1. Use the summary function to gain an overview of the data set. Then display the mean and median for at least two attributes.
# import file, set header = FALSE to get row name header
penguins <- read.csv (file = 'C:\\Users\\Home\\penguins.csv', header = TRUE, sep = ",")  

head (penguins)   #get a glimpse of the data
##   species    island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## 1  Adelie Torgersen           39.1          18.7               181        3750
## 2  Adelie Torgersen           39.5          17.4               186        3800
## 3  Adelie Torgersen           40.3          18.0               195        3250
## 4  Adelie Torgersen             NA            NA                NA          NA
## 5  Adelie Torgersen           36.7          19.3               193        3450
## 6  Adelie Torgersen           39.3          20.6               190        3650
##      sex year
## 1   male 2007
## 2 female 2007
## 3 female 2007
## 4   <NA> 2007
## 5 female 2007
## 6   male 2007
sapply(penguins, class)  # data type of columns
##           species            island    bill_length_mm     bill_depth_mm 
##       "character"       "character"         "numeric"         "numeric" 
## flipper_length_mm       body_mass_g               sex              year 
##         "integer"         "integer"       "character"         "integer"
summary (penguins)  
##    species             island          bill_length_mm  bill_depth_mm  
##  Length:344         Length:344         Min.   :32.10   Min.   :13.10  
##  Class :character   Class :character   1st Qu.:39.23   1st Qu.:15.60  
##  Mode  :character   Mode  :character   Median :44.45   Median :17.30  
##                                        Mean   :43.92   Mean   :17.15  
##                                        3rd Qu.:48.50   3rd Qu.:18.70  
##                                        Max.   :59.60   Max.   :21.50  
##                                        NA's   :2       NA's   :2      
##  flipper_length_mm  body_mass_g       sex                 year     
##  Min.   :172.0     Min.   :2700   Length:344         Min.   :2007  
##  1st Qu.:190.0     1st Qu.:3550   Class :character   1st Qu.:2007  
##  Median :197.0     Median :4050   Mode  :character   Median :2008  
##  Mean   :200.9     Mean   :4202                      Mean   :2008  
##  3rd Qu.:213.0     3rd Qu.:4750                      3rd Qu.:2009  
##  Max.   :231.0     Max.   :6300                      Max.   :2009  
##  NA's   :2         NA's   :2
all_penguins_mean <- mean (penguins$body_mass_g, na.rm = TRUE)  #mean for body mass in grams

all_penguins_median <- median (penguins$bill_length_mm, na.rm = TRUE)  #median for bill length in mm
  1. Create a new data frame with a subset of the columns and rows. Make sure to name it
# Get Female penguins only for 2008, and save dataframe
girl_penguins <-subset(penguins, sex == 'female' & year == '2008')

head (girl_penguins)   #get a glimpse of the data
##    species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
## 51  Adelie Biscoe           39.6          17.7               186        3500
## 53  Adelie Biscoe           35.0          17.9               190        3450
## 55  Adelie Biscoe           34.5          18.1               187        2900
## 57  Adelie Biscoe           39.0          17.5               186        3550
## 59  Adelie Biscoe           36.5          16.6               181        2850
## 61  Adelie Biscoe           35.7          16.9               185        3150
##       sex year
## 51 female 2008
## 53 female 2008
## 55 female 2008
## 57 female 2008
## 59 female 2008
## 61 female 2008
summary(girl_penguins)
##    species             island          bill_length_mm  bill_depth_mm  
##  Length:56          Length:56          Min.   :33.10   Min.   :13.30  
##  Class :character   Class :character   1st Qu.:36.48   1st Qu.:14.20  
##  Mode  :character   Mode  :character   Median :42.65   Median :16.60  
##                                        Mean   :41.49   Mean   :16.13  
##                                        3rd Qu.:45.73   3rd Qu.:17.50  
##                                        Max.   :50.50   Max.   :19.00  
##  flipper_length_mm  body_mass_g       sex                 year     
##  Min.   :178.0     Min.   :2700   Length:56          Min.   :2008  
##  1st Qu.:187.0     1st Qu.:3400   Class :character   1st Qu.:2008  
##  Median :195.0     Median :3700   Mode  :character   Median :2008  
##  Mean   :198.8     Mean   :3888                      Mean   :2008  
##  3rd Qu.:210.0     3rd Qu.:4412                      3rd Qu.:2008  
##  Max.   :220.0     Max.   :5200                      Max.   :2008
  1. Create new column names for the new data frame.
#ensure use of rename () function in plyer due to "Error in `chr_as_locations()`:"
girl_penguinsnew <- plyr::rename(girl_penguins, c(
       "bill_length_mm" = "Beak_length_mm",
       "bill_depth_mm" = "Beak_depth_mm",
       "flipper_length_mm" = "Flipper_length_mm",
       "body_mass_g" = "Body_Mass_grams"))
            
