loading packages

loading data file

descriptive

##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 278 25.32 7.74     24   23.72 2.97  16  63    47 3.03      9.6 0.46
##    vars  n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 65    1  0      1       1   0   1   1     0  NaN      NaN  0
##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 207    2  0      2       2   0   2   2     0  NaN      NaN  0

Removing incomplete data

Removing Outliers

## [1] 4915.078
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1180 6079.34 4915.08   5006 5430.54 4341.79   0 36154 36154 1.32
##    kurtosis     se
## X1     2.36 143.08
## [1] 20824.58

##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1166 5863.18 4506.14 4953.5 5329.42 4278.04   0 20534 20534 0.97
##    kurtosis     se
## X1     0.52 131.96

## [1] 4618.688
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1200 5478.76 4618.69 4454.5 4839.76 4129.04   0 30725 30725  1.5
##    kurtosis     se
## X1      3.2 133.33
## [1] 19334.83

##    vars    n    mean      sd median trimmed    mad min   max range skew
## X1    1 1181 5197.45 4056.05   4352 4715.97 4038.6   0 18930 18930 0.98
##    kurtosis     se
## X1     0.54 118.03

ANOVA Difference in condition for mean number of steps

H1: Do participants in each condition perform a different number of steps?

## $ANOVA
##   Effect DFn DFd      SSn        SSd        F         p p<.05        ges
## 1      C   1 213 24828962 1368304023 3.865054 0.0506008       0.01782239
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373

##   C   N     Mean       SD     FLSD       lo       hi
## 1 1 109 5626.438 2807.680 681.4516 5285.712 5967.164
## 2 2 106 4946.714 2218.822 681.4516 4605.988 5287.440

*where X-axis C = condition (2=experimental condition); and Y-axis “Mean” = steps

H1 Result: ANOVA not significant. M_steps_C1 =5626 , M_steps_C2 =4946

-

-

Steps is not normally distributed, taking the square root

## $ANOVA
##   Effect DFn DFd      SSn      SSd        F          p p<.05        ges
## 1      C   1 213 981.5901 72812.11 2.871482 0.09162331       0.01330181
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd      SSn      SSd         F         p p<.05
## 1   1 213 75.04314 28922.57 0.5526546 0.4580543

##   C   N     Mean       SD    FLSD       lo       hi
## 1 1 109 68.56402 19.67653 4.97102 66.07851 71.04953
## 2 2 106 64.29018 17.18199 4.97102 61.80467 66.77569

*where X-axis C = condition (2=experimental condition); and Y-axis “Mean” = steps

H1 Result: ANOVA not significant. M_steps_C1 = 68.56 , M_steps_C2 =64.29

-

-

ANOVA steps-7000

## $ANOVA
##   Effect DFn DFd      SSn        SSd        F         p p<.05        ges
## 1      C   1 213 24828962 1368304023 3.865054 0.0506008       0.01782239
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373

##   C   N      Mean       SD     FLSD        lo        hi
## 1 1 109 -1373.562 2807.680 681.4516 -1714.288 -1032.836
## 2 2 106 -2053.286 2218.822 681.4516 -2394.012 -1712.560

*where X-axis C = condition (2=experimental condition); and Y-axis “Mean” = steps

Result: ANOVA not significant. M_steps_C1 = -1373.56 , M_steps_C2 =-2053.28

meaning that participants on average did not achieve the goal

-

-

Deviation from the MEAN ANOVA for steps

##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1090 5626.44 4344.22 4770.5 5112.56 4089.01   0 19914 19914 0.99
##    kurtosis     se
## X1     0.61 131.58
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1060 4946.71 3841.51   4250 4501.86 3982.26   0 18743 18743 0.99
##    kurtosis     se
## X1      0.7 117.99
## $ANOVA
##   Effect DFn DFd         SSn        SSd            F         p p<.05
## 1      C   1 213 0.002217293 1368304023 3.451597e-10 0.9999852      
##            ges
## 1 1.620468e-12
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373

##   C   N         Mean       SD     FLSD        lo       hi
## 1 1 109 -0.002272477 2807.680 681.4516 -340.7281 340.7235
## 2 2 106  0.004150943 2218.822 681.4516 -340.7216 340.7299

*where X-axis C = condition (2=experimental condition); and Y-axis “Mean” = steps

Result: ANOVA not significant. M_sd_C1 = -0.0022 , M_ssd_C2 = 0.0042

-

-

MSSD measure of variation

## $ANOVA
##   Effect DFn DFd      SSn      SSd         F         p p<.05          ges
## 1      C   1 213 5.002583 16252.66 0.0655616 0.7981593       0.0003077062
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd      SSn      SSd         F         p p<.05
## 1   1 213 4.339782 5548.658 0.1665941 0.6835667

##   C   N     Mean       SD     FLSD       lo       hi
## 1 1 109 1117.818 810.1485 227.9577 1003.839 1231.796
## 2 2 106 1146.620 884.9613 227.9577 1032.641 1260.599

*where X-axis C = condition (2=experimental condition); and Y-axis “Mean” = steps

Result: ANOVA not significant. M_steps_C1 = 1117.82 , M_steps_C2 = 1146.62

-

-

EMGB Constructs, Mixed ANOVA

Doing

H2: Is there a difference between Q1 and Q12 and/or between conditions for pre volition constructs?

