residenceKahawa West              1.075e+04
## demographic_data_participants_residenceKaloleni                 1.317e+04
## demographic_data_participants_residenceKamulu                   1.521e+04
## demographic_data_participants_residenceKangemi                  1.075e+04
## demographic_data_participants_residenceKangundo Road            1.521e+04
## demographic_data_participants_residenceKariobangi North         1.521e+04
## demographic_data_participants_residenceKariobangi South         1.315e+04
## demographic_data_participants_residenceKariobangi South Sivo    1.521e+04
## demographic_data_participants_residenceKasarani                 1.075e+04
## demographic_data_participants_residenceKasarani Mwiki           1.521e+04
## demographic_data_participants_residenceKasarani Ruai            1.521e+04
## demographic_data_participants_residenceKasarani Santon          1.521e+04
## demographic_data_participants_residenceKatani                   1.521e+04
## demographic_data_participants_residenceKatwekera                1.521e+04
## demographic_data_participants_residenceKawañgware              1.521e+04
## demographic_data_participants_residenceKawangware               1.075e+04
## demographic_data_participants_residenceKayole                   1.075e+04
## demographic_data_participants_residenceKayole Junction          1.315e+04
## demographic_data_participants_residenceKiambu                   1.075e+04
## demographic_data_participants_residenceKibera                   1.075e+04
## demographic_data_participants_residenceKibera Lindi             1.521e+04
## demographic_data_participants_residenceKibera Mashimoni         1.521e+04
## demographic_data_participants_residenceKikoko                   1.521e+04
## demographic_data_participants_residenceKikuyu                   1.521e+04
## demographic_data_participants_residenceKikuyu Regen             1.521e+04
## demographic_data_participants_residenceKirigiti                 1.316e+04
## demographic_data_participants_residenceKiserian                 1.521e+04
## demographic_data_participants_residenceKitengela                1.075e+04
## demographic_data_participants_residenceKitui                    1.075e+04
## demographic_data_participants_residenceKomarock                 1.316e+04
## demographic_data_participants_residenceKwa Njenga               1.521e+04
## demographic_data_participants_residenceLakisama                 1.312e+04
## demographic_data_participants_residenceLand Mawe                1.521e+04
## demographic_data_participants_residenceLang'ata                 1.075e+04
## demographic_data_participants_residenceLavington                1.521e+04
## demographic_data_participants_residenceLimuru                   1.075e+04
## demographic_data_participants_residenceLoitoktok                1.521e+04
## demographic_data_participants_residenceLower Kabete             1.521e+04
## demographic_data_participants_residenceMachakos                 1.521e+04
## demographic_data_participants_residenceMakongeni                1.312e+04
## demographic_data_participants_residenceMakueni                  1.521e+04
## demographic_data_participants_residenceMaringo                  1.521e+04
## demographic_data_participants_residenceMathare Hospital         1.521e+04
## demographic_data_participants_residenceMathare North            1.315e+04
## demographic_data_participants_residenceMatuu                    1.521e+04
## demographic_data_participants_residenceMbotela                  1.521e+04
## demographic_data_participants_residenceMlango Kubwa Pangani     1.521e+04
## demographic_data_participants_residenceMlolongo                 1.315e+04
## demographic_data_participants_residenceMombasa                  1.075e+04
## demographic_data_participants_residenceMuchatha                 1.521e+04
## demographic_data_participants_residenceMulera                   1.521e+04
## demographic_data_participants_residenceMurang'a                 1.075e+04
## demographic_data_participants_residenceMuthaiga North           1.521e+04
## demographic_data_participants_residenceMwihoko                  1.075e+04
## demographic_data_participants_residenceMwiki                    1.075e+04
## demographic_data_participants_residenceMwingi West              1.521e+04
## demographic_data_participants_residenceNaivasha                 1.075e+04
## demographic_data_participants_residenceNaivasha town            1.521e+04
## demographic_data_participants_residenceNakuru                   1.075e+04
## demographic_data_participants_residenceNamanga                  