library('nycflights13')
###Answer
library(nycflights13)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
nycflights13::flights
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month == 1, day == 1)
## # A tibble: 842 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 832 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month == 11 | month == 12)
## # A tibble: 55,403 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 11 1 5 2359 6 352 345
## 2 2013 11 1 35 2250 105 123 2356
## 3 2013 11 1 455 500 -5 641 651
## 4 2013 11 1 539 545 -6 856 827
## 5 2013 11 1 542 545 -3 831 855
## 6 2013 11 1 549 600 -11 912 923
## 7 2013 11 1 550 600 -10 705 659
## 8 2013 11 1 554 600 -6 659 701
## 9 2013 11 1 554 600 -6 826 827
## 10 2013 11 1 554 600 -6 749 751
## # … with 55,393 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
arrange(flights, dep_time)
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 13 1 2249 72 108 2357
## 2 2013 1 31 1 2100 181 124 2225
## 3 2013 11 13 1 2359 2 442 440
## 4 2013 12 16 1 2359 2 447 437
## 5 2013 12 20 1 2359 2 430 440
## 6 2013 12 26 1 2359 2 437 440
## 7 2013 12 30 1 2359 2 441 437
## 8 2013 2 11 1 2100 181 111 2225
## 9 2013 2 24 1 2245 76 121 2354
## 10 2013 3 8 1 2355 6 431 440
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
tail(arrange(flights,desc(is.na(flights$dep_delay)), dep_delay))
## # A tibble: 6 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 4 10 1100 1900 960 1342 2211
## 2 2013 7 22 845 1600 1005 1044 1815
## 3 2013 9 20 1139 1845 1014 1457 2210
## 4 2013 1 10 1121 1635 1126 1239 1810
## 5 2013 6 15 1432 1935 1137 1607 2120
## 6 2013 1 9 641 900 1301 1242 1530
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
df <- tibble(x = c(5, 2, NA),
y = c(2, NA, 2))
rowSums(df)
## [1] 7 NA NA
arrange(df, desc(is.na(x)))
## # A tibble: 3 × 2
## x y
## <dbl> <dbl>
## 1 NA 2
## 2 5 2
## 3 2 NA
arrange(df, -(is.na(x)))
## # A tibble: 3 × 2
## x y
## <dbl> <dbl>
## 1 NA 2
## 2 5 2
## 3 2 NA
2)Sort flights to find the most delayed flights. Find the flights that left earliest.
###Answer
arrange(flights, dep_delay)
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 12 7 2040 2123 -43 40 2352
## 2 2013 2 3 2022 2055 -33 2240 2338
## 3 2013 11 10 1408 1440 -32 1549 1559
## 4 2013 1 11 1900 1930 -30 2233 2243
## 5 2013 1 29 1703 1730 -27 1947 1957
## 6 2013 8 9 729 755 -26 1002 955
## 7 2013 10 23 1907 1932 -25 2143 2143
## 8 2013 3 30 2030 2055 -25 2213 2250
## 9 2013 3 2 1431 1455 -24 1601 1631
## 10 2013 5 5 934 958 -24 1225 1309
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
arrange(flights, desc(dep_delay) )
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 9 641 900 1301 1242 1530
## 2 2013 6 15 1432 1935 1137 1607 2120
## 3 2013 1 10 1121 1635 1126 1239 1810
## 4 2013 9 20 1139 1845 1014 1457 2210
## 5 2013 7 22 845 1600 1005 1044 1815
## 6 2013 4 10 1100 1900 960 1342 2211
## 7 2013 3 17 2321 810 911 135 1020
## 8 2013 6 27 959 1900 899 1236 2226
## 9 2013 7 22 2257 759 898 121 1026
## 10 2013 12 5 756 1700 896 1058 2020
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
arrange(flights, air_time )
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 16 1355 1315 40 1442 1411