## Call:corr.test(x = .)
## Correlation matrix 
##        INT1_D INT2_D
## INT1_D   1.00   0.65
## INT2_D   0.65   1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##        INT1_D INT2_D
## INT1_D      0      0
## INT2_D      0      0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 1.124064e+04 647.1062 4.047357e+03 2.879961e-149     *
## 2           C   1 233 6.875750e+00 647.1062 2.475714e+00  1.169738e-01      
## 3           Q   1 233 3.489894e+00 164.6013 4.940088e+00  2.720133e-02     *
## 4         C:Q   1 233 3.375895e-02 164.6013 4.778718e-02  8.271508e-01      
##            ges
## 1 9.326515e-01
## 2 8.399573e-03
## 3 4.281041e-03
## 4 4.158831e-05

##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 5.090517 1.260778 0.2160452 4.982495 5.198540
## 2 1 12 116 4.935345 1.316336 0.2160452 4.827322 5.043367
## 3 2  1 119 4.865546 1.328784 0.2160452 4.757524 4.973569
## 4 2 12 119 4.676471 1.369443 0.2160452 4.568448 4.784493

*where X-axis Q = days; and Y-axis “Mean” = responses to the construct; C1 = control, C2 = goal salience

Result: significant effect of time (Q); intention to walk 7000 steps decreased for both conditions

-

GOAL Desire

## Call:corr.test(x = .)
## Correlation matrix 
##         GOAL1_D GD2_D
## GOAL1_D    1.00  0.78
## GD2_D      0.78  1.00
## Sample Size 
##         GOAL1_D GD2_D
## GOAL1_D     403   403
## GD2_D       403   475
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##         GOAL1_D GD2_D
## GOAL1_D       0     0
## GD2_D         0     0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.520934e+04 464.1351 7700.7609366 1.322001e-181     *
## 2           C   1 235 2.029407e+00 464.1351    1.0275256  3.117831e-01      
## 3           Q   1 235 9.303797e-01 168.4582    1.2978840  2.557600e-01      
## 4         C:Q   1 235 1.113938e-01 168.4582    0.1553948  6.937898e-01      
##            ges
## 1 0.9600684119
## 2 0.0031978168
## 3 0.0014685791
## 4 0.0001760596
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.538462 1.185679 0.2166998 5.430112 5.646811
## 2 1 12 117 5.658120 1.138377 0.2166998 5.549770 5.766470
## 3 2  1 120 5.700000 1.213371 0.2166998 5.591650 5.808350
## 4 2 12 120 5.758333 1.100006 0.2166998 5.649983 5.866683

Result: no significant effects of goal desire

-

Behavior Desire

## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 1.360817e+04 632.0833 5.016275e+03 1.358184e-159     *
## 2           C   1 233 2.443142e-01 632.0833 9.005964e-02  7.643689e-01      
## 3           Q   1 233 7.680851e-01 155.1343 1.153605e+00  2.839067e-01      
## 4         C:Q   1 233 5.975698e-01 155.1343 8.975044e-01  3.444332e-01      
##            ges
## 1 0.9453145980
## 2 0.0003102552
## 3 0.0009747449
## 4 0.0007585151
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 5.353448 1.340047 0.2097403 5.248578 5.458318
## 2 1 12 116 5.362069 1.294783 0.2097403 5.257199 5.466939
## 3 2  1 119 5.327731 1.353647 0.2097403 5.222861 5.432601
## 4 2 12 119 5.478992 1.206260 0.2097403 5.374121 5.583862

Result: no significant effects

-

Attitude

## Call:corr.test(x = .)
## Correlation matrix 
##        ATT1_D ATT2_D ATT3_D ATT4_D ATT5_D ATT6_D
## ATT1_D   1.00   0.43   0.37   0.32   0.20   0.29
## ATT2_D   0.43   1.00   0.37   0.34   0.23   0.35
## ATT3_D   0.37   0.37   1.00   0.77   0.41   0.39
## ATT4_D   0.32   0.34   0.77   1.00   0.55   0.41
## ATT5_D   0.20   0.23   0.41   0.55   1.00   0.70
## ATT6_D   0.29   0.35   0.39   0.41   0.70   1.00
## Sample Size 
## [1] 475
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##        ATT1_D ATT2_D ATT3_D ATT4_D ATT5_D ATT6_D
## ATT1_D      0      0      0      0      0      0
## ATT2_D      0      0      0      0      0      0
## ATT3_D      0      0      0      0      0      0
## ATT4_D      0      0      0      0      0      0
## ATT5_D      0      0      0      0      0      0
## ATT6_D      0      0      0      0      0      0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.81    0.83      0.41 4.1 0.013  5.8  1     0.37
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.78  0.81  0.83
## Duhachek  0.78  0.81  0.83
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## ATT1_D      0.81      0.80    0.83      0.45 4.1    0.014 0.029  0.40
## ATT2_D      0.80      0.80    0.82      0.44 3.9    0.013 0.032  0.40
## ATT3_D      0.76      0.76    0.76      0.38 3.1    0.017 0.023  0.35
## ATT4_D      0.75      0.75    0.75      0.37 3.0    0.018 0.019  0.37
## ATT5_D      0.77      0.77    0.77      0.40 3.4    0.016 0.018  0.37
## ATT6_D      0.77      0.77    0.77      0.40 3.3    0.016 0.027  0.37
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean   sd
## ATT1_D 475  0.54  0.61  0.48   0.42  6.4 0.96
## ATT2_D 475  0.61  0.64  0.51   0.44  5.6 1.34
## ATT3_D 475  0.78  0.77  0.75   0.65  5.4 1.53
## ATT4_D 475  0.82  0.79  0.79   0.70  5.3 1.60
## ATT5_D 475  0.76  0.72  0.69   0.60  6.1 1.68
## ATT6_D 475  0.74  0.73  0.69   0.61  6.1 1.43
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6    7 miss
## ATT1_D 0.00 0.00 0.00 0.05 0.09 0.22 0.63    0
## ATT2_D 0.01 0.02 0.04 0.12 0.22 0.27 0.33    0
## ATT3_D 0.03 0.03 0.05 0.13 0.23 0.25 0.28    0
## ATT4_D 0.04 0.04 0.05 0.12 0.23 0.23 0.29    0
## ATT5_D 0.07 0.02 0.01 0.02 0.06 0.19 0.63    0
## ATT6_D 0.04 0.01 0.02 0.05 0.10 0.25 0.53    0
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.600690e+04 362.1654 1.038647e+04 1.755979e-196     *
## 2           C   1 235 1.393708e+00 362.1654 9.043420e-01  3.425971e-01      
## 3           Q   1 235 4.037154e-01 135.6621 6.993342e-01  4.038570e-01      
## 4         C:Q   1 235 2.114776e+00 135.6621 3.663312e+00  5.683771e-02      
##            ges
## 1 0.9698372813
## 2 0.0027917646
## 3 0.0008102974
## 4 0.0042300417
##   C  Q   N     Mean        SD      FLSD       lo       hi
## 1 1  1 117 5.827635 1.0499798 0.1944651 5.730403 5.924868
## 2 1 12 117 5.904558 1.0376800 0.1944651 5.807326 6.001791
## 3 2  1 120 5.852778 0.9291381 0.1944651 5.755545 5.950010
## 4 2 12 120 5.662500 1.0935390 0.1944651 5.565267 5.759733