1.521e+04
## demographic_data_participants_residenceNg'ong                   1.075e+04
## demographic_data_participants_residenceNg'ong road              1.521e+04
## demographic_data_participants_residenceNgara                    1.075e+04
## demographic_data_participants_residenceNiavasha                 1.521e+04
## demographic_data_participants_residenceNjiiru                   1.521e+04
## demographic_data_participants_residenceNyandarua                1.521e+04
## demographic_data_participants_residenceNyeri                    1.521e+04
## demographic_data_participants_residenceOlympic Kibera           1.521e+04
## demographic_data_participants_residenceOng'ata Rongai           1.317e+04
## demographic_data_participants_residenceOngata Rongai            1.521e+04
## demographic_data_participants_residencePangani                  1.521e+04
## demographic_data_participants_residencePathenias                1.521e+04
## demographic_data_participants_residencePipeline                 1.521e+04
## demographic_data_participants_residencePsyka                    1.521e+04
## demographic_data_participants_residenceRiruta Satellite         1.521e+04
## demographic_data_participants_residenceRiver Bank               1.521e+04
## demographic_data_participants_residenceRongai                   1.075e+04
## demographic_data_participants_residenceRuai                     1.075e+04
## demographic_data_participants_residenceRuaka                    1.521e+04
## demographic_data_participants_residenceRuiru                    1.075e+04
## demographic_data_participants_residenceSafari Park              1.521e+04
## demographic_data_participants_residenceSatellite                1.075e+04
## demographic_data_participants_residenceSavannah                 1.521e+04
## demographic_data_participants_residenceSouth B                  1.075e+04
## demographic_data_participants_residenceSouth C                  1.521e+04
## demographic_data_participants_residenceSultan Hamud             1.075e+04
## demographic_data_participants_residenceSyka                     1.075e+04
## demographic_data_participants_residenceSyokimau                 1.075e+04
## demographic_data_participants_residenceThika                    1.075e+04
## demographic_data_participants_residenceThika Road               1.521e+04
## demographic_data_participants_residenceThindigua                1.075e+04
## demographic_data_participants_residenceThome                    1.521e+04
## demographic_data_participants_residenceUhuru Estate             1.521e+04
## demographic_data_participants_residenceUmoja                    1.075e+04
## demographic_data_participants_residenceUmoja 1                  1.521e+04
## demographic_data_participants_residenceUMOJA 1 Q61              1.521e+04
## demographic_data_participants_residenceUmoja II                 1.521e+04
## demographic_data_participants_residenceUtawala                  1.075e+04
## demographic_data_participants_residenceUthiru                   1.521e+04
## demographic_data_participants_residenceVihiga                   1.521e+04
## demographic_data_participants_residenceWaiyaki Way              1.521e+04
## demographic_data_participants_residenceWangige                  1.521e+04
## demographic_data_participants_residenceWestlands Spring valley  1.521e+04
## demographic_data_participants_residenceWiathaka                 1.521e+04
## demographic_data_participants_residenceZambezi                  1.521e+04
## demographic_data_participants_residenceZimmerman                1.521e+04
## demographic_data_participants_genderMale                        4.375e-01
## sputum_results                                                         NA
## random_blood_sugar                                              1.036e-01
## hb_a1c                                                          1.765e+02
## e_ag_mg_d_l                                                     8.026e-02
## viral_load_cp_ml                                                1.126e-04
##                                                                z value Pr(>|z|)
## (Intercept)                                                     -0.002   0.9986
## demographic_data_interviewer_name                                0.184   0.8544
## demographic_data_participants_id                                 1.011   0.3122
## demographic_data_participants_residenceAthi River                0.002   0.9985
## demographic_data_participants_residenceBaba Dogo                 0.000   1.0000
## demographic_data_participants_residenceBurburu                   