## 2 2013 4 13 537 527 10 622 628
## 3 2013 12 6 922 851 31 1021 954
## 4 2013 2 3 2153 2129 24 2247 2224
## 5 2013 2 5 1303 1315 -12 1342 1411
## 6 2013 2 12 2123 2130 -7 2211 2225
## 7 2013 3 2 1450 1500 -10 1547 1608
## 8 2013 3 8 2026 1935 51 2131 2056
## 9 2013 3 18 1456 1329 87 1533 1426
## 10 2013 3 19 2226 2145 41 2305 2246
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
###Answer
flights %>%
arrange(air_time) %>%
select(carrier, flight, air_time)
## # A tibble: 336,776 × 3
## carrier flight air_time
## <chr> <int> <dbl>
## 1 EV 4368 20
## 2 EV 4631 20
## 3 EV 4276 21
## 4 EV 4619 21
## 5 EV 4368 21
## 6 EV 4619 21
## 7 US 2132 21
## 8 9E 3650 21
## 9 EV 4118 21
## 10 EV 4276 21
## # … with 336,766 more rows
###Answer
vars <- c("dep_time", "dep_delay", "arr_time", "arr_delay")
select(flights, dep_time, dep_delay, arr_time, arr_delay)
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, ends_with("time"), ends_with("delay"))
## # A tibble: 336,776 × 7
## dep_time sched_dep_time arr_time sched_arr_time air_time dep_delay arr_delay
## <int> <int> <int> <int> <dbl> <dbl> <dbl>
## 1 517 515 830 819 227 2 11
## 2 533 529 850 830 227 4 20
## 3 542 540 923 850 160 2 33
## 4 544 545 1004 1022 183 -1 -18
## 5 554 600 812 837 116 -6 -25
## 6 554 558 740 728 150 -4 12
## 7 555 600 913 854 158 -5 19
## 8 557 600 709 723 53 -3 -14
## 9 557 600 838 846 140 -3 -8
## 10 558 600 753 745 138 -2 8
## # … with 336,766 more rows
select(flights, one_of(vars))
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, .dots = vars)
## Note: Using an external vector in selections is ambiguous.
## ℹ Use `all_of(vars)` instead of `vars` to silence this message.
## ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.
## # A tibble: 336,776 × 4
## .dots1 .dots2 .dots3 .dots4
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, "dep_time", "dep_delay", "arr_time", "arr_delay")
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, matches("dep"), matches("arr"), -matches("sched"), -carrier)
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, contains("dep"), contains("arr"), -contains("sched"), -carrier)
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, matches("^dep|^arr"))
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, matches("time$|delay$"), -contains("sched"), -contains("air"))
## # A tibble: 336,776 × 4
## dep_time dep_delay arr_time arr_delay
## <int> <dbl> <int> <dbl>
## 1 517 2 830 11
## 2 533 4 850 20
## 3 542 2 923 33
## 4 544 -1 1004 -18
## 5 554 -6 812 -25
## 6 554 -4 740 12
## 7 555 -5 913 19
## 8 557 -3 709 -14
## 9 557 -3 838 -8
## 10 558 -2 753 8
## # … with 336,766 more rows
select(flights, matches("^dep|arr_delay|time$"))
## # A tibble: 336,776 × 7
## dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay air_time
## <int> <int> <dbl> <int> <int> <dbl> <dbl>
## 1 517 515 2 830 819 11 227
## 2 533 529 4 850 830 20 227
## 3 542 540 2 923 850 33 160
## 4 544 545 -1 1004 1022 -18 183
## 5 554 600 -6 812 837 -25 116
## 6 554 558 -4 740 728 12 150
## 7 555 600 -5 913 854 19 158
## 8 557 600 -3 709 723 -14 53
## 9 557 600 -3 838 846 -8 140
## 10 558 600 -2 753 745 8 138
## # … with 336,766 more rows
###Answer
select(flights, dep_time, dep_time)
## # A tibble: 336,776 × 1
## dep_time
## <int>
## 1 517
## 2 533
## 3 542
## 4 544
## 5 554
## 6 554
## 7 555
## 8 557
## 9 557
## 10 558
## # … with 336,766 more rows
3)What does the any_of() function do? Why might it be helpful in conjunction with this vector? ###Answer