Result: no significant effects

-

Emotions

PAE

## Call:corr.test(x = .)
## Correlation matrix 
##       EM1_D EM2_D EM3_D
## EM1_D  1.00  0.78  0.73
## EM2_D  0.78  1.00  0.83
## EM3_D  0.73  0.83  1.00
## Sample Size 
## [1] 474
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##       EM1_D EM2_D EM3_D
## EM1_D     0     0     0
## EM2_D     0     0     0
## EM3_D     0     0     0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.663391e+04 395.3079 9846.3342548 3.262967e-193     *
## 2           C   1 234 2.297171e-01 395.3079    0.1359796  7.126445e-01      
## 3           Q   1 234 9.048964e-01 123.8086    1.7102671  1.922341e-01      
## 4         C:Q   1 234 6.429125e-02 123.8086    0.1215114  7.277144e-01      
##            ges
## 1 0.9697361492
## 2 0.0004423197
## 3 0.0017401137
## 4 0.0001238321
##   C  Q   N     Mean        SD      FLSD       lo       hi
## 1 1  1 117 6.014245 1.0875410 0.1865699 5.920960 6.107530
## 2 1 12 117 5.903134 1.1193695 0.1865699 5.809849 5.996419
## 3 2  1 119 5.946779 0.9990421 0.1865699 5.853494 6.040064
## 4 2 12 119 5.882353 1.0033731 0.1865699 5.789068 5.975638

Results: no significant effects

-

NAE

## Call:corr.test(x = .)
## Correlation matrix 
##       EM4_D EM5_D EM6_D
## EM4_D  1.00  0.74  0.53
## EM5_D  0.74  1.00  0.52
## EM6_D  0.53  0.52  1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##       EM4_D EM5_D EM6_D
## EM4_D     0     0     0
## EM5_D     0     0     0
## EM6_D     0     0     0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 5581.5321513 627.4676 2.072612e+03 5.930475e-118     *
## 2           C   1 233    4.0557902 627.4676 1.506052e+00  2.209809e-01      
## 3           Q   1 233    0.0286052 211.5166 3.151058e-02  8.592603e-01      
## 4         C:Q   1 233    1.0658561 211.5166 1.174113e+00  2.796777e-01      
##            ges
## 1 8.693276e-01
## 2 4.810910e-03
## 3 3.409388e-05
## 4 1.268801e-03
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.295977 1.387154 0.2449064 3.173524 3.418430
## 2 1 12 116 3.408046 1.234047 0.2449064 3.285593 3.530499
## 3 2  1 119 3.577031 1.445623 0.2449064 3.454578 3.699484
## 4 2 12 119 3.498599 1.288712 0.2449064 3.376146 3.621053

Results: no significant effects

-

NORMS_D_In

dat_NORMS<- select(sub, NORMS_D_In, NORM_D_Des, Q, C, RecipientEmail)
select(dat_NORMS, NORMS_D_In, NORM_D_Des) %>% corr.test()
## Call:corr.test(x = .)
## Correlation matrix 
##            NORMS_D_In NORM_D_Des
## NORMS_D_In       1.00       0.16
## NORM_D_Des       0.16       1.00
## Sample Size 
## [1] 475
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            NORMS_D_In NORM_D_Des
## NORMS_D_In          0          0
## NORM_D_Des          0          0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
#only 0.16 correlated, kept seperate

 #NORMS_D_In

dat_NORMS_D_In<- select(sub, NORMS_D_In, Q, C, RecipientEmail)
 
#ggqqplot(sub, "NORMS_D_In", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="NORMS_D_In", add = "point")

dat_NORMS_D_In$RecipientEmail<- as.factor(dat_NORMS_D_In$RecipientEmail)
dat_NORMS_D_In$Q<- as.factor(dat_NORMS_D_In$Q)
dat_NORMS_D_In$NORMS_D_In<- as.numeric(dat_NORMS_D_In$NORMS_D_In)
dat_NORMS_D_In<- na.omit(dat_NORMS_D_In)
pps<- aggregate(dat_NORMS_D_In$'NORMS_D_In', by=list(dat_NORMS_D_In$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_NORMS_D_In <- merge(pps, dat_NORMS_D_In, by="RecipientEmail")
dat_NORMS_D_In<- dplyr::filter(dat_NORMS_D_In, complete == 2)


fit<- ezANOVA(data = dat_NORMS_D_In,
        dv = NORMS_D_In, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, NORMS_D_In)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.788976e+04 474.4531 8.860923e+03 1.437328e-188     *
## 2           C   1 235 1.791627e+00 474.4531 8.874058e-01  3.471487e-01      
## 3           Q   1 235 0.000000e+00 111.9916 0.000000e+00  1.000000e+00      
## 4         C:Q   1 235 8.440171e-03 111.9916 1.771062e-02  8.942430e-01      
##            ges
## 1 9.682595e-01
## 2 3.045762e-03
## 3 0.000000e+00
## 4 1.439189e-05
#no sig effects
 means<- ezPlot(data = dat_NORMS_D_In,
        dv = NORMS_D_In, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 6.076923 1.197367 0.1766872 5.988579 6.165267
## 2 1 12 117 6.085470 1.110861 0.1766872 5.997126 6.173814
## 3 2  1 120 6.208333 1.129407 0.1766872 6.119990 6.296677
## 4 2 12 120 6.200000 1.025720 0.1766872 6.111656 6.288344

Results: no significant effects

-

NORM_D_Des

## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.209122e+04 647.9240 4385.4455167 5.337060e-154     *
## 2           C   1 235 1.860772e+00 647.9240    0.6748960  4.121825e-01      
## 3           Q   1 235 6.835443e-01 219.6163    0.7314251  3.932927e-01      
## 4         C:Q   1 235 2.700110e+00 219.6163    2.8892464  9.049576e-02      
##            ges
## 1 0.9330537273
## 2 0.0021402912
## 3 0.0007872903
## 4 0.0031027165
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.025641 1.476608 0.2474256 4.901928 5.149354
## 2 1 12 117 4.948718 1.244617 0.2474256 4.825005 5.072431
## 3 2  1 120 5.000000 1.365850 0.2474256 4.876287 5.123713
## 4 2 12 120 5.225000 1.337642 0.2474256 5.101287 5.348713