0.000   1.0000
## demographic_data_participants_residenceBuruburu Phase 1          0.003   0.9979
## demographic_data_participants_residenceBusia                     0.003   0.9979
## demographic_data_participants_residenceCorner                    0.003   0.9980
## demographic_data_participants_residenceDagoŕetti                0.002   0.9981
## demographic_data_participants_residenceDagoretti                 0.002   0.9986
## demographic_data_participants_residenceDagoretti Corner          0.002   0.9985
## demographic_data_participants_residenceDagoretti North           0.003   0.9980
## demographic_data_participants_residenceDandora                   0.002   0.9986
## demographic_data_participants_residenceDandora Phase 2           0.000   1.0000
## demographic_data_participants_residenceDonholm                   0.000   1.0000
## demographic_data_participants_residenceEastleigh                 0.000   1.0000
## demographic_data_participants_residenceEastleigh Section 1       0.000   1.0000
## demographic_data_participants_residenceEmbakasi                  0.002   0.9985
## demographic_data_participants_residenceEmbakasi South            0.000   1.0000
## demographic_data_participants_residenceEmbu                      0.003   0.9976
## demographic_data_participants_residenceGachie                    0.003   0.9980
## demographic_data_participants_residenceGatundu                   0.002   0.9986
## demographic_data_participants_residenceGithunguri                0.002   0.9986
## demographic_data_participants_residenceGithurai                  0.002   0.9986
## demographic_data_participants_residenceGithurai 44               0.003   0.9979
## demographic_data_participants_residenceGumba                     0.000   1.0000
## demographic_data_participants_residenceHighrise                  0.000   1.0000
## demographic_data_participants_residenceHoma Bay                  0.000   1.0000
## demographic_data_participants_residenceHuruma                    0.002   0.9985
## demographic_data_participants_residenceHuruma Kiamaiko           0.000   1.0000
## demographic_data_participants_residenceImara                     0.003   0.9979
## demographic_data_participants_residenceJericho                   0.002   0.9985
## demographic_data_participants_residenceJogoo Road                0.000   1.0000
## demographic_data_participants_residenceJoska                     0.003   0.9979
## demographic_data_participants_residenceJuja                      0.003   0.9979
## demographic_data_participants_residenceKaane                     0.000   1.0000
## demographic_data_participants_residenceKabete                    0.003   0.9980
## demographic_data_participants_residenceKahawa                    0.002   0.9985
## demographic_data_participants_residenceKahawa Sukari             0.003   0.9980
## demographic_data_participants_residenceKahawa Wendani            0.000   1.0000
## demographic_data_participants_residenceKahawa West               0.002   0.9986
## demographic_data_participants_residenceKaloleni                  0.003   0.9976
## demographic_data_participants_residenceKamulu                    0.003   0.9980
## demographic_data_participants_residenceKangemi                   0.002   0.9987
## demographic_data_participants_residenceKangundo Road             0.003   0.9979
## demographic_data_participants_residenceKariobangi North          0.003   0.9980
## demographic_data_participants_residenceKariobangi South          0.000   1.0000
## demographic_data_participants_residenceKariobangi South Sivo     0.000   1.0000
## demographic_data_participants_residenceKasarani                  0.002   0.9985
## demographic_data_participants_residenceKasarani Mwiki            0.003   0.9980
## demographic_data_participants_residenceKasarani Ruai             0.003   0.9980
## demographic_data_participants_residenceKasarani Santon           0.003   0.9980
## demographic_data_participants_residenceKatani                    0.003   0.9979
## demographic_data_participants_residenceKatwekera                 0.003   0.9979
## demographic_data_participants_residenceKawañgware               0.003   0.9979
## demographic_data_participants_residenceKawangware                0.002   0.9987
## demographic_data_participants_residenceKayole                    0.002   0.9986
## demographic_data_participants_residenceKayole Junction           0.000   1.0000
## demographic_data_participants_residenceKiambu                    0.002   0.9986
## demographic_data_participants_residenceKibera                    0.002   