cars <- read.csv ('https://vincentarelbundock.github.io/Rdatasets/csv/DAAG/carprice.csv')
head(cars)
## X Type Min.Price Price Max.Price Range.Price RoughRange gpm100 MPG.city
## 1 6 Midsize 14.2 15.7 17.3 3.1 3.09 3.8 22
## 2 7 Large 19.9 20.8 21.7 1.8 1.79 4.2 19
## 3 8 Large 22.6 23.7 24.9 2.3 2.31 4.9 16
## 4 9 Midsize 26.3 26.3 26.3 0.0 -0.01 4.3 19
## 5 10 Large 33.0 34.7 36.3 3.3 3.30 4.9 16
## 6 11 Midsize 37.5 40.1 42.7 5.2 5.18 4.9 16
## MPG.highway
## 1 31
## 2 28
## 3 25
## 4 27
## 5 25
## 6 25
summary(cars)
## X Type Min.Price Price
## Min. : 6.00 Length:48 Min. : 6.90 Min. : 7.40
## 1st Qu.:17.75 Class :character 1st Qu.:11.40 1st Qu.:13.47
## Median :29.50 Mode :character Median :14.50 Median :16.30
## Mean :36.54 Mean :16.54 Mean :18.57
## 3rd Qu.:60.25 3rd Qu.:19.43 3rd Qu.:20.73
## Max. :79.00 Max. :37.50 Max. :40.10
## Max.Price Range.Price RoughRange gpm100
## Min. : 7.90 Min. : 0.000 Min. :-0.020 Min. :2.800
## 1st Qu.:14.97 1st Qu.: 1.700 1st Qu.: 1.705 1st Qu.:3.800
## Median :18.40 Median : 3.300 Median : 3.305 Median :4.200
## Mean :20.63 Mean : 4.092 Mean : 4.089 Mean :4.167
## 3rd Qu.:24.50 3rd Qu.: 5.850 3rd Qu.: 5.853 3rd Qu.:4.550
## Max. :42.70 Max. :14.600 Max. :14.600 Max. :5.700
## MPG.city MPG.highway
## Min. :15.00 Min. :20.00
## 1st Qu.:18.00 1st Qu.:26.00
## Median :20.00 Median :28.00
## Mean :20.96 Mean :28.15
## 3rd Qu.:23.00 3rd Qu.:30.00
## Max. :31.00 Max. :41.00
large_cars <- subset(cars, Type == 'Large')
head(large_cars)
## X Type Min.Price Price Max.Price Range.Price RoughRange gpm100 MPG.city
## 2 7 Large 19.9 20.8 21.7 1.8 1.79 4.2 19
## 3 8 Large 22.6 23.7 24.9 2.3 2.31 4.9 16
## 5 10 Large 33.0 34.7 36.3 3.3 3.30 4.9 16
## 13 18 Large 18.0 18.8 19.6 1.6 1.60 4.7 17
## 15 20 Large 18.4 18.4 18.4 0.0 -0.01 4.2 20
## 17 22 Large 29.5 29.5 29.5 0.0 0.02 4.3 20
## MPG.highway
## 2 28
## 3 25
## 5 25
## 13 26
## 15 28
## 17 26
bigOlecars <- setNames(large_cars, c("Index", "Car_Type", "Minimum_Price", "Actual_Price", "Maximum_Price", "The_Range_Price", "The_Rough_Range", "G_P_M_100", "Miles_Per_Gallon_City", "Miles_Per_Gallon_Highway"))
bigOlecars
## Index Car_Type Minimum_Price Actual_Price Maximum_Price The_Range_Price
## 2 7 Large 19.9 20.8 21.7 1.8
## 3 8 Large 22.6 23.7 24.9 2.3
## 5 10 Large 33.0 34.7 36.3 3.3
## 13 18 Large 18.0 18.8 19.6 1.6
## 15 20 Large 18.4 18.4 18.4 0.0
## 17 22 Large 29.5 29.5 29.5 0.0
## 25 30 Large 17.5 19.3 21.2 3.7
## 33 38 Large 20.1 20.9 21.7 1.6
## 35 52 Large 34.4 36.1 37.8 3.4
## 41 71 Large 19.5 20.7 21.9 2.4
## 47 77 Large 19.4 24.4 29.4 10.0
## The_Rough_Range G_P_M_100 Miles_Per_Gallon_City Miles_Per_Gallon_Highway
## 2 1.79 4.2 19 28
## 3 2.31 4.9 16 25
## 5 3.30 4.9 16 25
## 13 1.60 4.7 17 26
## 15 -0.01 4.2 20 28
## 17 0.02 4.3 20 26
## 25 3.69 4.2 20 28
## 33 1.59 4.5 18 26
## 35 3.42 4.5 18 26
## 41 2.41 4.2 19 28
## 47 10.00 4.2 19 28
Use the summary function to create an overview of your new data frame. The print the mean and median for the same two attributes. Please compare.