vars <- c("year", "month", "day", "dep_delay", "arr_delay")
select(flights, one_of(vars))
## # A tibble: 336,776 × 5
## year month day dep_delay arr_delay
## <int> <int> <int> <dbl> <dbl>
## 1 2013 1 1 2 11
## 2 2013 1 1 4 20
## 3 2013 1 1 2 33
## 4 2013 1 1 -1 -18
## 5 2013 1 1 -6 -25
## 6 2013 1 1 -4 12
## 7 2013 1 1 -5 19
## 8 2013 1 1 -3 -14
## 9 2013 1 1 -3 -8
## 10 2013 1 1 -2 8
## # … with 336,766 more rows
###Answer
select(flights, contains("TIME"))
## # A tibble: 336,776 × 6
## dep_time sched_dep_time arr_time sched_arr_time air_time time_hour
## <int> <int> <int> <int> <dbl> <dttm>
## 1 517 515 830 819 227 2013-01-01 05:00:00
## 2 533 529 850 830 227 2013-01-01 05:00:00
## 3 542 540 923 850 160 2013-01-01 05:00:00
## 4 544 545 1004 1022 183 2013-01-01 05:00:00
## 5 554 600 812 837 116 2013-01-01 06:00:00
## 6 554 558 740 728 150 2013-01-01 05:00:00
## 7 555 600 913 854 158 2013-01-01 06:00:00
## 8 557 600 709 723 53 2013-01-01 06:00:00
## 9 557 600 838 846 140 2013-01-01 06:00:00
## 10 558 600 753 745 138 2013-01-01 06:00:00
## # … with 336,766 more rows
###Answer
transmute(flights,deptime = dep_time/60, schedeptime=sched_dep_time/60)
## # A tibble: 336,776 × 2
## deptime schedeptime
## <dbl> <dbl>
## 1 8.62 8.58
## 2 8.88 8.82
## 3 9.03 9
## 4 9.07 9.08
## 5 9.23 10
## 6 9.23 9.3
## 7 9.25 10
## 8 9.28 10
## 9 9.28 10
## 10 9.3 10
## # … with 336,766 more rows
###Answer
flights %>%
mutate(dep_time = (dep_time %/% 100) * 60 + (dep_time %% 100),
sched_dep_time = (sched_dep_time %/% 100) * 60 + (sched_dep_time %% 100),
arr_time = (arr_time %/% 100) * 60 + (arr_time %% 100),
sched_arr_time = (sched_arr_time %/% 100) * 60 + (sched_arr_time %% 100)) %>%
transmute((arr_time - dep_time) %% (60*24) - air_time)
## # A tibble: 336,776 × 1
## `(arr_time - dep_time)%%(60 * 24) - air_time`
## <dbl>
## 1 -34
## 2 -30
## 3 61
## 4 77
## 5 22
## 6 -44
## 7 40
## 8 19
## 9 21
## 10 -23
## # … with 336,766 more rows
hours2mins <- function(x) {
x %/% 100 * 60 + x %% 100
}
select(flights, contains("dep")) %>%
mutate(dep_time_two = hours2mins(dep_time) - hours2mins(sched_dep_time))
## # A tibble: 336,776 × 4
## dep_time sched_dep_time dep_delay dep_time_two
## <int> <int> <dbl> <dbl>
## 1 517 515 2 2
## 2 533 529 4 4
## 3 542 540 2 2
## 4 544 545 -1 -1
## 5 554 600 -6 -6
## 6 554 558 -4 -4
## 7 555 600 -5 -5
## 8 557 600 -3 -3
## 9 557 600 -3 -3
## 10 558 600 -2 -2
## # … with 336,766 more rows
# these two numbers don’t match because we aren’t accounting for flights
# where the departure time is the next day from the scheduled departure time.
select(flights, contains("dep")) %>%
mutate(dep_time_two = hours2mins(dep_time) - hours2mins(sched_dep_time)) %>%
filter(dep_delay != dep_time_two) %>%
mutate(dep_time_two = hours2mins(dep_time) - hours2mins(sched_dep_time - 2400))
## # A tibble: 1,207 × 4
## dep_time sched_dep_time dep_delay dep_time_two
## <int> <int> <dbl> <dbl>
## 1 848 1835 853 853
## 2 42 2359 43 43
## 3 126 2250 156 156
## 4 32 2359 33 33
## 5 50 2145 185 185
## 6 235 2359 156 156
## 7 25 2359 26 26
## 8 106 2245 141 141
## 9 14 2359 15 15
## 10 37 2230 127 127
## # … with 1,197 more rows
4)Find the 10 most delayed flights using a ranking function. How do you want to handle ties? Carefully read the documentation for min_rank().
