# UNIVERSIDAD NACIONAL DEL ALTIPLANO
# FACULTAD DE INGENIERIA ESTADISTICA E INFORMATICA
# TECNICAS DE ESTADISTICAS MULTIVARIADAS
# MAQUINA DE VECTORES SOPORTE
library(e1071)
## Warning: package 'e1071' was built under R version 4.1.3
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.3
library(pROC)
## Warning: package 'pROC' was built under R version 4.1.3
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
# Datos de Venta de Carros
dato <- read.csv("https://media.geeksforgeeks.org/wp-content/uploads/social.csv
")
dato
## User.ID Gender Age EstimatedSalary Purchased
## 1 15624510 Male 19 19000 0
## 2 15810944 Male 35 20000 0
## 3 15668575 Female 26 43000 0
## 4 15603246 Female 27 57000 0
## 5 15804002 Male 19 76000 0
## 6 15728773 Male 27 58000 0
## 7 15598044 Female 27 84000 0
## 8 15694829 Female 32 150000 1
## 9 15600575 Male 25 33000 0
## 10 15727311 Female 35 65000 0
## 11 15570769 Female 26 80000 0
## 12 15606274 Female 26 52000 0
## 13 15746139 Male 20 86000 0
## 14 15704987 Male 32 18000 0
## 15 15628972 Male 18 82000 0
## 16 15697686 Male 29 80000 0
## 17 15733883 Male 47 25000 1
## 18 15617482 Male 45 26000 1
## 19 15704583 Male 46 28000 1
## 20 15621083 Female 48 29000 1
## 21 15649487 Male 45 22000 1
## 22 15736760 Female 47 49000 1
## 23 15714658 Male 48 41000 1
## 24 15599081 Female 45 22000 1
## 25 15705113 Male 46 23000 1
## 26 15631159 Male 47 20000 1
## 27 15792818 Male 49 28000 1
## 28 15633531 Female 47 30000 1
## 29 15744529 Male 29 43000 0
## 30 15669656 Male 31 18000 0
## 31 15581198 Male 31 74000 0
## 32 15729054 Female 27 137000 1
## 33 15573452 Female 21 16000 0
## 34 15776733 Female 28 44000 0
## 35 15724858 Male 27 90000 0
## 36 15713144 Male 35 27000 0
## 37 15690188 Female 33 28000 0
## 38 15689425 Male 30 49000 0
## 39 15671766 Female 26 72000 0
## 40 15782806 Female 27 31000 0
## 41 15764419 Female 27 17000 0
## 42 15591915 Female 33 51000 0
## 43 15772798 Male 35 108000 0
## 44 15792008 Male 30 15000 0
## 45 15715541 Female 28 84000 0
## 46 15639277 Male 23 20000 0
## 47 15798850 Male 25 79000 0
## 48 15776348 Female 27 54000 0
## 49 15727696 Male 30 135000 1
## 50 15793813 Female 31 89000 0
## 51 15694395 Female 24 32000 0
## 52 15764195 Female 18 44000 0
## 53 15744919 Female 29 83000 0
## 54 15671655 Female 35 23000 0
## 55 15654901 Female 27 58000 0
## 56 15649136 Female 24 55000 0
## 57 15775562 Female 23 48000 0
## 58 15807481 Male 28 79000 0
## 59 15642885 Male 22 18000 0
## 60 15789109 Female 32 117000 0
## 61 15814004 Male 27 20000 0
## 62 15673619 Male 25 87000 0
## 63 15595135 Female 23 66000 0
## 64 15583681 Male 32 120000 1
## 65 15605000 Female 59 83000 0
## 66 15718071 Male 24 58000 0
## 67 15679760 Male 24 19000 0
## 68 15654574 Female 23 82000 0
## 69 15577178 Female 22 63000 0
## 70 15595324 Female 31 68000 0
## 71 15756932 Male 25 80000 0
## 72 15726358 Female 24 27000 0
## 73 15595228 Female 20 23000 0
## 74 15782530 Female 33 113000 0
## 75 15592877 Male 32 18000 0
## 76 15651983 Male 34 112000 1
## 77 15746737 Male 18 52000 0
## 78 15774179 Female 22 27000 0
## 79 15667265 Female 28 87000 0
## 80 15655123 Female 26 17000 0
## 81 15595917 Male 30 80000 0
## 82 15668385 Male 39 42000 0
## 83 15709476 Male 20 49000 0
## 84 15711218 Male 35 88000 0
## 85 15798659 Female 30 62000 0
## 