Superíndice

\[ E=mc^2 \]


\[ a^2 + b^2 + c^2 \]


Subíndice

\[ H_2O \]


Fracciones

\[ \frac{1}{2} \]


\[ \frac{4}{5}+\frac{2}{5} \]


\[ \frac{4}{5}\times\frac{2}{5} \]


\[ \frac{4}{5}\div\frac{2}{5} \]


Sumatoria

\[ \sum_{i=1}^5 i \]


\[ \sum_{i=1}^5 \frac{2i-1}{i(i+1)} \]


Matrices

\[ \begin{bmatrix}5&4&8\\4&0&7\\3&5&6\end{bmatrix} \]


Mathpix

\[ \begin{aligned} \mathbb{E}\left\|\boldsymbol{X}^{+} \boldsymbol{\xi}\right\|_{2} & \leq\left(\mathbb{E}\left\|\boldsymbol{X}^{+} \boldsymbol{\xi}\right\|_{2}^{2}\right)^{1 / 2} \\ &=\left(\mathbb{E} \boldsymbol{\xi}^{T}\left(\boldsymbol{X}^{+}\right)^{T} \boldsymbol{X}^{+} \boldsymbol{\xi}\right)^{1 / 2}=\sigma\left(\operatorname{Tr}\left(\left(\boldsymbol{X}^{+}\right)^{T} \boldsymbol{X}^{+}\right)\right)^{1 / 2} \\ &=\sigma\left(\sum_{i=1}^{n} \lambda_{i}\left(\left(\boldsymbol{X}^{+}\right)^{T} \boldsymbol{X}^{+}\right)\right)^{1 / 2}=\sigma\left(\sum_{i=1}^{n} \sigma_{i}^{2}\left(\boldsymbol{X}^{+}\right)\right)^{1 / 2} \\ &=\sigma\left(\sum_{i=1}^{n} \sigma_{i}^{-2}(\boldsymbol{X})\right)^{1 / 2} \leq \sigma \sqrt{\frac{n}{\sigma_{n}^{2}(\boldsymbol{X})}} . \end{aligned} \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIE1hcmtkb3duIg0KYXV0aG9yOiAiSmVzw7pzIENoaXJpbm9zIg0KZGF0ZTogIjIwMjIvMDcvMjMiDQpzdWJ0aXRsZTogRWN1YWNpb25lcyB+IEbDs3JtdWxhcyB+IExhdGV4DQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KLS0tDQoNCjwhLS0gQcOxYWRpciBjb21lbnRhcmlvcyBhIG51ZXN0cm8gZG9jdW1lbnRvIE1hcmtkb3duIC0tPg0KDQojIyBTdXBlcsOtbmRpY2UNCg0KJCQNCkU9bWNeMg0KJCQNCg0KLS0tDQoNCiQkDQphXjIgKyBiXjIgKyBjXjINCiQkDQoNCi0tLQ0KDQojIyBTdWLDrW5kaWNlDQoNCiQkDQpIXzJPDQokJA0KDQotLS0NCg0KIyMgRnJhY2Npb25lcw0KDQokJA0KXGZyYWN7MX17Mn0NCiQkDQoNCi0tLQ0KDQokJA0KXGZyYWN7NH17NX0rXGZyYWN7Mn17NX0NCiQkDQoNCi0tLQ0KDQokJA0KXGZyYWN7NH17NX1cdGltZXNcZnJhY3syfXs1fQ0KJCQNCg0KLS0tDQoNCiQkDQpcZnJhY3s0fXs1fVxkaXZcZnJhY3syfXs1fQ0KJCQNCg0KLS0tDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV41IGkNCiQkDQoNCi0tLQ0KDQokJA0KXHN1bV97aT0xfV41IFxmcmFjezJpLTF9e2koaSsxKX0NCiQkDQoNCi0tLQ0KDQojIyBNYXRyaWNlcw0KDQokJA0KXGJlZ2lue2JtYXRyaXh9NSY0JjhcXDQmMCY3XFwzJjUmNlxlbmR7Ym1hdHJpeH0NCiQkDQoNCi0tLQ0KDQojIyBNYXRocGl4DQoNCiQkDQpcYmVnaW57YWxpZ25lZH0NClxtYXRoYmJ7RX1cbGVmdFx8XGJvbGRzeW1ib2x7WH1eeyt9IFxib2xkc3ltYm9se1x4aX1ccmlnaHRcfF97Mn0gJiBcbGVxXGxlZnQoXG1hdGhiYntFfVxsZWZ0XHxcYm9sZHN5bWJvbHtYfV57K30gXGJvbGRzeW1ib2x7XHhpfVxyaWdodFx8X3syfV57Mn1ccmlnaHQpXnsxIC8gMn0gXFwNCiY9XGxlZnQoXG1hdGhiYntFfSBcYm9sZHN5bWJvbHtceGl9XntUfVxsZWZ0KFxib2xkc3ltYm9se1h9XnsrfVxyaWdodClee1R9IFxib2xkc3ltYm9se1h9XnsrfSBcYm9sZHN5bWJvbHtceGl9XHJpZ2h0KV57MSAvIDJ9PVxzaWdtYVxsZWZ0KFxvcGVyYXRvcm5hbWV7VHJ9XGxlZnQoXGxlZnQoXGJvbGRzeW1ib2x7WH1eeyt9XHJpZ2h0KV57VH0gXGJvbGRzeW1ib2x7WH1eeyt9XHJpZ2h0KVxyaWdodCleezEgLyAyfSBcXA0KJj1cc2lnbWFcbGVmdChcc3VtX3tpPTF9XntufSBcbGFtYmRhX3tpfVxsZWZ0KFxsZWZ0KFxib2xkc3ltYm9se1h9XnsrfVxyaWdodClee1R9IFxib2xkc3ltYm9se1h9XnsrfVxyaWdodClccmlnaHQpXnsxIC8gMn09XHNpZ21hXGxlZnQoXHN1bV97aT0xfV57bn0gXHNpZ21hX3tpfV57Mn1cbGVmdChcYm9sZHN5bWJvbHtYfV57K31ccmlnaHQpXHJpZ2h0KV57MSAvIDJ9IFxcDQomPVxzaWdtYVxsZWZ0KFxzdW1fe2k9MX1ee259IFxzaWdtYV97aX1eey0yfShcYm9sZHN5bWJvbHtYfSlccmlnaHQpXnsxIC8gMn0gXGxlcSBcc2lnbWEgXHNxcnR7XGZyYWN7bn17XHNpZ21hX3tufV57Mn0oXGJvbGRzeW1ib2x7WH0pfX0gLg0KXGVuZHthbGlnbmVkfQ0KJCQNCg0K