###Answer
flights %>%
filter(min_rank(-(dep_delay)) %in% 1:10)
## # A tibble: 10 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 9 641 900 1301 1242 1530
## 2 2013 1 10 1121 1635 1126 1239 1810
## 3 2013 12 5 756 1700 896 1058 2020
## 4 2013 3 17 2321 810 911 135 1020
## 5 2013 4 10 1100 1900 960 1342 2211
## 6 2013 6 15 1432 1935 1137 1607 2120
## 7 2013 6 27 959 1900 899 1236 2226
## 8 2013 7 22 845 1600 1005 1044 1815
## 9 2013 7 22 2257 759 898 121 1026
## 10 2013 9 20 1139 1845 1014 1457 2210
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
flights %>%
top_n(10, dep_delay)
## # A tibble: 10 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 9 641 900 1301 1242 1530
## 2 2013 1 10 1121 1635 1126 1239 1810
## 3 2013 12 5 756 1700 896 1058 2020
## 4 2013 3 17 2321 810 911 135 1020
## 5 2013 4 10 1100 1900 960 1342 2211
## 6 2013 6 15 1432 1935 1137 1607 2120
## 7 2013 6 27 959 1900 899 1236 2226
## 8 2013 7 22 845 1600 1005 1044 1815
## 9 2013 7 22 2257 759 898 121 1026
## 10 2013 9 20 1139 1845 1014 1457 2210
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
5)What does 1:3 + 1:10 return? Why?
6)What trigonometric functions does R provide?
###Answer
summarise(flights, delay=mean(dep_delay,na.rm = TRUE))
## # A tibble: 1 × 1
## delay
## <dbl>
## 1 12.6
by_date<- group_by(flights,year,month,day)
summarise(by_date,delay=mean(dep_delay, na.rm=TRUE))
## `summarise()` has grouped output by 'year', 'month'. You can override using the
## `.groups` argument.
## # A tibble: 365 × 4
## # Groups: year, month [12]
## year month day delay
## <int> <int> <int> <dbl>
## 1 2013 1 1 11.5
## 2 2013 1 2 13.9
## 3 2013 1 3 11.0
## 4 2013 1 4 8.95
## 5 2013 1 5 5.73
## 6 2013 1 6 7.15
## 7 2013 1 7 5.42
## 8 2013 1 8 2.55
## 9 2013 1 9 2.28
## 10 2013 1 10 2.84
## # … with 355 more rows
by_dest<- group_by(flights, dest)
delay<- summarise(by_dest,count=n(),dist=mean(distance,na.rm=TRUE),delay=mean(arr_delay,na.rm = TRUE))
delay<- filter(delay,count>20,dest!="HNL")
ggplot(data = delay,mapping = aes(x=dist,y=delay))+
geom_point(aes(size=count),alpha=1/3)+
geom_smooth(se=FALSE)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
#the pipe, %>%:
delay <- flights %>%
group_by(dest)%>%
summarise(
count=n(),
dist = mean(distance,na.rm=TRUE),
delay= mean(arr_delay, na.rm = TRUE)
)%>%
filter(count > 20, dest != "HNL")
#missing values
not_cancelled <- flights %>%
filter(!is.na(dep_delay), !is.na(arr_delay))
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarise(
delay = mean(arr_delay)
)
ggplot(data = delays, mapping = aes(x = delay)) +
geom_freqpoly(binwidth = 10)
not_cancelled<- flights %>%
filter(!is.na(arr_delay))
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarise(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)
ggplot(data = delays, mapping = aes(x = n, y = delay)) +
geom_point(alpha = 1/10)
###Answer
delay_char <-
flights %>%
group_by(flight) %>%
summarise(n = n(),
fifteen_early = mean(arr_delay == -15, na.rm = TRUE),
fifteen_late = mean(arr_delay == 15, na.rm = TRUE),
ten_always = mean(arr_delay == 10, na.rm = TRUE),
thirty_early = mean(arr_delay == -30, na.rm = TRUE),
thirty_late = mean(arr_delay == 30, na.rm = TRUE),
percentage_on_time = mean(arr_delay == 0, na.rm = TRUE),
twohours = mean(arr_delay > 120, na.rm = TRUE)) %>%
map_if(is_double, round, 2) %>%
as_tibble()
A flight is 15 minutes early 50% of the time, and 15 minutes late 50% of the time.