86 15663939 Female 31 118000 1
## 87 15694946 Male 24 55000 0
## 88 15631912 Female 28 85000 0
## 89 15768816 Male 26 81000 0
## 90 15682268 Male 35 50000 0
## 91 15684801 Male 22 81000 0
## 92 15636428 Female 30 116000 0
## 93 15809823 Male 26 15000 0
## 94 15699284 Female 29 28000 0
## 95 15786993 Female 29 83000 0
## 96 15709441 Female 35 44000 0
## 97 15710257 Female 35 25000 0
## 98 15582492 Male 28 123000 1
## 99 15575694 Male 35 73000 0
## 100 15756820 Female 28 37000 0
## 101 15766289 Male 27 88000 0
## 102 15593014 Male 28 59000 0
## 103 15584545 Female 32 86000 0
## 104 15675949 Female 33 149000 1
## 105 15672091 Female 19 21000 0
## 106 15801658 Male 21 72000 0
## 107 15706185 Female 26 35000 0
## 108 15789863 Male 27 89000 0
## 109 15720943 Male 26 86000 0
## 110 15697997 Female 38 80000 0
## 111 15665416 Female 39 71000 0
## 112 15660200 Female 37 71000 0
## 113 15619653 Male 38 61000 0
## 114 15773447 Male 37 55000 0
## 115 15739160 Male 42 80000 0
## 116 15689237 Male 40 57000 0
## 117 15679297 Male 35 75000 0
## 118 15591433 Male 36 52000 0
## 119 15642725 Male 40 59000 0
## 120 15701962 Male 41 59000 0
## 121 15811613 Female 36 75000 0
## 122 15741049 Male 37 72000 0
## 123 15724423 Female 40 75000 0
## 124 15574305 Male 35 53000 0
## 125 15678168 Female 41 51000 0
## 126 15697020 Female 39 61000 0
## 127 15610801 Male 42 65000 0
## 128 15745232 Male 26 32000 0
## 129 15722758 Male 30 17000 0
## 130 15792102 Female 26 84000 0
## 131 15675185 Male 31 58000 0
## 132 15801247 Male 33 31000 0
## 133 15725660 Male 30 87000 0
## 134 15638963 Female 21 68000 0
## 135 15800061 Female 28 55000 0
## 136 15578006 Male 23 63000 0
## 137 15668504 Female 20 82000 0
## 138 15687491 Male 30 107000 1
## 139 15610403 Female 28 59000 0
## 140 15741094 Male 19 25000 0
## 141 15807909 Male 19 85000 0
## 142 15666141 Female 18 68000 0
## 143 15617134 Male 35 59000 0
## 144 15783029 Male 30 89000 0
## 145 15622833 Female 34 25000 0
## 146 15746422 Female 24 89000 0
## 147 15750839 Female 27 96000 1
## 148 15749130 Female 41 30000 0
## 149 15779862 Male 29 61000 0
## 150 15767871 Male 20 74000 0
## 151 15679651 Female 26 15000 0
## 152 15576219 Male 41 45000 0
## 153 15699247 Male 31 76000 0
## 154 15619087 Female 36 50000 0
## 155 15605327 Male 40 47000 0
## 156 15610140 Female 31 15000 0
## 157 15791174 Male 46 59000 0
## 158 15602373 Male 29 75000 0
## 159 15762605 Male 26 30000 0
## 160 15598840 Female 32 135000 1
## 161 15744279 Male 32 100000 1
## 162 15670619 Male 25 90000 0
## 163 15599533 Female 37 33000 0
## 164 15757837 Male 35 38000 0
## 165 15697574 Female 33 69000 0
## 166 15578738 Female 18 86000 0
## 167 15762228 Female 22 55000 0
## 168 15614827 Female 35 71000 0
## 169 15789815 Male 29 148000 1
## 170 15579781 Female 29 47000 0
## 171 15587013 Male 21 88000 0
## 172 15570932 Male 34 115000 0
## 173 15794661 Female 26 118000 0
## 174 15581654 Female 34 43000 0
## 175 15644296 Female 34 72000 0
## 176 15614420 Female 23 28000 0
## 177 15609653 Female 35 47000 0
## 178 15594577 Male 25 22000 0
## 179 15584114 Male 24 23000 0
## 180 15673367 Female 31 34000 0
## 181 15685576 Male 26 16000 0
## 182 15774727 Female 31 71000 0
## 183 15694288 Female 32 117000 1
## 184 15603319 Male 33 43000 0
## 185 15759066 Female 33 60000 0
## 186 