0.9986
## demographic_data_participants_residenceKibera Lindi              0.003   0.9980
## demographic_data_participants_residenceKibera Mashimoni          0.003   0.9980
## demographic_data_participants_residenceKikoko                    0.003   0.9980
## demographic_data_participants_residenceKikuyu                    0.000   1.0000
## demographic_data_participants_residenceKikuyu Regen              0.003   0.9979
## demographic_data_participants_residenceKirigiti                  0.000   1.0000
## demographic_data_participants_residenceKiserian                  0.000   1.0000
## demographic_data_participants_residenceKitengela                 0.002   0.9985
## demographic_data_participants_residenceKitui                     0.002   0.9986
## demographic_data_participants_residenceKomarock                  0.000   1.0000
## demographic_data_participants_residenceKwa Njenga                0.000   1.0000
## demographic_data_participants_residenceLakisama                  0.000   0.9999
## demographic_data_participants_residenceLand Mawe                 0.003   0.9979
## demographic_data_participants_residenceLang'ata                  0.002   0.9986
## demographic_data_participants_residenceLavington                 0.000   0.9999
## demographic_data_participants_residenceLimuru                    0.002   0.9984
## demographic_data_participants_residenceLoitoktok                 0.000   0.9999
## demographic_data_participants_residenceLower Kabete              0.003   0.9980
## demographic_data_participants_residenceMachakos                  0.000   1.0000
## demographic_data_participants_residenceMakongeni                 0.003   0.9976
## demographic_data_participants_residenceMakueni                   0.000   1.0000
## demographic_data_participants_residenceMaringo                   0.000   1.0000
## demographic_data_participants_residenceMathare Hospital          0.003   0.9980
## demographic_data_participants_residenceMathare North             0.000   1.0000
## demographic_data_participants_residenceMatuu                     0.000   0.9999
## demographic_data_participants_residenceMbotela                   0.000   1.0000
## demographic_data_participants_residenceMlango Kubwa Pangani      0.000   1.0000
## demographic_data_participants_residenceMlolongo                  0.003   0.9976
## demographic_data_participants_residenceMombasa                   0.002   0.9985
## demographic_data_participants_residenceMuchatha                  0.000   1.0000
## demographic_data_participants_residenceMulera                    0.003   0.9980
## demographic_data_participants_residenceMurang'a                  0.002   0.9985
## demographic_data_participants_residenceMuthaiga North            0.003   0.9980
## demographic_data_participants_residenceMwihoko                   0.002   0.9986
## demographic_data_participants_residenceMwiki                     0.002   0.9985
## demographic_data_participants_residenceMwingi West               0.003   0.9979
## demographic_data_participants_residenceNaivasha                  0.002   0.9985
## demographic_data_participants_residenceNaivasha town             0.000   1.0000
## demographic_data_participants_residenceNakuru                    0.002   0.9985
## demographic_data_participants_residenceNamanga                   0.003   0.9979
## demographic_data_participants_residenceNg'ong                    0.002   0.9985
## demographic_data_participants_residenceNg'ong road               0.000   1.0000
## demographic_data_participants_residenceNgara                     0.002   0.9986
## demographic_data_participants_residenceNiavasha                  0.000   1.0000
## demographic_data_participants_residenceNjiiru                    0.003   0.9980
## demographic_data_participants_residenceNyandarua                 0.000   1.0000
## demographic_data_participants_residenceNyeri                     0.003   0.9979
## demographic_data_participants_residenceOlympic Kibera            0.000   1.0000
## demographic_data_participants_residenceOng'ata Rongai            0.003   0.9976
## demographic_data_participants_residenceOngata Rongai             0.000   1.0000
## demographic_data_participants_residencePangani                   0.003   0.9980
## demographic_data_participants_residencePathenias                 0.000   1.0000
## demographic_data_participants_residencePipeline                  0.000   1.0000
## demographic_data_participants_residencePsyka                     0.000   1.0000
## demographic_data_participants_residenceRiruta Satellite          0.000   1.0000