delay_char %>%
filter(fifteen_early == 0.5, fifteen_late == 0.5)
## # A tibble: 0 × 9
## # … with 9 variables: flight <int>, n <int>, fifteen_early <dbl>,
## # fifteen_late <dbl>, ten_always <dbl>, thirty_early <dbl>,
## # thirty_late <dbl>, percentage_on_time <dbl>, twohours <dbl>
A flight is always 10 minutes late
delay_char %>%
filter(ten_always == 1)
## # A tibble: 5 × 9
## flight n fifteen_early fifteen_late ten_always thirty_early thirty_late
## <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2254 1 0 0 1 0 0
## 2 3656 1 0 0 1 0 0
## 3 3785 2 0 0 1 0 0
## 4 3880 1 0 0 1 0 0
## 5 5854 1 0 0 1 0 0
## # … with 2 more variables: percentage_on_time <dbl>, twohours <dbl>
A flight is 30 minutes early 50% of the time, and 30 minutes late 50% of the time.
delay_char %>%
filter(thirty_early == 0.5 & thirty_late == 0.5)
## # A tibble: 0 × 9
## # … with 9 variables: flight <int>, n <int>, fifteen_early <dbl>,
## # fifteen_late <dbl>, ten_always <dbl>, thirty_early <dbl>,
## # thirty_late <dbl>, percentage_on_time <dbl>, twohours <dbl>
99% of the time a flight is on time. 1% of the time it’s 2 hours late.
delay_char %>%
filter(percentage_on_time == 0.99 & twohours == 0.01)
## # A tibble: 0 × 9
## # … with 9 variables: flight <int>, n <int>, fifteen_early <dbl>,
## # fifteen_late <dbl>, ten_always <dbl>, thirty_early <dbl>,
## # thirty_late <dbl>, percentage_on_time <dbl>, twohours <dbl>
Which is more important: arrival delay or departure delay?
not_cancelled <-
flights %>%
filter(!is.na(dep_delay), !is.na(arr_delay))
not_cancelled %>%
count(dest)
## # A tibble: 104 × 2
## dest n
## <chr> <int>
## 1 ABQ 254
## 2 ACK 264
## 3 ALB 418
## 4 ANC 8
## 5 ATL 16837
## 6 AUS 2411
## 7 AVL 261
## 8 BDL 412
## 9 BGR 358
## 10 BHM 269
## # … with 94 more rows
# and
not_cancelled %>%
count(tailnum, wt = distance)