15814816 Male 31 66000 0
## 187 15724402 Female 20 82000 0
## 188 15571059 Female 33 41000 0
## 189 15674206 Male 35 72000 0
## 190 15715160 Male 28 32000 0
## 191 15730448 Male 24 84000 0
## 192 15662067 Female 19 26000 0
## 193 15779581 Male 29 43000 0
## 194 15662901 Male 19 70000 0
## 195 15689751 Male 28 89000 0
## 196 15667742 Male 34 43000 0
## 197 15738448 Female 30 79000 0
## 198 15680243 Female 20 36000 0
## 199 15745083 Male 26 80000 0
## 200 15708228 Male 35 22000 0
## 201 15628523 Male 35 39000 0
## 202 15708196 Male 49 74000 0
## 203 15735549 Female 39 134000 1
## 204 15809347 Female 41 71000 0
## 205 15660866 Female 58 101000 1
## 206 15766609 Female 47 47000 0
## 207 15654230 Female 55 130000 1
## 208 15794566 Female 52 114000 0
## 209 15800890 Female 40 142000 1
## 210 15697424 Female 46 22000 0
## 211 15724536 Female 48 96000 1
## 212 15735878 Male 52 150000 1
## 213 15707596 Female 59 42000 0
## 214 15657163 Male 35 58000 0
## 215 15622478 Male 47 43000 0
## 216 15779529 Female 60 108000 1
## 217 15636023 Male 49 65000 0
## 218 15582066 Male 40 78000 0
## 219 15666675 Female 46 96000 0
## 220 15732987 Male 59 143000 1
## 221 15789432 Female 41 80000 0
## 222 15663161 Male 35 91000 1
## 223 15694879 Male 37 144000 1
## 224 15593715 Male 60 102000 1
## 225 15575002 Female 35 60000 0
## 226 15622171 Male 37 53000 0
## 227 15795224 Female 36 126000 1
## 228 15685346 Male 56 133000 1
## 229 15691808 Female 40 72000 0
## 230 15721007 Female 42 80000 1
## 231 15794253 Female 35 147000 1
## 232 15694453 Male 39 42000 0
## 233 15813113 Male 40 107000 1
## 234 15614187 Male 49 86000 1
## 235 15619407 Female 38 112000 0
## 236 15646227 Male 46 79000 1
## 237 15660541 Male 40 57000 0
## 238 15753874 Female 37 80000 0
## 239 15617877 Female 46 82000 0
## 240 15772073 Female 53 143000 1
## 241 15701537 Male 42 149000 1
## 242 15736228 Male 38 59000 0
## 243 15780572 Female 50 88000 1
## 244 15769596 Female 56 104000 1
## 245 15586996 Female 41 72000 0
## 246 15722061 Female 51 146000 1
## 247 15638003 Female 35 50000 0
## 248 15775590 Female 57 122000 1
## 249 15730688 Male 41 52000 0
## 250 15753102 Female 35 97000 1
## 251 15810075 Female 44 39000 0
## 252 15723373 Male 37 52000 0
## 253 15795298 Female 48 134000 1
## 254 15584320 Female 37 146000 1
## 255 15724161 Female 50 44000 0
## 256 15750056 Female 52 90000 1
## 257 15609637 Female 41 72000 0
## 258 15794493 Male 40 57000 0
## 259 15569641 Female 58 95000 1
## 260 15815236 Female 45 131000 1
## 261 15811177 Female 35 77000 0
## 262 15680587 Male 36 144000 1
## 263 15672821 Female 55 125000 1
## 264 15767681 Female 35 72000 0
## 265 15600379 Male 48 90000 1
## 266 15801336 Female 42 108000 1
## 267 15721592 Male 40 75000 0
## 268 15581282 Male 37 74000 0
## 269 15746203 Female 47 144000 1
## 270 15583137 Male 40 61000 0
## 271 15680752 Female 43 133000 0
## 272 15688172 Female 59 76000 1
## 273 15791373 Male 60 42000 1
## 274 15589449 Male 39 106000 1
## 275 15692819 Female 57 26000 1
## 276 15727467 Male 57 74000 1
## 277 15734312 Male 38 71000 0
## 278 15764604 Male 49 88000 1
## 279 15613014 Female 52 38000 1
## 280 15759684 Female 50 36000 1
## 281 15609669 Female 59 88000 1
## 282 15685536 Male 35 61000 0
## 283 15750447 Male 37 70000 1
## 284 15663249 Female 52 21000 1
## 285 