## demographic_data_participants_residenceRiver Bank                0.000   1.0000
## demographic_data_participants_residenceRongai                    0.002   0.9987
## demographic_data_participants_residenceRuai                      0.002   0.9985
## demographic_data_participants_residenceRuaka                     0.000   1.0000
## demographic_data_participants_residenceRuiru                     0.002   0.9983
## demographic_data_participants_residenceSafari Park               0.003   0.9980
## demographic_data_participants_residenceSatellite                 0.002   0.9986
## demographic_data_participants_residenceSavannah                  0.003   0.9979
## demographic_data_participants_residenceSouth B                   0.002   0.9986
## demographic_data_participants_residenceSouth C                   0.003   0.9979
## demographic_data_participants_residenceSultan Hamud              0.002   0.9986
## demographic_data_participants_residenceSyka                      0.002   0.9986
## demographic_data_participants_residenceSyokimau                  0.002   0.9986
## demographic_data_participants_residenceThika                     0.002   0.9986
## demographic_data_participants_residenceThika Road                0.000   1.0000
## demographic_data_participants_residenceThindigua                 0.002   0.9985
## demographic_data_participants_residenceThome                     0.000   1.0000
## demographic_data_participants_residenceUhuru Estate              0.000   1.0000
## demographic_data_participants_residenceUmoja                     0.002   0.9986
## demographic_data_participants_residenceUmoja 1                   0.003   0.9980
## demographic_data_participants_residenceUMOJA 1 Q61               0.000   1.0000
## demographic_data_participants_residenceUmoja II                  0.000   1.0000
## demographic_data_participants_residenceUtawala                   0.002   0.9986
## demographic_data_participants_residenceUthiru                    0.003   0.9980
## demographic_data_participants_residenceVihiga                    0.003   0.9980
## demographic_data_participants_residenceWaiyaki Way               0.000   1.0000
## demographic_data_participants_residenceWangige                   0.003   0.9979
## demographic_data_participants_residenceWestlands Spring valley   0.003   0.9980
## demographic_data_participants_residenceWiathaka                  0.003   0.9979
## demographic_data_participants_residenceZambezi                   0.003   0.9980
## demographic_data_participants_residenceZimmerman                 0.000   1.0000
## demographic_data_participants_genderMale                         0.646   0.5184
## sputum_results                                                      NA       NA
## random_blood_sugar                                              -1.808   0.0706
## hb_a1c                                                           0.706   0.4803
## e_ag_mg_d_l                                                     -0.731   0.4649
## viral_load_cp_ml                                                 1.182   0.2374
##                                                                 
## (Intercept)                                                     
## demographic_data_interviewer_name                               
## demographic_data_participants_id                                
## demographic_data_participants_residenceAthi River               
## demographic_data_participants_residenceBaba Dogo                
## demographic_data_participants_residenceBurburu                  
## demographic_data_participants_residenceBuruburu Phase 1         
## demographic_data_participants_residenceBusia                    
## demographic_data_participants_residenceCorner                   
## demographic_data_participants_residenceDagoŕetti               
## demographic_data_participants_residenceDagoretti                
## demographic_data_participants_residenceDagoretti Corner         
## demographic_data_participants_residenceDagoretti North          
## demographic_data_participants_residenceDandora                  
## demographic_data_participants_residenceDandora Phase 2          
## demographic_data_participants_residenceDonholm                  
## demographic_data_participants_residenceEastleigh                
## demographic_data_participants_residenceEastleigh Section 1      
## demographic_data_participants_residenceEmbakasi                 
## demographic_data_participants_residenceEmbakasi South           
## demographic_data_participants_residenceEmbu                     