Result: no significant effects

-

Past Behavior

## $ANOVA
##   Effect DFn DFd      SSn      SSd        F         p p<.05        ges
## 1      C   1 229 6.036498 581.2968 2.378059 0.1244311       0.01027781
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd        SSn      SSd         F         p p<.05
## 1   1 229 0.09050976 231.0523 0.0897058 0.7648232
##   C   N     Mean       SD      FLSD       lo       hi
## 1 1 113 4.831858 1.580589 0.4130995 4.625309 5.038408
## 2 2 118 4.508475 1.605257 0.4130995 4.301925 4.715024

Results: no significant effect of condition

-

Perceived behavioral control

## Call:corr.test(x = .)
## Correlation matrix 
##           PBS_D_Aut PBC_D_Cap
## PBS_D_Aut      1.00      0.64
## PBC_D_Cap      0.64      1.00
## Sample Size 
## [1] 474
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##           PBS_D_Aut PBC_D_Cap
## PBS_D_Aut         0         0
## PBC_D_Cap         0         0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.067802e+04 647.7875 3857.2160693 2.193150e-147     *
## 2           C   1 234 1.794340e+01 647.7875    6.4816880  1.154182e-02     *
## 3           Q   1 234 4.101695e+00 204.3321    4.6972386  3.122036e-02     *
## 4         C:Q   1 234 8.162107e-01 204.3321    0.9347201  3.346376e-01      
##            ges
## 1 0.9260963250
## 2 0.0206231087
## 3 0.0047904611
## 4 0.0009569427

##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.004274 1.302345 0.2396815 4.884433 5.124114
## 2 1 12 117 4.901709 1.364954 0.2396815 4.781869 5.021550
## 3 2  1 119 4.697479 1.347028 0.2396815 4.577638 4.817320
## 4 2 12 119 4.428571 1.381300 0.2396815 4.308731 4.548412

*where X-axis Q = days; and Y-axis “Mean” = responses to the construct; C1 = control, C2 = goal salience

Result: significant effect of time (Q), PBC to walk 7000 steps decreased for both conditions; and significant effect of condition (C), overall C1 had higher PBC than C2

-

Goal Desire Not Doing

## Call:corr.test(x = .)
## Correlation matrix 
##        GD1_ND GD2_ND
## GD1_ND   1.00   0.83
## GD2_ND   0.83   1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##        GD1_ND GD2_ND
## GD1_ND      0      0
## GD2_ND      0      0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn       SSd            F             p p<.05
## 1 (Intercept)   1 233 7226.9127660 1080.6246 1.558238e+03 3.567604e-105     *
## 2           C   1 233   12.4626325 1080.6246 2.687143e+00  1.025105e-01      
## 3           Q   1 233    0.4787234  537.3562 2.075766e-01  6.490978e-01      
## 4         C:Q   1 233    0.1651117  537.3562 7.159317e-02  7.892678e-01      
##            ges
## 1 0.8170717646
## 2 0.0076437075
## 3 0.0002957896
## 4 0.0001020376
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 4.073276 1.931720 0.3903543 3.878099 4.268453
## 2 1 12 116 4.099138 1.840628 0.3903543 3.903961 4.294315
## 3 2  1 119 3.710084 1.747269 0.3903543 3.514907 3.905261
## 4 2 12 119 3.810924 1.928809 0.3903543 3.615747 4.006102

Results: no significant effects

-

Attitude Not Doing

## Call:corr.test(x = .)
## Correlation matrix 
##         ATT1_ND ATT2_ND ATT3_ND ATT4_ND ATT5_ND ATT6_ND
## ATT1_ND    1.00    0.19    0.45    0.45    0.40    0.42
## ATT2_ND    0.19    1.00    0.19    0.23    0.11    0.21
## ATT3_ND    0.45    0.19    1.00    0.71    0.44    0.40
## ATT4_ND    0.45    0.23    0.71    1.00    0.45    0.49
## ATT5_ND    0.40    0.11    0.44    0.45    1.00    0.52
## ATT6_ND    0.42    0.21    0.40    0.49    0.52    1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##         ATT1_ND ATT2_ND ATT3_ND ATT4_ND ATT5_ND ATT6_ND
## ATT1_ND       0    0.00       0       0    0.00       0
## ATT2_ND       0    0.00       0       0    0.01       0
## ATT3_ND       0    0.00       0       0    0.00       0
## ATT4_ND       0    0.00       0       0    0.00       0
## ATT5_ND       0    0.01       0       0    0.00       0
## ATT6_ND       0    0.00       0       0    0.00       0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## 
## Reliability analysis   
## Call: psych::alpha(x = .)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.78      0.78    0.78      0.38 3.6 0.016  2.8 0.94     0.42
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.74  0.78  0.81
## Duhachek  0.74  0.78  0.81
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## ATT1_ND      0.74      0.75    0.75      0.37 3.0    0.019 0.0341  0.42
## ATT2_ND      0.82      0.82    0.80      0.47 4.5    0.013 0.0082  0.45
## ATT3_ND      0.72      0.73    0.70      0.35 2.7    0.021 0.0210  0.41
## ATT4_ND      0.70      0.71    0.69      0.33 2.5    0.022 0.0199  0.40
## ATT5_ND      0.74      0.75    0.74      0.37 3.0    0.019 0.0285  0.41
## ATT6_ND      0.73      0.74    0.73      0.36 2.8    0.020 0.0319  0.42
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## ATT1_ND 473  0.69  0.70  0.60   0.54  2.4 1.2
## ATT2_ND 473  0.49  0.46  0.27   0.24  3.3 1.5
## ATT3_ND 473  0.76  0.77  0.74   0.63  2.8 1.3
## ATT4_ND 473  0.79  0.80  0.79   0.68  2.9 1.3
## ATT5_ND 473  0.70  0.70  0.61   0.53  2.7 1.4
## ATT6_ND 473  0.73  0.73  0.66   0.58  2.9 1.4
## 
## Non missing response frequency for each item
##            1    2    3    4    5    6    7 miss
## ATT1_ND 0.28 0.29 0.25 0.15 0.02 0.01 0.01 0.01
## ATT2_ND 0.16 0.16 0.22 0.29 0.10 0.03 0.04 0.01
## ATT3_ND 0.18 0.27 0.27 0.19 0.04 0.03 0.01 0.01
## ATT4_ND 0.16 0.22 0.29 0.25 0.05 0.02 0.02 0.01
## ATT5_ND 0.22 0.28 0.23 0.19 0.03 0.02 0.02 0.01
## ATT6_ND 0.18 0.24 0.24 0.27 0.03 0.03 0.02 0.01
## $ANOVA
##        Effect DFn DFd          SSn       SSd            F             p p<.05
## 1 (Intercept)   1 233 3.766447e+03 308.64087 2.843377e+03 1.496617e-132     *
## 2           C   1 233 7.034532e-01 308.64087 5.310528e-01  4.668964e-01      
## 3           Q   1 233 2.345745e-01  96.96097 5.636892e-01  4.535352e-01      
## 4         C:Q   1 233 4.056317e-02  96.96097 9.747447e-02  7.551609e-01      
##            ges
## 1 9.027811e-01
## 2 1.731341e-03
## 3 5.780025e-04
## 4 9.999737e-05
##   C  Q   N     Mean        SD     FLSD       lo       hi
## 1 1  1 116 2.804598 0.8634488 0.165816 2.721690 2.887506
## 2 1 12 116 2.778736 0.9782109 0.165816 2.695828 2.861644
## 3 2  1 119 2.900560 0.9325964 0.165816 2.817652 2.983468
## 4 2 12 119 2.837535 0.9531053 0.165816 2.754627 2.920443