15638646 Male 48 141000 0
## 286 15734161 Female 37 93000 1
## 287 15631070 Female 37 62000 0
## 288 15761950 Female 48 138000 1
## 289 15649668 Male 41 79000 0
## 290 15713912 Female 37 78000 1
## 291 15586757 Male 39 134000 1
## 292 15596522 Male 49 89000 1
## 293 15625395 Male 55 39000 1
## 294 15760570 Male 37 77000 0
## 295 15566689 Female 35 57000 0
## 296 15725794 Female 36 63000 0
## 297 15673539 Male 42 73000 1
## 298 15705298 Female 43 112000 1
## 299 15675791 Male 45 79000 0
## 300 15747043 Male 46 117000 1
## 301 15736397 Female 58 38000 1
## 302 15678201 Male 48 74000 1
## 303 15720745 Female 37 137000 1
## 304 15637593 Male 37 79000 1
## 305 15598070 Female 40 60000 0
## 306 15787550 Male 42 54000 0
## 307 15603942 Female 51 134000 0
## 308 15733973 Female 47 113000 1
## 309 15596761 Male 36 125000 1
## 310 15652400 Female 38 50000 0
## 311 15717893 Female 42 70000 0
## 312 15622585 Male 39 96000 1
## 313 15733964 Female 38 50000 0
## 314 15753861 Female 49 141000 1
## 315 15747097 Female 39 79000 0
## 316 15594762 Female 39 75000 1
## 317 15667417 Female 54 104000 1
## 318 15684861 Male 35 55000 0
## 319 15742204 Male 45 32000 1
## 320 15623502 Male 36 60000 0
## 321 15774872 Female 52 138000 1
## 322 15611191 Female 53 82000 1
## 323 15674331 Male 41 52000 0
## 324 15619465 Female 48 30000 1
## 325 15575247 Female 48 131000 1
## 326 15695679 Female 41 60000 0
## 327 15713463 Male 41 72000 0
## 328 15785170 Female 42 75000 0
## 329 15796351 Male 36 118000 1
## 330 15639576 Female 47 107000 1
## 331 15693264 Male 38 51000 0
## 332 15589715 Female 48 119000 1
## 333 15769902 Male 42 65000 0
## 334 15587177 Male 40 65000 0
## 335 15814553 Male 57 60000 1
## 336 15601550 Female 36 54000 0
## 337 15664907 Male 58 144000 1
## 338 15612465 Male 35 79000 0
## 339 15810800 Female 38 55000 0
## 340 15665760 Male 39 122000 1
## 341 15588080 Female 53 104000 1
## 342 15776844 Male 35 75000 0
## 343 15717560 Female 38 65000 0
## 344 15629739 Female 47 51000 1
## 345 15729908 Male 47 105000 1
## 346 15716781 Female 41 63000 0
## 347 15646936 Male 53 72000 1
## 348 15768151 Female 54 108000 1
## 349 15579212 Male 39 77000 0
## 350 15721835 Male 38 61000 0
## 351 15800515 Female 38 113000 1
## 352 15591279 Male 37 75000 0
## 353 15587419 Female 42 90000 1
## 354 15750335 Female 37 57000 0
## 355 15699619 Male 36 99000 1
## 356 15606472 Male 60 34000 1
## 357 15778368 Male 54 70000 1
## 358 15671387 Female 41 72000 0
## 359 15573926 Male 40 71000 1
## 360 15709183 Male 42 54000 0
## 361 15577514 Male 43 129000 1
## 362 15778830 Female 53 34000 1
## 363 15768072 Female 47 50000 1
## 364 15768293 Female 42 79000 0
## 365 15654456 Male 42 104000 1
## 366 15807525 Female 59 29000 1
## 367 15574372 Female 58 47000 1
## 368 15671249 Male 46 88000 1
## 369 15779744 Male 38 71000 0
## 370 15624755 Female 54 26000 1
## 371 15611430 Female 60 46000 1
## 372 15774744 Male 60 83000 1
## 373 15629885 Female 39 73000 0
## 374 15708791 Male 59 130000 1
## 375 15793890 Female 37 80000 0
## 376 15646091 Female 46 32000 1
## 377 15596984 Female 46 74000 0
## 378 15800215 Female 42 53000 0
## 379 15577806 Male 41 87000 1
## 380 15749381 Female 58 23000 1
## 381 15683758 Male 42 64000 0
## 382 15670615 Male 48 33000 1
## 383 15715622 Female 44 139000 1
## 384 