## demographic_data_participants_residenceGachie                   
## demographic_data_participants_residenceGatundu                  
## demographic_data_participants_residenceGithunguri               
## demographic_data_participants_residenceGithurai                 
## demographic_data_participants_residenceGithurai 44              
## demographic_data_participants_residenceGumba                    
## demographic_data_participants_residenceHighrise                 
## demographic_data_participants_residenceHoma Bay                 
## demographic_data_participants_residenceHuruma                   
## demographic_data_participants_residenceHuruma Kiamaiko          
## demographic_data_participants_residenceImara                    
## demographic_data_participants_residenceJericho                  
## demographic_data_participants_residenceJogoo Road               
## demographic_data_participants_residenceJoska                    
## demographic_data_participants_residenceJuja                     
## demographic_data_participants_residenceKaane                    
## demographic_data_participants_residenceKabete                   
## demographic_data_participants_residenceKahawa                   
## demographic_data_participants_residenceKahawa Sukari            
## demographic_data_participants_residenceKahawa Wendani           
## demographic_data_participants_residenceKahawa West              
## demographic_data_participants_residenceKaloleni                 
## demographic_data_participants_residenceKamulu                   
## demographic_data_participants_residenceKangemi                  
## demographic_data_participants_residenceKangundo Road            
## demographic_data_participants_residenceKariobangi North         
## demographic_data_participants_residenceKariobangi South         
## demographic_data_participants_residenceKariobangi South Sivo    
## demographic_data_participants_residenceKasarani                 
## demographic_data_participants_residenceKasarani Mwiki           
## demographic_data_participants_residenceKasarani Ruai            
## demographic_data_participants_residenceKasarani Santon          
## demographic_data_participants_residenceKatani                   
## demographic_data_participants_residenceKatwekera                
## demographic_data_participants_residenceKawañgware              
## demographic_data_participants_residenceKawangware               
## demographic_data_participants_residenceKayole                   
## demographic_data_participants_residenceKayole Junction          
## demographic_data_participants_residenceKiambu                   
## demographic_data_participants_residenceKibera                   
## demographic_data_participants_residenceKibera Lindi             
## demographic_data_participants_residenceKibera Mashimoni         
## demographic_data_participants_residenceKikoko                   
## demographic_data_participants_residenceKikuyu                   
## demographic_data_participants_residenceKikuyu Regen             
## demographic_data_participants_residenceKirigiti                 
## demographic_data_participants_residenceKiserian                 
## demographic_data_participants_residenceKitengela                
## demographic_data_participants_residenceKitui                    
## demographic_data_participants_residenceKomarock                 
## demographic_data_participants_residenceKwa Njenga               
## demographic_data_participants_residenceLakisama                 
## demographic_data_participants_residenceLand Mawe                
## demographic_data_participants_residenceLang'ata                 
## demographic_data_participants_residenceLavington                
## demographic_data_participants_residenceLimuru                   
## demographic_data_participants_residenceLoitoktok                
## demographic_data_participants_residenceLower Kabete             
## demographic_data_participants_residenceMachakos                 
## demographic_data_participants_residenceMakongeni                
## demographic_data_participants_residenceMakueni                  
## demographic_data_participants_residenceMaringo                  
## demographic_data_participants_residenceMathare Hospital         
## demographic_data_participants_residenceMathare North            
## demographic_data_participants_residenceMatuu                    
## demographic_data_participants_residenceMbotela                  
## demographic_data_participants_residenceMlango Kubwa Pangani     
## demographic_data_participants_residenceMlolongo                 