Results: no significant effects

-

Perceived Beh Control Not Doing

## Call:corr.test(x = .)
## Correlation matrix 
##            PBC_ND_Aut PBC_ND_Cap
## PBC_ND_Aut       1.00       0.26
## PBC_ND_Cap       0.26       1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            PBC_ND_Aut PBC_ND_Cap
## PBC_ND_Aut          0          0
## PBC_ND_Cap          0          0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 7258.3170213 678.0608 2494.1538943 1.878486e-126     *
## 2           C   1 233    0.1222264 678.0608    0.0420003  8.377981e-01      
## 3           Q   1 233    1.6680851 220.5644    1.7621327  1.856579e-01      
## 4         C:Q   1 233    2.2674680 220.5644    2.3953092  1.230568e-01      
##            ges
## 1 0.8898330802
## 2 0.0001359964
## 3 0.0018528241
## 4 0.0025169125
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.956897 1.464907 0.2500896 3.831852 4.081941
## 2 1 12 116 3.935345 1.377664 0.2500896 3.810300 4.060390
## 3 2  1 119 3.785714 1.344435 0.2500896 3.660669 3.910759
## 4 2 12 119 4.042017 1.366332 0.2500896 3.916972 4.167062

Results: no significant effects

-

Behavior Desire Not Doing

## $ANOVA
##        Effect DFn DFd          SSn     SSd            F            p p<.05
## 1 (Intercept)   1 233 2.261619e+03 570.844 923.11956819 5.288682e-83     *
## 2           C   1 233 3.685657e-02 570.844   0.01504366 9.024879e-01      
## 3           Q   1 233 1.551064e+00 256.041   1.41148417 2.360198e-01      
## 4         C:Q   1 233 9.078973e-01 256.041   0.82619599 3.643140e-01      
##            ges
## 1 0.7322700620
## 2 0.0000445708
## 3 0.0018722794
## 4 0.0010967687
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.189655 1.382586 0.2694528 2.054929 2.324382
## 2 1 12 116 2.215517 1.317481 0.2694528 2.080791 2.350244
## 3 2  1 119 2.084034 1.337718 0.2694528 1.949307 2.218760
## 4 2 12 119 2.285714 1.289743 0.2694528 2.150988 2.420441

Results: no significant effects

-

Intentions Not doing

## Call:corr.test(x = .)
## Correlation matrix 
##         INT1_ND INT2_ND
## INT1_ND    1.00    0.39
## INT2_ND    0.39    1.00
## Sample Size 
## [1] 473
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##         INT1_ND INT2_ND
## INT1_ND       0       0
## INT2_ND       0       0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## $ANOVA
##        Effect DFn DFd          SSn      SSd           F            p p<.05
## 1 (Intercept)   1 233 2140.4446809 599.3508 832.1064014 7.526068e-79     *
## 2           C   1 233    0.7045513 599.3508   0.2738971 6.012268e-01      
## 3           Q   1 233    2.3170213 237.5981   2.2721814 1.330690e-01      
## 4         C:Q   1 233    0.5848912 237.5981   0.5735722 4.496081e-01      
##            ges
## 1 0.7188988136
## 2 0.0008411012
## 3 0.0027607715
## 4 0.0006983494
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.870690 1.330447 0.2501876 2.745596 2.995783
## 2 1 12 116 2.879310 1.250427 0.2501876 2.754217 3.004404
## 3 2  1 119 2.857143 1.275823 0.2501876 2.732049 2.982237
## 4 2 12 119 3.264706 1.308097 0.2501876 3.139612 3.389800

Results: no significant effects

-

Habit

## $ANOVA
##        Effect DFn DFd          SSn       SSd            F             p p<.05
## 1 (Intercept)   1 233 976752.07660 136239.63 1670.4627937 2.991821e-108     *
## 2           C   1 233    647.29286 136239.63    1.1070144  2.938218e-01      
## 3           Q   1 233     46.60426  20782.13    0.5225063  4.704995e-01      
## 4         C:Q   1 233     14.27013  20782.13    0.1599904  6.895318e-01      
##            ges
## 1 8.615052e-01
## 2 4.105390e-03
## 3 2.967132e-04
## 4 9.087169e-05
##   C  Q   N     Mean       SD     FLSD       lo       hi
## 1 1  1 116 46.28448 19.09464 2.427576 45.07069 47.49827
## 2 1 12 116 47.26724 18.40102 2.427576 46.05345 48.48103
## 3 2  1 119 44.28571 18.49147 2.427576 43.07193 45.49950
## 4 2 12 119 44.57143 17.41934 2.427576 43.35764 45.78522