## # A tibble: 4,037 × 2
## tailnum n
## <chr> <dbl>
## 1 D942DN 3418
## 2 N0EGMQ 239143
## 3 N10156 109664
## 4 N102UW 25722
## 5 N103US 24619
## 6 N104UW 24616
## 7 N10575 139903
## 8 N105UW 23618
## 9 N107US 21677
## 10 N108UW 32070
## # … with 4,027 more rows
# (without using count()).
not_cancelled %>%
group_by(dest) %>%
summarise(n = n())
## # A tibble: 104 × 2
## dest n
## <chr> <int>
## 1 ABQ 254
## 2 ACK 264
## 3 ALB 418
## 4 ANC 8
## 5 ATL 16837
## 6 AUS 2411
## 7 AVL 261
## 8 BDL 412
## 9 BGR 358
## 10 BHM 269
## # … with 94 more rows
not_cancelled %>%
group_by(tailnum) %>%
tally(wt = distance)
## # A tibble: 4,037 × 2
## tailnum n
## <chr> <dbl>
## 1 D942DN 3418
## 2 N0EGMQ 239143
## 3 N10156 109664
## 4 N102UW 25722
## 5 N103US 24619
## 6 N104UW 24616
## 7 N10575 139903
## 8 N105UW 23618
## 9 N107US 21677
## 10 N108UW 32070
## # … with 4,027 more rows
# or
not_cancelled %>%
group_by(tailnum) %>%
summarize(n = sum(distance))
## # A tibble: 4,037 × 2
## tailnum n
## <chr> <dbl>
## 1 D942DN 3418
## 2 N0EGMQ 239143
## 3 N10156 109664
## 4 N102UW 25722
## 5 N103US 24619
## 6 N104UW 24616
## 7 N10575 139903
## 8 N105UW 23618
## 9 N107US 21677
## 10 N108UW 32070
## # … with 4,027 more rows
Because if a flight didn’t leave then it was cancelled. If the condition is.na(dep_delay) is met, then the flight was cancelled.
4)Look at the number of cancelled flights per day. Is there a pattern? Is the proportion of cancelled flights related to the average delay?
###Answer
flights %>%
group_by(day) %>%
summarise(cancelled = mean(is.na(dep_delay)),
mean_dep = mean(dep_delay, na.rm = T),
mean_arr = mean(arr_delay, na.rm = T)) %>%
ggplot(aes(y = cancelled)) +
geom_point(aes(x = mean_dep), colour = "red") +
geom_point(aes(x = mean_arr), colour = "blue") +
labs(x = "Avg delay per day", y = "Cancelled flights p day")
5)Which carrier has the worst delays? Challenge: can you disentangle the effects of bad airports vs. bad carriers? Why/why not? (Hint: think about flights %>% group_by(carrier, dest) %>% summarise(n()))
flights %>%
summarise(n_car = n_distinct(carrier),
n_air = n_distinct(dest),
n_or = n_distinct(origin))
## # A tibble: 1 × 3
## n_car n_air n_or
## <int> <int> <int>
## 1 16 105 3
flights %>%
group_by(carrier) %>%
mutate(avg_carrier = mean(dep_delay, na.rm = T)) %>%
group_by(carrier, origin) %>%
mutate(origin_mean = mean(dep_delay, na.rm = T),
deviations = origin_mean - avg_carrier) %>%
summarise(deviations = mean(deviations), mean = mean(avg_carrier)) %>%
ggplot(aes(origin, deviations)) + geom_col() + facet_wrap(~ carrier)
## `summarise()` has grouped output by 'carrier'. You can override using the
## `.groups` argument.
Tearing out the effect is not straight forward but we can make some
informed guesses. For example, whenever there are substantial
deviations, they seem to be higher in EWR airport rather than in other
airports. On the other hand, there are some airlines that look
particular bad like 9E and MQ. And the same pattern is not found on the
vast majority of other airlines, which would suggest it’s an airport
issues rather than an airline issue.
flights %>%
group_by(carrier, dest) %>%
summarise(mean_departure = mean(dep_delay, na.rm = T),
mean_arrival = mean(arr_delay, na.rm = T))
## `summarise()` has grouped output by 'carrier'. You can override using the
## `.groups` argument.
## # A tibble: 314 × 4
## # Groups: carrier [16]
## carrier dest mean_departure mean_arrival
## <chr> <chr> <dbl> <dbl>
## 1 9E ATL 0.965 0.857
## 2 9E AUS 19 -3.5
## 3 9E AVL -2.6 -12.1
## 4 9E BGR 34 NaN
## 5 9E BNA 19.1 9.29
## 6 9E BOS 14.8 5.66
## 7 9E BTV -4.5 -2.5
## 8 9E BUF 15.5 6.71
## 9 9E BWI 17.5 8.73
## 10 9E CAE -3.67 6
## # … with 304 more rows
For each plane, count the number of flights before the first delay of greater than 1 hour.