## demographic_data_participants_residenceMombasa                  
## demographic_data_participants_residenceMuchatha                 
## demographic_data_participants_residenceMulera                   
## demographic_data_participants_residenceMurang'a                 
## demographic_data_participants_residenceMuthaiga North           
## demographic_data_participants_residenceMwihoko                  
## demographic_data_participants_residenceMwiki                    
## demographic_data_participants_residenceMwingi West              
## demographic_data_participants_residenceNaivasha                 
## demographic_data_participants_residenceNaivasha town            
## demographic_data_participants_residenceNakuru                   
## demographic_data_participants_residenceNamanga                  
## demographic_data_participants_residenceNg'ong                   
## demographic_data_participants_residenceNg'ong road              
## demographic_data_participants_residenceNgara                    
## demographic_data_participants_residenceNiavasha                 
## demographic_data_participants_residenceNjiiru                   
## demographic_data_participants_residenceNyandarua                
## demographic_data_participants_residenceNyeri                    
## demographic_data_participants_residenceOlympic Kibera           
## demographic_data_participants_residenceOng'ata Rongai           
## demographic_data_participants_residenceOngata Rongai            
## demographic_data_participants_residencePangani                  
## demographic_data_participants_residencePathenias                
## demographic_data_participants_residencePipeline                 
## demographic_data_participants_residencePsyka                    
## demographic_data_participants_residenceRiruta Satellite         
## demographic_data_participants_residenceRiver Bank               
## demographic_data_participants_residenceRongai                   
## demographic_data_participants_residenceRuai                     
## demographic_data_participants_residenceRuaka                    
## demographic_data_participants_residenceRuiru                    
## demographic_data_participants_residenceSafari Park              
## demographic_data_participants_residenceSatellite                
## demographic_data_participants_residenceSavannah                 
## demographic_data_participants_residenceSouth B                  
## demographic_data_participants_residenceSouth C                  
## demographic_data_participants_residenceSultan Hamud             
## demographic_data_participants_residenceSyka                     
## demographic_data_participants_residenceSyokimau                 
## demographic_data_participants_residenceThika                    
## demographic_data_participants_residenceThika Road               
## demographic_data_participants_residenceThindigua                
## demographic_data_participants_residenceThome                    
## demographic_data_participants_residenceUhuru Estate             
## demographic_data_participants_residenceUmoja                    
## demographic_data_participants_residenceUmoja 1                  
## demographic_data_participants_residenceUMOJA 1 Q61              
## demographic_data_participants_residenceUmoja II                 
## demographic_data_participants_residenceUtawala                  
## demographic_data_participants_residenceUthiru                   
## demographic_data_participants_residenceVihiga                   
## demographic_data_participants_residenceWaiyaki Way              
## demographic_data_participants_residenceWangige                  
## demographic_data_participants_residenceWestlands Spring valley  
## demographic_data_participants_residenceWiathaka                 
## demographic_data_participants_residenceZambezi                  
## demographic_data_participants_residenceZimmerman                
## demographic_data_participants_genderMale                        
## sputum_results                                                  
## random_blood_sugar                                             .
## hb_a1c                                                          
## e_ag_mg_d_l                                                     
## viral_load_cp_ml                                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 377.63  on 272  degrees of freedom
## Residual deviance: 184.38  on 121  degrees of freedom
## AIC: 488.38
## 
## Number of Fisher Scoring iterations: 18

