data_frame = read.table(file="https://vincentarelbundock.github.io/Rdatasets/csv/causaldata/nsw_mixtape.csv", header=TRUE,sep=",")
summary(data_frame)
##        X         data_id              treat             age       
##  Min.   :  1   Length:445         Min.   :0.0000   Min.   :17.00  
##  1st Qu.:112   Class :character   1st Qu.:0.0000   1st Qu.:20.00  
##  Median :223   Mode  :character   Median :0.0000   Median :24.00  
##  Mean   :223                      Mean   :0.4157   Mean   :25.37  
##  3rd Qu.:334                      3rd Qu.:1.0000   3rd Qu.:28.00  
##  Max.   :445                      Max.   :1.0000   Max.   :55.00  
##       educ          black             hisp              marr       
##  Min.   : 3.0   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.: 9.0   1st Qu.:1.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :10.0   Median :1.0000   Median :0.00000   Median :0.0000  
##  Mean   :10.2   Mean   :0.8337   Mean   :0.08764   Mean   :0.1685  
##  3rd Qu.:11.0   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :16.0   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##     nodegree          re74              re75            re78      
##  Min.   :0.000   Min.   :    0.0   Min.   :    0   Min.   :    0  
##  1st Qu.:1.000   1st Qu.:    0.0   1st Qu.:    0   1st Qu.:    0  
##  Median :1.000   Median :    0.0   Median :    0   Median : 3702  
##  Mean   :0.782   Mean   : 2102.3   Mean   : 1377   Mean   : 5301  
##  3rd Qu.:1.000   3rd Qu.:  824.4   3rd Qu.: 1221   3rd Qu.: 8125  
##  Max.   :1.000   Max.   :39570.7   Max.   :25142   Max.   :60308
mean_data_frame <- sprintf("%3.0f",mean(data_frame$age))
cat("mean(data_frame$age) = ", mean_data_frame, "\n")
## mean(data_frame$age) =   25
median_data_frame <- median(data_frame$treat)
cat("median(data_frame$treat) = ", median_data_frame, "\n")
## median(data_frame$treat) =  0
subset_data_frame <- subset(data_frame, data_id =="AA" & treat >=1)
library(plyr)
subset_data_frame <- rename(subset_data_frame, c("X"="Participant", "data_id"="kind_Of_Sport", "treat"="MinResult", "age"="MaxResult"))
summary(subset_data_frame)
##   Participant  kind_Of_Sport        MinResult     MaxResult        educ    
##  Min.   : NA   Length:0           Min.   : NA   Min.   : NA   Min.   : NA  
##  1st Qu.: NA   Class :character   1st Qu.: NA   1st Qu.: NA   1st Qu.: NA  
##  Median : NA   Mode  :character   Median : NA   Median : NA   Median : NA  
##  Mean   :NaN                      Mean   :NaN   Mean   :NaN   Mean   :NaN  
##  3rd Qu.: NA                      3rd Qu.: NA   3rd Qu.: NA   3rd Qu.: NA  
##  Max.   : NA                      Max.   : NA   Max.   : NA   Max.   : NA  
##      black          hisp          marr        nodegree        re74    
##  Min.   : NA   Min.   : NA   Min.   : NA   Min.   : NA   Min.   : NA  
##  1st Qu.: NA   1st Qu.: NA   1st Qu.: NA   1st Qu.: NA   1st Qu.: NA  
##  Median : NA   Median : NA   Median : NA   Median : NA   Median : NA  
##  Mean   :NaN   Mean   :NaN   Mean   :NaN   Mean   :NaN   Mean   :NaN  
##  3rd Qu.: NA   3rd Qu.: NA   3rd Qu.: NA   3rd Qu.: NA   3rd Qu.: NA  
##  Max.   : NA   Max.   : NA   Max.   : NA   Max.   : NA   Max.   : NA  
##       re75          re78    
##  Min.   : NA   Min.   : NA  
##  1st Qu.: NA   1st Qu.: NA  
##  Median : NA   Median : NA  
##  Mean   :NaN   Mean   :NaN  
##  3rd Qu.: NA   3rd Qu.: NA  
##  Max.   : NA   Max.   : NA
mean_subset_data_frame <- sprintf("%3.0f",mean(subset_data_frame$MaxResult))
cat("mean(subset_data_frame$MaxResult) = ", mean_subset_data_frame, "\n")
## mean(subset_data_frame$MaxResult) =  NaN
if (mean_subset_data_frame <= mean_data_frame) {
    print("The subset's mean is less than, equal to the original data_frame")
} else {
    print("The subset's mean is high than the original data_frame")
}
## [1] "The subset's mean is high than the original data_frame"
median_subset_data_frame <- sprintf("%3.0f",mean(subset_data_frame$MinResult))
cat("median(subset_data_frame$MinResult) = ", median_subset_data_frame, "\n")
## median(subset_data_frame$MinResult) =  NaN
if (median_subset_data_frame <= median_data_frame) {
    print("The subset's median is less than, equal to the original data_frame")
} else {
    print("The subset's median is high than the original data_frame")
}
## [1] "The subset's median is high than the original data_frame"
require(stringr)
## Loading required package: stringr
subset_data_frame[subset_data_frame == "Participant"] <- "Par"
subset_data_frame[subset_data_frame == "kind_Of_Sport"] <- "KofS"
subset_data_frame[subset_data_frame == "MinResult"] <- "MinR"
subset_data_frame[subset_data_frame == "MaxResult"] <- "MaxR"
print(subset_data_frame)
##  [1] Participant   kind_Of_Sport MinResult     MaxResult     educ         
##  [6] black         hisp          marr          nodegree      re74         
## [11] re75          re78         
## <0 rows> (or 0-length row.names)
subset_data_frame
##  [1] Participant   kind_Of_Sport MinResult     MaxResult     educ         
##  [6] black         hisp          marr          nodegree      re74         
## [11] re75          re78         
## <0 rows> (or 0-length row.names)