print (girl_penguinsnew)
##       species    island Beak_length_mm Beak_depth_mm Flipper_length_mm
## 51     Adelie    Biscoe           39.6          17.7               186
## 53     Adelie    Biscoe           35.0          17.9               190
## 55     Adelie    Biscoe           34.5          18.1               187
## 57     Adelie    Biscoe           39.0          17.5               186
## 59     Adelie    Biscoe           36.5          16.6               181
## 61     Adelie    Biscoe           35.7          16.9               185
## 63     Adelie    Biscoe           37.6          17.0               185
## 65     Adelie    Biscoe           36.4          17.1               184
## 67     Adelie    Biscoe           35.5          16.2               195
## 69     Adelie Torgersen           35.9          16.6               190
## 71     Adelie Torgersen           33.5          19.0               190
## 73     Adelie Torgersen           39.6          17.2               196
## 75     Adelie Torgersen           35.5          17.5               190
## 77     Adelie Torgersen           40.9          16.8               191
## 79     Adelie Torgersen           36.2          16.1               187
## 81     Adelie Torgersen           34.6          17.2               189
## 83     Adelie Torgersen           36.7          18.8               187
## 85     Adelie     Dream           37.3          17.8               191
## 88     Adelie     Dream           36.9          18.6               189
## 90     Adelie     Dream           38.9          18.8               190
## 91     Adelie     Dream           35.7          18.0               202
## 93     Adelie     Dream           34.0          17.1               185
## 95     Adelie     Dream           36.2          17.3               187
## 97     Adelie     Dream           38.1          18.6               190
## 99     Adelie     Dream           33.1          16.1               178
## 187    Gentoo    Biscoe           49.1          14.8               220
## 189    Gentoo    Biscoe           42.6          13.7               213
## 191    Gentoo    Biscoe           44.0          13.6               208
## 193    Gentoo    Biscoe           42.7          13.7               208
## 195    Gentoo    Biscoe           45.3          13.7               210
## 198    Gentoo    Biscoe           43.6          13.9               217
## 199    Gentoo    Biscoe           45.5          13.9               210
## 201    Gentoo    Biscoe           44.9          13.3               213
## 203    Gentoo    Biscoe           46.6          14.2               210
## 205    Gentoo    Biscoe           45.1          14.4               210
## 207    Gentoo    Biscoe           46.5          14.4               217
## 209    Gentoo    Biscoe           43.8          13.9               208
## 211    Gentoo    Biscoe           43.2          14.5               208
## 213    Gentoo    Biscoe           45.3          13.8               208
## 215    Gentoo    Biscoe           45.7          13.9               214
## 217    Gentoo    Biscoe           45.8          14.2               219
## 221    Gentoo    Biscoe           43.5          14.2               220
## 223    Gentoo    Biscoe           47.7          15.0               216
## 226    Gentoo    Biscoe           46.5          14.8               217
## 227    Gentoo    Biscoe           46.4          15.0               216
## 229    Gentoo    Biscoe           47.5          14.2               209
## 231    Gentoo    Biscoe           45.2          13.8               215
## 303 Chinstrap     Dream           50.5          18.4               200
## 305 Chinstrap     Dream           46.4          17.8               191
## 307 Chinstrap     Dream           40.9          16.6               187
## 309 Chinstrap     Dream           42.5          16.7               187
## 312 Chinstrap     Dream           47.5          16.8               199
## 313 Chinstrap     Dream           47.6          18.3               195
## 315 Chinstrap     Dream           46.9          16.6               192
## 318 Chinstrap     Dream           46.2          17.5               187
## 320 Chinstrap     Dream           45.5          17.0               196
##     Body_Mass_grams    sex year
## 51             3500 female 2008
## 53             3450 female 2008
## 55             2900 female 2008
## 57             3550 female 2008
## 59             2850 female 2008
## 61             3150 female 2008
## 63             3600 female 2008
## 65             2850 female 2008
## 67             3350 female 2008
## 69             3050 female 2008
## 71             3600 female 2008
## 73             3550 female 2008
## 75             3700 female 2008
## 77             3700 female 2008
## 79             3550 female 2008
## 81             3200 female 2008
## 83             3800 female 2008
## 85             3350 female 2008
## 88             3500 female 2008
## 90             3600 female 2008
## 91             3550 female 2008
## 93             3400 female 2008
## 95             3300 female 2008
## 97             3700 female 2008
## 99             2900 female 2008
## 187            5150 female 2008
## 189            4950 female 2008
## 191            4350 female 2008
## 193            3950 female 2008
## 195            4300 female 2008
## 198            4900 female 2008
## 199            4200 female 2008
## 201            5100 female 2008
## 203            4850 female 2008
## 205            4400 female 2008
## 207            4900 female 2008
## 209            4300 female 2008
## 211            4450 female 2008
## 213            4200 female 2008
## 215            4400 female 2008
## 217            4700 female 2008
## 221            4700 female 2008
## 223            4750 female 2008
## 226            5200 female 2008
## 227            4700 female 2008
## 229            4600 female 2008
## 231            4750 female 2008
## 303            3400 female 2008
## 305            3700 female 2008
## 307            3200 female 2008
## 309            3350 female 2008
## 312            3900 female 2008
## 313            3850 female 2008
## 315            2700 female 2008
## 318            3650 female 2008
## 320            3500 female 2008
  1. Use the summary function to create an overview of your new data frame. Print the mean and the median for the same two attributes. Please compare
summary(girl_penguinsnew)    
##    species             island          Beak_length_mm  Beak_depth_mm  
##  Length:56          Length:56          Min.   :33.10   Min.   :13.30  
##  Class :character   Class :character   1st Qu.:36.48   1st Qu.:14.20  
##  Mode  :character   Mode  :character   Median :42.65   Median :16.60  
##                                        Mean   :41.49   Mean   :16.13  
##                                        3rd Qu.:45.73   3rd Qu.:17.50  
##                                        Max.   :50.50   Max.   :19.00  
##  Flipper_length_mm Body_Mass_grams     sex                 year     
##  Min.   :178.0     Min.   :2700    Length:56          Min.   :2008  
##  1st Qu.:187.0     1st Qu.:3400    Class :character   1st Qu.:2008  
##  Median :195.0     Median :3700    Mode  :character   Median :2008  
##  Mean   :198.8     Mean   :3888                       Mean   :2008  
##  3rd Qu.:210.0     3rd Qu.:4412                       3rd Qu.:2008  
##  Max.   :220.0     Max.   :5200                       Max.   :2008
girl_penguinsnew_mean <- mean (girl_penguinsnew$Body_Mass_grams, na.rm = TRUE)