Take aways from the 2nd model

  • The only significant variable was random blood sugar with a P value of 0.0326 ### Conclusion
  • Given the all the variables we can determine the prevalence of TB using the formula below ** (-1.892e+01)-(2.133e-01)(random blood sugar levels) **
  • None of the variables were significant in this model therefore a logistic model is not sufficient enough to carry out an analysis

PLOTS (Share phase)

FOR THE FIRST MODEL(DIABETES)

Notes: there is a negative linear relation

library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
avPlots(test_mod_1,id=FALSE, pt.wts=TRUE)
## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear
## Warning in lsfit(res[, 1], res[, 2], wt = wt): 'X' matrix was collinear
## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

Interpretation

From the following scatterplots above we can see that the model has;

Bar chart for Viral ditribution vs Latent Tb

Notes: 1-Latent Tb Present 2-Latent Tb absent

library(patchwork)
library(ggplot2)
ggplot(LD3, aes(x=lb_ti_qft_results, y =viral_load_cp_ml))+
  geom_bar(stat='identity',fill = "black",)+
  labs(title = "viral load distribution tb",x= "Latent Tb results",y= "Viral Load(cp/ml)")

Takeaways

  • We can see that when Latent Tb is Present we get a high count/level of Viral load.This is a clear indication that the two are related and that the presence of Latent TB is influenced greatly by the viral load levels in blood

VIRAL LOAD CORRELATION TO LATENT TB

Here our main focus is to look at how the variables relate to latent tb

Last plot is our main focus

test_mod_4 <- lm(lb_ti_qft_results~
                   demographic_data_interviewer_name+
                   demographic_data_participants_id+
                   
                   demographic_data_participants_gender+
                   sputum_results+
                   random_blood_sugar+
                   hb_a1c+
                   e_ag_mg_d_l+
                   viral_load_cp_ml
                 , data = LD3)

avPlots(test_mod_4,id=FALSE, pt.wts=TRUE)
## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear
## Warning in lsfit(res[, 1], res[, 2], wt = wt): 'X' matrix was collinear
## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

## Warning in lsfit(mod.mat[, -var], cbind(mod.mat[, var], response), wt = wt, :
## 'X' matrix was collinear

Takeaways

Viral Load distribution by Gender

ggplot(LD3, aes(x=viral_load_cp_ml, y =lb_ti_qft_results,color=demographic_data_participants_gender))+
  geom_point()+geom_smooth(method = lm)+
  labs(title = "Distribution of latent TB in HIV patients",
       x="Viral Load Distribution(cp/ml)",
       y="Latent TB results")
## `geom_smooth()` using formula 'y ~ x'

Take aways

  • There is a strong positive correlation between viral load and Ltent TB as suspected
  • There seems to be a higher correlation women than in men despite men having a higher distribution of viral load. This is indicated by the nature of the trendline. what could be the cause of this?

Viral Load distribution by Gender

library(ggplot2)
ggplot(LD3, aes(x=demographic_data_participants_gender, y =viral_load_cp_ml))+
  geom_bar(stat='identity')+
  geom_col()+
  theme(axis.title.y=element_blank())+
  labs(title = "Prevelance of Viral Load by Gender")+
  annotate("text",x=1,y=200000,label="", color="green",fontface="bold")

Takeaways

  • Males have a higher viral load distribution in as compared to females
ggplot(LD3, aes(x=viral_load_cp_ml, y =random_blood_sugar, color=demographic_data_participants_gender))+
  geom_point()+geom_smooth(method = lm)+
  labs(title = "Distribution of Diabetes in HIV patients",
       subtitle = "Random Blood Sugar",
       x="Viral Load Distribution(cp/ml)",
       y="random blood sugar")
## `geom_smooth()` using formula 'y ~ x'

Take aways

  • There seems to be a positive correlation between viral load and random blood sugar in males but surprisingly there is a negative correlation for the same in females. This could be attributed to the fact that most men miss medications due to social factors
  • This scatter plot is confirmed by the gender bar graph above

CONCLUSION

From the model 1 scatter plots we can see that the model has; * a neither positive nor negative correlation with participants ID and Interviewer name since these values were ordered randomly (from the 306 participants)We can see that there is also no correlation between random blood sugar and Gender, latent tb results and sputum results We can see a strong negative correlation between random blood sugar and hbA1c * Finally We can see a strong positive correlation between random blood sugar and eAg(this makes sense since they are measured together), same applies to viral load The first model, With a Pvalue of 6.442e-10 shows that keeping the random blood sugar levels as our y value we can see that hbA1C levels as well eAg levels have an effect on the prevalence of diabetes among HIV patients Despite our Models having p values that are greater than bar the first model, We can say that thanks to the bar charts and scatter plots generated that there definitely exists a correlation between latent tb and the prevalence of HIV