flights %>%
mutate(dep_date = time_hour) %>%
group_by(tailnum) %>%
arrange(dep_date) %>%
mutate(cumulative = !cumany(arr_delay > 60)) %>%
filter(cumulative == T) %>%
tally(sort = TRUE)
## # A tibble: 3,744 × 2
## tailnum n
## <chr> <int>
## 1 N705TW 97
## 2 N765US 97
## 3 N12125 94
## 4 N320AA 94
## 5 N13110 91
## 6 N3763D 82
## 7 N58101 82
## 8 N17122 81
## 9 N961UW 80
## 10 N950UW 79
## # … with 3,734 more rows
or
flights %>%
group_by(tailnum) %>%
arrange(time_hour) %>%
mutate(cum = arr_delay > 60,
cum_any = cumsum(cum)) %>%
filter(cum_any < 1) %>%
tally(sort = TRUE)
## # A tibble: 3,744 × 2
## tailnum n
## <chr> <int>
## 1 N705TW 97
## 2 N765US 97
## 3 N12125 94
## 4 N320AA 94
## 5 N13110 91
## 6 N3763D 82
## 7 N58101 82
## 8 N17122 81
## 9 N961UW 80
## 10 N950UW 79
## # … with 3,734 more rows
6)What does the sort argument to count() do. When might you use it?
###Answer
flights %>%
count(flight, sort = T)
## # A tibble: 3,844 × 2
## flight n
## <int> <int>
## 1 15 968
## 2 27 898
## 3 181 882
## 4 301 871
## 5 161 786
## 6 695 782
## 7 1109 716
## 8 745 711
## 9 359 709
## 10 1 701
## # … with 3,834 more rows
1)Refer back to the lists of useful mutate and filtering functions. Describe how each operation changes when you combine it with grouping.
2)Which plane (tailnum) has the worst on-time record?
###Answer
flights %>%
filter(!is.na(arr_delay)) %>%
group_by(tailnum) %>%
summarise(prop_time = sum(arr_delay <= 30)/n(),
mean_arr = mean(arr_delay, na.rm = TRUE),
fl = n()) %>%
arrange(desc(prop_time))
## # A tibble: 4,037 × 4
## tailnum prop_time mean_arr fl
## <chr> <dbl> <dbl> <int>
## 1 N103US 1 -6.93 46
## 2 N1200K 1 -9.38 21
## 3 N121DE 1 15 2
## 4 N137DL 1 -5 1
## 5 N143DA 1 24 1
## 6 N14628 1 -6 1
## 7 N14629 1 -16.2 4
## 8 N1607B 1 -16 3
## 9 N1608 1 -11.3 3
## 10 N1610D 1 -14.5 2
## # … with 4,027 more rows
All these flights are always late.
3)What time of day should you fly if you want to avoid delays as much as possible?
flights %>%
group_by(hour) %>%
filter(!is.na(dep_delay)) %>%
summarise( delay = mean( dep_delay > 0 , na.rm = T)) %>%
ggplot(aes(hour, delay, fill = delay)) + geom_col()
4)For each destination, compute the total minutes of delay. For each flight, compute the proportion of the total delay for its destination.
flights %>%
group_by(dest) %>%
filter(!is.na(dep_delay)) %>%
summarise(tot_mins = sum(dep_delay[dep_delay > 0]))
## # A tibble: 104 × 2
## dest tot_mins
## <chr> <dbl>
## 1 ABQ 4076
## 2 ACK 2603
## 3 ALB 10934
## 4 ANC 105
## 5 ATL 254414
## 6 AUS 36623
## 7 AVL 3092
## 8 BDL 8471
## 9 BGR 8170
## 10 BHM 8817
## # … with 94 more rows
flights %>%
filter(!is.na(dep_delay)) %>%
group_by(tailnum, dest) %>%
summarise(m = mean(dep_delay > 0), n = n()) %>%
arrange(desc(m))