Results: no significant effects

-

Moderation Analysis

Not doing intention

## Formula:
## steps ~ C + av + C.XX.av
## <environment: 0x7f9ad849bd88>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.379  0.144     0.132 11.664  3.000  208 4.3e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -47.1469 -11.0859   0.5154   0.0000   9.1322  52.0657 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept)  98.3635   9.0296  10.8935         < 2e-16 ***
## C           -11.8882   5.8408  -2.0354 -0.3195 0.04308 *  
## av           -8.6655   2.8350  -3.0566 -0.6067 0.00253 ** 
## C.XX.av       2.5353   1.8388   1.3788  0.3382 0.16943    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##             VIF Tolerance
## C        5.9888    0.1670
## av       9.5728    0.1045
## C.XX.av 14.6230    0.0684

## Formula:
## steps ~ C + av + C.XX.av
## <environment: 0x7f9acdd88c28>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.548  0.300     0.290 29.693  3.000  208 5.1e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -53.283  -9.679   1.292   0.000   9.186  46.576 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept) 107.5371   8.9479  12.0182         < 2e-16 ***
## C           -11.3206   5.8010  -1.9515 -0.3043 0.05234 .  
## av          -12.4172   2.7525  -4.5113 -0.8418   1e-05 ***
## C.XX.av       3.0554   1.7293   1.7668  0.4430 0.07872 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##             VIF Tolerance
## C        7.2226    0.1385
## av      10.3444    0.0967
## C.XX.av 18.6724    0.0536
## 
## Call:
## lm(formula = steps ~ av, data = MOD2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.244 -10.412   1.508   9.286  47.365 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  91.0482     2.8851  31.558   <2e-16 ***
## av           -7.9021     0.8595  -9.194   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.78 on 210 degrees of freedom
## Multiple R-squared:  0.287,  Adjusted R-squared:  0.2836 
## F-statistic: 84.53 on 1 and 210 DF,  p-value: < 2.2e-16

T0 Results:

T1 Results:

-

Doing Intention

## Formula:
## steps ~ C + av + C.XX.av
## <environment: 0x7f9acc6f3648>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.506  0.256     0.245 23.835  3.000  208 2.7e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -35.9069 -10.7886  -0.1856   0.0000  10.4731  55.3522 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept) 10.26536 14.21357  0.72222         0.47097    
## C           14.59833  8.85612  1.64839  0.3924 0.10078    
## av          12.11873  2.73558  4.43003  0.8425   2e-05 ***
## C.XX.av     -3.49586  1.73055 -2.02009 -0.5726 0.04466 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##            VIF Tolerance
## C       15.838    0.0631
## av      10.109    0.0989
## C.XX.av 22.459    0.0445
## Simple Slope:
##                 simple slope standard error    t-value    p.value
## Low av (-1 SD)      1.815404       3.166969  0.5732305 0.56710781
## High av (+1 SD)    -7.247510       3.170408 -2.2859863 0.02326242

## Formula:
## steps ~ C + av + C.XX.av
## <environment: 0x7f9ab9c07290>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.553  0.306     0.296 30.504  3.000  208  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -42.4548  -7.7783   0.4915   0.0000   9.2720  44.8410 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept) 17.84210 13.33006  1.33849          0.1822    
## C            7.53083  8.34703  0.90222  0.2024  0.3680    
## av          11.03382  2.67325  4.12749  0.7542   5e-05 ***
## C.XX.av     -2.13513  1.69943 -1.25638 -0.3390  0.2104    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##            VIF Tolerance
## C       15.076    0.0663
## av      10.001    0.1000
## C.XX.av 21.803    0.0459
## 
## Call:
## lm(formula = steps ~ av, data = MOD2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -41.061  -7.542   0.188   9.604  46.235 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  28.7142     4.1648   6.894 6.22e-11 ***
## av            7.9517     0.8474   9.384  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.69 on 210 degrees of freedom
## Multiple R-squared:  0.2954, Adjusted R-squared:  0.2921 
## F-statistic: 88.06 on 1 and 210 DF,  p-value: < 2.2e-16

Results:

T0:

T1:

-

Habit

## Formula:
## steps ~ C + total + C.XX.total
## <environment: 0x7f9abaf4c010>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.406  0.165     0.153 13.724  3.000  208 3.3e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -41.662 -11.924   1.071   0.000  11.484  50.005 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept) 57.81607  9.78987  5.90571          <2e-16 ***
## C           -5.88742  6.18445 -0.95197 -0.1582  0.3422    
## total        0.30776  0.19956  1.54224  0.3046  0.1245    
## C.XX.total   0.05719  0.12876  0.44413  0.1066  0.6574    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                VIF Tolerance
## C           6.8851    0.1452
## total       9.7214    0.1029
## C.XX.total 14.3519    0.0697

## Formula:
## steps ~ C + total + C.XX.total
## <environment: 0x7f9ace88fe78>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.532  0.283     0.273 27.426  3.000  208 5.5e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -44.595  -9.014   1.484   0.000  11.635  40.369 
## 
## Coefficients
##             Estimate   StdErr  t.value    beta p.value    
## (Intercept) 46.47048  9.50519  4.88896         < 2e-16 ***
## C           -3.28026  6.05882 -0.54140 -0.0882 0.58881    
## total        0.54670  0.19497  2.80410  0.5096 0.00552 ** 
## C.XX.total   0.00746  0.12695  0.05873  0.0133 0.95322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                VIF Tolerance
## C           7.6983    0.1299
## total       9.5883    0.1043
## C.XX.total 14.9787    0.0668
## 
## Call:
## lm(formula = steps ~ total, data = MOD2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.208 -10.254   0.775  11.339  42.182 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 41.25026    3.01431  13.685   <2e-16 ***
## total        0.56479    0.06294   8.974   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.89 on 210 degrees of freedom
## Multiple R-squared:  0.2772, Adjusted R-squared:  0.2738 
## F-statistic: 80.54 on 1 and 210 DF,  p-value: < 2.2e-16

