library('tidyverse')
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
UScovid <- read.csv("/Users/kylerhalat-shafer/Desktop/UVA/MSDS/STAT 6021/Day 1 - R Basics/UScovid.csv")
statelevel <- UScovid%>%
filter(date == '2021-06-03')%>%
select(-c(county,fips,date))%>%
group_by(state)%>%
summarize(new_cases=sum(cases),new_deaths=sum(deaths))
head(statelevel)
statelevel <- statelevel%>%
mutate(death.rate = round(new_deaths/new_cases,2))
head(statelevel)
Case fatality is .02
statelevel%>%
filter(state == 'Virginia')
Case fatality cannot be determined for Puerto Rico becasue deaths is not available.
statelevel%>%
filter(state == 'Puerto Rico')
statelevel%>%
slice_max(death.rate,n=10)
statelevel%>%
slice_min(death.rate,n=10)
State_pop_election <- read.csv("/Users/kylerhalat-shafer/Desktop/UVA/MSDS/STAT 6021/Day 1 - R Basics/State_pop_election.csv")
State_pop_election <- State_pop_election%>%
rename(state = State)
state_info <- statelevel %>%
inner_join(State_pop_election, by='state')
head(state_info)
state_info%>%
ggplot(aes(x=new_cases, y=new_deaths, size = Population, color=Election))+
geom_point(alpha = 0.5)
## Warning: Removed 1 rows containing missing values (geom_point).
#facet_wrap(~state)