summary(bigOlecars)
## Index Car_Type Minimum_Price Actual_Price
## Min. : 7.00 Length:11 Min. :17.50 Min. :18.40
## 1st Qu.:14.00 Class :character 1st Qu.:18.90 1st Qu.:20.00
## Median :22.00 Mode :character Median :19.90 Median :20.90
## Mean :32.09 Mean :22.94 Mean :24.30
## 3rd Qu.:45.00 3rd Qu.:26.05 3rd Qu.:26.95
## Max. :77.00 Max. :34.40 Max. :36.10
## Maximum_Price The_Range_Price The_Rough_Range G_P_M_100
## Min. :18.40 Min. : 0.000 Min. :-0.010 Min. :4.200
## 1st Qu.:21.45 1st Qu.: 1.600 1st Qu.: 1.595 1st Qu.:4.200
## Median :21.90 Median : 2.300 Median : 2.310 Median :4.300
## Mean :25.67 Mean : 2.736 Mean : 2.738 Mean :4.436
## 3rd Qu.:29.45 3rd Qu.: 3.350 3rd Qu.: 3.360 3rd Qu.:4.600
## Max. :37.80 Max. :10.000 Max. :10.000 Max. :4.900
## Miles_Per_Gallon_City Miles_Per_Gallon_Highway
## Min. :16.00 Min. :25.00
## 1st Qu.:17.50 1st Qu.:26.00
## Median :19.00 Median :26.00
## Mean :18.36 Mean :26.73
## 3rd Qu.:19.50 3rd Qu.:28.00
## Max. :20.00 Max. :28.00
mean(bigOlecars$Actual_Price)
## [1] 24.3
median(bigOlecars$Actual_Price)
## [1] 20.9
mean(cars$Price)
## [1] 18.57292
median(cars$Price)
## [1] 16.3
mean(bigOlecars$Miles_Per_Gallon_City)
## [1] 18.36364
median(bigOlecars$Miles_Per_Gallon_City)
## [1] 19
mean(cars$MPG.city)
## [1] 20.95833
median(cars$MPG.city)
## [1] 20
For at least 3 values in a column please rename so that every value in that column is renamed. For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.
cars$Price[cars$Price == "40.1"] <- "1st"
cars$Price[cars$Price == "38.0"] <- "2nd"
cars$Price[cars$Price == "36.1"] <- "3rd"
head(cars)
## X Type Min.Price Price Max.Price Range.Price RoughRange gpm100 MPG.city
## 1 6 Midsize 14.2 15.7 17.3 3.1 3.09 3.8 22
## 2 7 Large 19.9 20.8 21.7 1.8 1.79 4.2 19
## 3 8 Large 22.6 23.7 24.9 2.3 2.31 4.9 16
## 4 9 Midsize 26.3 26.3 26.3 0.0 -0.01 4.3 19
## 5 10 Large 33.0 34.7 36.3 3.3 3.30 4.9 16
## 6 11 Midsize 37.5 1st 42.7 5.2 5.18 4.9 16
## MPG.highway
## 1 31
## 2 28
## 3 25
## 4 27
## 5 25
## 6 25
```