Results:

T0:

T1:

-

-

Exploratory Law of Recency Analyses

*the following analyses attempted to replicate the law of recency paper

I used days as a clustering variable (similar to trials)

Tested the effect on the number of steps completed by days of a goal achievement (R_Goal), days following a goal achievement (Prev_R), and Condition (1 = control, 2 =experimental)

## $ANOVA
##            Effect DFn DFd          SSn      SSd            F            p p<.05
## 1          Prev_R   1  56   286.195436 637.3104   25.1477843 5.681427e-06     *
## 2          R_Goal   1  56 34276.738682 637.3104 3011.8720342 2.226335e-50     *
## 3               C   1  56     8.133155 637.3104    0.7146544 4.015006e-01      
## 4   Prev_R:R_Goal   1  56   175.002484 637.3104   15.3773407 2.425513e-04     *
## 5        Prev_R:C   1  56    59.031894 637.3104    5.1870895 2.659416e-02     *
## 6        R_Goal:C   1  56    23.293945 637.3104    2.0468220 1.580809e-01      
## 7 Prev_R:R_Goal:C   1  56   100.522491 637.3104    8.8328380 4.354395e-03     *
##          ges
## 1 0.30990106
## 2 0.98174631
## 3 0.01260088
## 4 0.21543729
## 5 0.08477425
## 6 0.03526157
## 7 0.13624019
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd      SSn      SSd        F          p p<.05
## 1   7  56 60.06051 231.2607 2.077673 0.06107351      
## 
## $aov
## Call:
##    aov(formula = formula(aov_formula), data = data)
## 
## Terms:
##                   Prev_R   R_Goal        C Prev_R:R_Goal Prev_R:C R_Goal:C
## Sum of Squares    286.20 34276.74     8.13        175.00    59.03    23.29
## Deg. of Freedom        1        1        1             1        1        1
##                 Prev_R:R_Goal:C Residuals
## Sum of Squares           100.52    637.31
## Deg. of Freedom               1        56
## 
## Residual standard error: 3.373506
## Estimated effects may be unbalanced
## 24 observations deleted due to missingness
##    Prev_R R_Goal C N      Mean        SD     FLSD        lo        hi
## 1       0      0 1 8  49.73809  3.255372 3.529221  47.97348  51.50270
## 2       0      0 2 8  49.64600  1.955276 3.529221  47.88139  51.41061
## 3       0      1 1 8  98.03032  2.680808 3.529221  96.26571  99.79493
## 4       0      1 2 8 100.53809  2.877008 3.529221  98.77348 102.30270
## 5       1      0 1 8  56.68892  3.025437 3.529221  54.92431  58.45353
## 6       1      0 2 8  57.76826  6.055855 3.529221  56.00365  59.53287
## 7       1      1 1 8 103.37977  2.743185 3.529221 101.61516 105.14438
## 8       1      1 2 8  97.03288  2.794311 3.529221  95.26827  98.79749
## 9    <NA>      0 1 7  55.28922  8.552164 3.529221  53.52461  57.05383
## 10   <NA>      0 2 8  50.40894 17.183259 3.529221  48.64433  52.17355
## 11   <NA>      1 1 5 100.16961  6.240567 3.529221  98.40500 101.93422
## 12   <NA>      1 2 4  93.70140  5.396216 3.529221  91.93679  95.46601
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = formula(aov_formula), data = data)
## 
## $Prev_R
##         diff      lwr      upr   p adj
## 1-0 4.229328 2.539842 5.918814 5.7e-06
## 
## $R_Goal
##         diff      lwr      upr p adj
## 1-0 46.28495 44.59546 47.97443     0
## 
## $C
##           diff       lwr      upr     p adj
## 2-1 -0.7129672 -2.402453 0.976519 0.4015006
## 
## $`Prev_R:R_Goal`
##               diff       lwr       upr     p adj
## 1:0-0:0  7.5365405  4.378367 10.694714 0.0000003
## 0:1-0:0 49.5921580 46.433984 52.750332 0.0000000
## 1:1-0:0 50.5142733 47.356100 53.672447 0.0000000
## 0:1-1:0 42.0556174 38.897444 45.213791 0.0000000
## 1:1-1:0 42.9777328 39.819559 46.135906 0.0000000
## 1:1-0:1  0.9221153 -2.236058  4.080289 0.8662492
## 
## $`Prev_R:C`
##              diff        lwr       upr     p adj
## 1:1-0:1  6.150133  2.9919597  9.308307 0.0000199
## 0:2-0:1  1.207838 -1.9503354  4.366012 0.7427175
## 1:2-0:1  3.516361  0.3581872  6.674534 0.0234086
## 0:2-1:1 -4.942295 -8.1004687 -1.784122 0.0006582
## 1:2-1:1 -2.633773 -5.7919462  0.524401 0.1335245
## 1:2-0:2  2.308523 -0.8496511  5.466696 0.2251686
## 
## $`R_Goal:C`
##                diff        lwr        upr     p adj
## 1:1-0:1  47.4915404  44.333367  50.649714 0.0000000
## 0:2-0:1   0.4936278  -2.664546   3.651801 0.9758729
## 1:2-0:1  45.5719782  42.413805  48.730152 0.0000000
## 0:2-1:1 -46.9979125 -50.156086 -43.839739 0.0000000
## 1:2-1:1  -1.9195622  -5.077736   1.238611 0.3817296
## 1:2-0:2  45.0783503  41.920177  48.236524 0.0000000
## 
## $`Prev_R:R_Goal:C`
##                     diff        lwr        upr     p adj
## 1:0:1-0:0:1   6.95082331   1.640448  12.261199 0.0029796
## 0:1:1-0:0:1  48.29223037  42.981855  53.602606 0.0000000
## 1:1:1-0:0:1  53.64167373  48.331298  58.952049 0.0000000
## 0:0:2-0:0:1  -0.09208938  -5.402465   5.218286 1.0000000
## 1:0:2-0:0:1   8.03016839   2.719793  13.340544 0.0003554
## 0:1:2-0:0:1  50.79999620  45.489621  56.110372 0.0000000
## 1:1:2-0:0:1  47.29478349  41.984408  52.605159 0.0000000
## 0:1:1-1:0:1  41.34140706  36.031032  46.651782 0.0000000
## 1:1:1-1:0:1  46.69085041  41.380475  52.001226 0.0000000
## 0:0:2-1:0:1  -7.04291269 -12.353288  -1.732537 0.0025023
## 1:0:2-1:0:1   1.07934507  -4.231030   6.389720 0.9981078
## 0:1:2-1:0:1  43.84917289  38.538798  49.159548 0.0000000
## 1:1:2-1:0:1  40.34396017  35.033585  45.654336 0.0000000
## 1:1:1-0:1:1   5.34944335   0.039068  10.659819 0.0471108
## 0:0:2-0:1:1 -48.38431975 -53.694695 -43.073944 0.0000000
## 1:0:2-0:1:1 -40.26206199 -45.572437 -34.951687 0.0000000
## 0:1:2-0:1:1   2.50776583  -2.802610   7.818141 0.8111195
## 1:1:2-0:1:1  -0.99744689  -6.307822   4.312928 0.9988583
## 0:0:2-1:1:1 -53.73376311 -59.044138 -48.423388 0.0000000
## 1:0:2-1:1:1 -45.61150534 -50.921881 -40.301130 0.0000000
## 0:1:2-1:1:1  -2.84167752  -8.152053   2.468698 0.6967865
## 1:1:2-1:1:1  -6.34689024 -11.657266  -1.036515 0.0090143
## 1:0:2-0:0:2   8.12225777   2.811882  13.432633 0.0002943
## 0:1:2-0:0:2  50.89208558  45.581710  56.202461 0.0000000
## 1:1:2-0:0:2  47.38687287  42.076498  52.697248 0.0000000
## 0:1:2-1:0:2  42.76982782  37.459452  48.080203 0.0000000
## 1:1:2-1:0:2  39.26461510  33.954240  44.574990 0.0000000
## 1:1:2-0:1:2  -3.50521271  -8.815588   1.805163 0.4412510