sprintf(paste("The mean of all Penguins body mass in grams is ", all_penguins_mean))
## [1] "The mean of all Penguins body mass in grams is  4201.75438596491"
sprintf(paste("The mean of Girl Penguins body mass for 2008 in grams is ", girl_penguinsnew_mean))
## [1] "The mean of Girl Penguins body mass for 2008 in grams is  3887.5"
girl_penguins_median <- median (girl_penguinsnew$Beak_length_mm, na.rm = TRUE)
sprintf(paste("The median of all Penguins' bill length in mm is ", all_penguins_median))
## [1] "The median of all Penguins' bill length in mm is  44.45"
sprintf(paste("The median of all Girl Penguins' Beak length in mm is ", girl_penguins_median))
## [1] "The median of all Girl Penguins' Beak length in mm is  42.65"
  1. For at least 3 values in a column, please rename so that every value in that column is renamed.
# Change Biscoe island to Phillip
girl_penguinsnew$island [girl_penguinsnew$island == "Biscoe"] <- "Phillip"

# Change Dream island to Galapagos
girl_penguinsnew$island [girl_penguinsnew$island == "Dream"] <- "Galapagos"

#Change Torgersen islant to Falkland
girl_penguinsnew$island [girl_penguinsnew$island == "Torgersen"] <- "Falkland"