15707634 Male 49 28000 1
## 385 15806901 Female 57 33000 1
## 386 15775335 Male 56 60000 1
## 387 15724150 Female 49 39000 1
## 388 15627220 Male 39 71000 0
## 389 15672330 Male 47 34000 1
## 390 15668521 Female 48 35000 1
## 391 15807837 Male 48 33000 1
## 392 15592570 Male 47 23000 1
## 393 15748589 Female 45 45000 1
## 394 15635893 Male 60 42000 1
## 395 15757632 Female 39 59000 0
## 396 15691863 Female 46 41000 1
## 397 15706071 Male 51 23000 1
## 398 15654296 Female 50 20000 1
## 399 15755018 Male 36 33000 0
## 400 15594041 Female 49 36000 1
# Variable de la Data
dato <- dato[3:5]
# Convirtiendo en factor
dato$Purchased <- as.factor(dato$Purchased)
# Vista de los datos
head(dato)
## Age EstimatedSalary Purchased
## 1 19 19000 0
## 2 35 20000 0
## 3 26 43000 0
## 4 27 57000 0
## 5 19 76000 0
## 6 27 58000 0
# Estructura de los datos
str(dato)
## 'data.frame': 400 obs. of 3 variables:
## $ Age : int 19 35 26 27 19 27 27 32 25 35 ...
## $ EstimatedSalary: int 19000 20000 43000 57000 76000 58000 84000 150000 33000 65000 ...
## $ Purchased : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
# # Prepara los Datos
# x <- cbind(dato$Age, dato$EstimatedSalary)
# y <- dato$Purchased
# n0 <- sum(y==0)
# n1 <- sum(y==1)
# # Para que los graficos queden mas bonitos (rojo = maligno, verde = benigno)
# colores <- c(rep('green',n0),rep('red',n1))
# pchn <- 21
# # Diagrama de dispersion
# plot(x, pch = pchn, bg = colores, xlab='smoothness', ylab='concavepoints')
# Exploracion de los Datos
# Diagrama de Dispersion con la edad, Salario Estimado y la Compra
ggplot(data = dato, aes(x = Age, y = EstimatedSalary, color= Purchased )) + geom_point()
# Eligiendo el mejor modelo
# SVM Lineal
# ==========
svm.lineal <- svm(Purchased ~ .,data = dato, kernel ='linear', cost = 10, scale = T)
summary(svm.lineal)
##
## Call:
## svm(formula = Purchased ~ ., data = dato, kernel = "linear", cost = 10,
## scale = T)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 10
##
## Number of Support Vectors: 155
##
## ( 77 78 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Con el primer modelo SVM Lineal se obtuvo una precision del 84.25%
caret::confusionMatrix(predict(svm.lineal), dato$Purchased)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 240 46
## 1 17 97
##
## Accuracy : 0.8425
## 95% CI : (0.803, 0.8768)
## No Information Rate : 0.6425
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.641
##
## Mcnemar's Test P-Value : 0.0004192
##
## Sensitivity : 0.9339
## Specificity : 0.6783
## Pos Pred Value : 0.8392
## Neg Pred Value : 0.8509
## Prevalence : 0.6425
## Detection Rate : 0.6000
## Detection Prevalence : 0.7150
## Balanced Accuracy : 0.8061
##
## 'Positive' Class : 0
##
svm.lineal2 <- svm(Purchased ~., data = dato, kernel = 'linear', cost = 10**2, scale = T)
summary(svm.lineal)
##
## Call:
## svm(formula = Purchased ~ ., data = dato, kernel = "linear", cost = 10,
## scale = T)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 10
##
## Number of Support Vectors: 155
##
## ( 77 78 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Con el primer modelo SVM Lineal se obtuvo una precision del 84.50%
a <- caret::confusionMatrix(predict(svm.lineal2), dato$Purchased);
a$table; a$overall[1]