## `summarise()` has grouped output by 'tailnum'. You can override using the
## `.groups` argument.
## # A tibble: 44,218 × 4
## # Groups: tailnum [4,037]
## tailnum dest m n
## <chr> <chr> <dbl> <int>
## 1 D942DN MCO 1 2
## 2 N10156 BDL 1 1
## 3 N10156 CLE 1 1
## 4 N10156 DCA 1 2
## 5 N10156 GSO 1 1
## 6 N10156 GSP 1 1
## 7 N10156 IAD 1 1
## 8 N10156 IND 1 2
## 9 N10156 MHT 1 1
## 10 N10156 MSN 1 1
## # … with 44,208 more rows
5)Delays are typically temporally correlated: even once the problem that caused the initial delay has been resolved, later flights are delayed to allow earlier flights to leave. Using lag(), explore how the delay of a flight is related to the delay of the immediately preceding flight.
flights %>%
mutate(new_sched_dep_time = lubridate::make_datetime(year, month, day, hour, minute)) %>%
group_by(origin) %>%
arrange(new_sched_dep_time) %>%
mutate(prev_flight_dep_delay = lag(dep_delay)) %>%
ggplot(aes(x=prev_flight_dep_delay, y= dep_delay)) + geom_point()
## Warning: Removed 14383 rows containing missing values (geom_point).
6)Look at each destination. Can you find flights that are suspiciously fast? (i.e. flights that represent a potential data entry error). Compute the air time of a flight relative to the shortest flight to that destination. Which flights were most delayed in the air?
flights %>%
group_by(dest) %>%
arrange(air_time) %>%
slice(1:5) %>%
select(tailnum, sched_dep_time, sched_arr_time, air_time) %>%
arrange(air_time)
## Adding missing grouping variables: `dest`
## # A tibble: 517 × 5
## # Groups: dest [105]
## dest tailnum sched_dep_time sched_arr_time air_time
## <chr> <chr> <int> <int> <dbl>
## 1 BDL N16911 1315 1411 20
## 2 BDL N12167 527 628 20
## 3 BDL N27200 851 954 21
## 4 BDL N13955 1315 1411 21
## 5 BDL N12160 1329 1426 21
## 6 BOS N947UW 1500 1608 21
## 7 PHL N13913 2129 2224 21
## 8 PHL N12921 2130 2225 21
## 9 PHL N8501F 1935 2056 21
## 10 PHL N22909 2129 2224 22
## # … with 507 more rows
#(2)
flights %>%
group_by(dest) %>%
mutate(shortest = air_time - min(air_time, na.rm = T)) %>%
top_n(1, air_time) %>%
arrange(-air_time) %>%
select(tailnum, sched_dep_time, sched_arr_time, shortest)
## Warning in min(air_time, na.rm = T): no non-missing arguments to min; returning
## Inf
## Adding missing grouping variables: `dest`
## # A tibble: 112 × 5
## # Groups: dest [104]
## dest tailnum sched_dep_time sched_arr_time shortest
## <chr> <chr> <int> <int> <dbl>
## 1 HNL N77066 1335 1836 133
## 2 SFO N703TW 1730 2110 195
## 3 LAX N178DN 1815 2146 165
## 4 ANC N572UA 1615 1953 46
## 5 SAN N794JB 1620 1934 134
## 6 SNA N16709 1819 2137 131
## 7 BUR N624JB 1730 2046 110
## 8 LAS N852UA 1729 2013 143
## 9 SJC N632JB 1830 2205 91
## 10 SEA N17245 1727 2040 119
## # … with 102 more rows
7)Find all destinations that are flown by at least two carriers. Use that information to rank the carriers.
flights %>%
group_by(dest) %>%
filter(n_distinct(carrier) > 2) %>%
group_by(carrier) %>%
summarise(n = n_distinct(dest)) %>%
arrange(-n)
## # A tibble: 15 × 2
## carrier n
## <chr> <int>
## 1 DL 37
## 2 EV 36
## 3 UA 36
## 4 9E 35
## 5 B6 30
## 6 AA 17
## 7 MQ 17
## 8 WN 9
## 9 OO 5
## 10 US 5
## 11 VX 3
## 12 YV 3
## 13 FL 2
## 14 AS 1
## 15 F9 1