girl_penguinsnew1 <- girl_penguinsnew

print (girl_penguinsnew1)
##       species    island Beak_length_mm Beak_depth_mm Flipper_length_mm
## 51     Adelie   Phillip           39.6          17.7               186
## 53     Adelie   Phillip           35.0          17.9               190
## 55     Adelie   Phillip           34.5          18.1               187
## 57     Adelie   Phillip           39.0          17.5               186
## 59     Adelie   Phillip           36.5          16.6               181
## 61     Adelie   Phillip           35.7          16.9               185
## 63     Adelie   Phillip           37.6          17.0               185
## 65     Adelie   Phillip           36.4          17.1               184
## 67     Adelie   Phillip           35.5          16.2               195
## 69     Adelie  Falkland           35.9          16.6               190
## 71     Adelie  Falkland           33.5          19.0               190
## 73     Adelie  Falkland           39.6          17.2               196
## 75     Adelie  Falkland           35.5          17.5               190
## 77     Adelie  Falkland           40.9          16.8               191
## 79     Adelie  Falkland           36.2          16.1               187
## 81     Adelie  Falkland           34.6          17.2               189
## 83     Adelie  Falkland           36.7          18.8               187
## 85     Adelie Galapagos           37.3          17.8               191
## 88     Adelie Galapagos           36.9          18.6               189
## 90     Adelie Galapagos           38.9          18.8               190
## 91     Adelie Galapagos           35.7          18.0               202
## 93     Adelie Galapagos           34.0          17.1               185
## 95     Adelie Galapagos           36.2          17.3               187
## 97     Adelie Galapagos           38.1          18.6               190
## 99     Adelie Galapagos           33.1          16.1               178
## 187    Gentoo   Phillip           49.1          14.8               220
## 189    Gentoo   Phillip           42.6          13.7               213
## 191    Gentoo   Phillip           44.0          13.6               208
## 193    Gentoo   Phillip           42.7          13.7               208
## 195    Gentoo   Phillip           45.3          13.7               210
## 198    Gentoo   Phillip           43.6          13.9               217
## 199    Gentoo   Phillip           45.5          13.9               210
## 201    Gentoo   Phillip           44.9          13.3               213
## 203    Gentoo   Phillip           46.6          14.2               210
## 205    Gentoo   Phillip           45.1          14.4               210
## 207    Gentoo   Phillip           46.5          14.4               217
## 209    Gentoo   Phillip           43.8          13.9               208
## 211    Gentoo   Phillip           43.2          14.5               208
## 213    Gentoo   Phillip           45.3          13.8               208
## 215    Gentoo   Phillip           45.7          13.9               214
## 217    Gentoo   Phillip           45.8          14.2               219
## 221    Gentoo   Phillip           43.5          14.2               220
## 223    Gentoo   Phillip           47.7          15.0               216
## 226    Gentoo   Phillip           46.5          14.8               217
## 227    Gentoo   Phillip           46.4          15.0               216
## 229    Gentoo   Phillip           47.5          14.2               209
## 231    Gentoo   Phillip           45.2          13.8               215
## 303 Chinstrap Galapagos           50.5          18.4               200
## 305 Chinstrap Galapagos           46.4          17.8               191
## 307 Chinstrap Galapagos           40.9          16.6               187
## 309 Chinstrap Galapagos           42.5          16.7               187
## 312 Chinstrap Galapagos           47.5          16.8               199
## 313 Chinstrap Galapagos           47.6          18.3               195
## 315 Chinstrap Galapagos           46.9          16.6               192
## 318 Chinstrap Galapagos           46.2          17.5               187
## 320 Chinstrap Galapagos           45.5          17.0               196
##     Body_Mass_grams    sex year
## 51             3500 female 2008
## 53             3450 female 2008
## 55             2900 female 2008
## 57             3550 female 2008
## 59             2850 female 2008
## 61             3150 female 2008
## 63             3600 female 2008
## 65             2850 female 2008
## 67             3350 female 2008
## 69             3050 female 2008
## 71             3600 female 2008
## 73             3550 female 2008
## 75             3700 female 2008
## 77             3700 female 2008
## 79             3550 female 2008
## 81             3200 female 2008
## 83             3800 female 2008
## 85             3350 female 2008
## 88             3500 female 2008
## 90             3600 female 2008
## 91             3550 female 2008
## 93             3400 female 2008
## 95             3300 female 2008
## 97             3700 female 2008
## 99             2900 female 2008
## 187            5150 female 2008
## 189            4950 female 2008
## 191            4350 female 2008
## 193            3950 female 2008
## 195            4300 female 2008
## 198            4900 female 2008
## 199            4200 female 2008
## 201            5100 female 2008
## 203            4850 female 2008
## 205            4400 female 2008
## 207            4900 female 2008
## 209            4300 female 2008
## 211            4450 female 2008
## 213            4200 female 2008
## 215            4400 female 2008
## 217            4700 female 2008
## 221            4700 female 2008
## 223            4750 female 2008
## 226            5200 female 2008
## 227            4700 female 2008
## 229            4600 female 2008
## 231            4750 female 2008
## 303            3400 female 2008
## 305            3700 female 2008
## 307            3200 female 2008
## 309            3350 female 2008
## 312            3900 female 2008
## 313            3850 female 2008
## 315            2700 female 2008
## 318            3650 female 2008
## 320            3500 female 2008
  1. Display enough rows to see examples of all steps 1-5 above.