## Reference
## Prediction 0 1
## 0 239 44
## 1 18 99
## Accuracy
## 0.845
# SVM Cuadratico
# ==============
svm.cuadratico <- svm(Purchased ~., data = dato, kernel='polynomial', degree = 2, gamma = 1, coef0 = 1, cost=10)
summary(svm.cuadratico)
##
## Call:
## svm(formula = Purchased ~ ., data = dato, kernel = "polynomial",
## degree = 2, gamma = 1, coef0 = 1, cost = 10)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 10
## degree: 2
## coef.0: 1
##
## Number of Support Vectors: 100
##
## ( 49 51 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
# Con el segundo modelo SVM Cuadratico se obtuvo una precision del 89.75% mejorando notablemente el modelo
caret::confusionMatrix(predict(svm.cuadratico), dato$Purchased)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 233 17
## 1 24 126
##
## Accuracy : 0.8975
## 95% CI : (0.8635, 0.9254)
## No Information Rate : 0.6425
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.7793
##
## Mcnemar's Test P-Value : 0.3487
##
## Sensitivity : 0.9066
## Specificity : 0.8811
## Pos Pred Value : 0.9320
## Neg Pred Value : 0.8400
## Prevalence : 0.6425
## Detection Rate : 0.5825
## Detection Prevalence : 0.6250
## Balanced Accuracy : 0.8939
##
## 'Positive' Class : 0
##
# SVM Radial
# ==========
# Con el tercer modelo SVM Radial se obtuvo una precision del 89.75% Teniendo un mejor modelo
svm.radial <- svm(Purchased ~., data = dato, kernel='radial', degree = 2, gamma = 1, coef0 = 1, cost=10)
summary(svm.radial)
##
## Call:
## svm(formula = Purchased ~ ., data = dato, kernel = "radial", degree = 2,
## gamma = 1, coef0 = 1, cost = 10)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 10
##
## Number of Support Vectors: 94
##
## ( 42 52 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
caret::confusionMatrix(predict(svm.radial), dato$Purchased)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 238 10
## 1 19 133
##
## Accuracy : 0.9275
## 95% CI : (0.8975, 0.9509)
## No Information Rate : 0.6425
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8444
##
## Mcnemar's Test P-Value : 0.1374
##
## Sensitivity : 0.9261
## Specificity : 0.9301
## Pos Pred Value : 0.9597
## Neg Pred Value : 0.8750
## Prevalence : 0.6425
## Detection Rate : 0.5950
## Detection Prevalence : 0.6200
## Balanced Accuracy : 0.9281
##
## 'Positive' Class : 0
##
# Curva de ROC
objroc <- roc(dato$Purchased, dato$Age,auc=T,ci=T)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
objroc
##
## Call:
## roc.default(response = dato$Purchased, predictor = dato$Age, auc = T, ci = T)
##
## Data: dato$Age in 257 controls (dato$Purchased 0) < 143 cases (dato$Purchased 1).
## Area under the curve: 0.8686
## 95% CI: 0.8319-0.9052 (DeLong)
plot.roc(objroc,print.auc=T,print.thres = "best",
col="blue",xlab="1-No Compra",ylab="Compra")
# # Indices de los vectores soporte
# svm.lineal$index
#
# # Coeficientes por los que se multiplican las observaciones para obtener
# # el vector perpendicular al hiperplano que resuelve el problema
# svm.lineal$coefs
#
# # Termino independiente
# svm.lineal$rho
#
# # Termino independiente
# svm.lineal$rho
#
# # Termino independiente
# svm.lineal$rho
#
# x.svm <- x[svm.lineal$index,]
# w <- crossprod(x.svm, svm.lineal$coefs)
# w0 <- svm.lineal$rho
# plot(x, pch = pchn, bg = colores, xlab='smoothness', ylab='concavepoints')
# abline(w0/w[2], -w[1]/w[2], lwd=2, col='blue')