Results: *note steps have been transformed

-

Tested the effect on the total number days > 7000 steps (T_Goal, goal achievement) by days of a goal achievement (R_Goal), days following a goal achievement (Prev_R), and Condition (1 = control, 2 =experimental)

**I wanted to include a “Distance from last goal” variable but had trouble with the coding, perhaps something to discuss

## $ANOVA
##       Effect DFn DFd          SSn      SSd            F             p p<.05
## 1   m_Prev_R   9 195 1.545624e+03 38.54187 868.88676335 3.477821e-152     *
## 2          C   1 195 5.329208e-03 38.54187   0.02696277  8.697411e-01      
## 3 m_Prev_R:C   9 195 1.311424e+00 38.54187   0.73722923  6.744479e-01      
##            ges
## 1 0.9756705595
## 2 0.0001382515
## 3 0.0329062960
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd      SSn      SSd        F         p p<.05
## 1  19 195 5.346504 31.04187 1.767678 0.0288383     *
## 
## $aov
## Call:
##    aov(formula = formula(aov_formula), data = data)
## 
## Terms:
##                  m_Prev_R         C m_Prev_R:C Residuals
## Sum of Squares  1577.4623    0.0053     1.3114   38.5419
## Deg. of Freedom         9         1          9       195
## 
## Residual standard error: 0.4445791
## Estimated effects may be unbalanced
##    m_Prev_R C  N        Mean        SD      FLSD          lo         hi
## 1         0 1 22  0.04545455 0.2132007 0.3781914 -0.14364117  0.2345503
## 2         0 2 25  0.20000000 0.4082483 0.3781914  0.01090428  0.3890957
## 3       0.1 1 13  1.15384615 0.3755338 0.3781914  0.96475044  1.3429419
## 4       0.1 2 22  1.13636364 0.3512501 0.3781914  0.94726792  1.3254594
## 5       0.2 1 16  2.43750000 0.5123475 0.3781914  2.24840428  2.6265957
## 6       0.2 2 20  2.35000000 0.4893605 0.3781914  2.16090428  2.5390957
## 7       0.3 1 18  3.22222222 0.4277926 0.3781914  3.03312651  3.4113179
## 8       0.3 2 13  3.38461538 0.5063697 0.3781914  3.19551967  3.5737111
## 9       0.4 1 12  4.50000000 0.5222330 0.3781914  4.31090428  4.6890957
## 10      0.4 2 10  4.40000000 0.6992059 0.3781914  4.21090428  4.5890957
## 11      0.5 1  7  5.71428571 0.4879500 0.3781914  5.52519000  5.9033814
## 12      0.5 2  3  5.33333333 0.5773503 0.3781914  5.14423762  5.5224290
## 13      0.6 1  5  6.80000000 0.4472136 0.3781914  6.61090428  6.9890957
## 14      0.6 2  4  6.50000000 0.5773503 0.3781914  6.31090428  6.6890957
## 15      0.7 1  9  7.66666667 0.5000000 0.3781914  7.47757095  7.8557624
## 16      0.7 2  3  7.66666667 0.5773503 0.3781914  7.47757095  7.8557624
## 17      0.8 1  2  9.00000000 0.0000000 0.3781914  8.81090428  9.1890957
## 18      0.8 2  3  9.00000000 0.0000000 0.3781914  8.81090428  9.1890957
## 19      0.9 1  5 10.00000000 0.0000000 0.3781914  9.81090428 10.1890957
## 20      0.9 2  3  9.66666667 0.5773503 0.3781914  9.47757095  9.8557624

Results:

-

Habits and Goal Achievement

## Call:corr.test(x = .)
## Correlation matrix 
##           total m_s_steps m_Prev_R m_R_Goal
## total      1.00      0.53     0.50     0.53
## m_s_steps  0.53      1.00     0.86     0.87
## m_Prev_R   0.50      0.86     1.00     0.99
## m_R_Goal   0.53      0.87     0.99     1.00
## Sample Size 
## [1] 212
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##           total m_s_steps m_Prev_R m_R_Goal
## total         0         0        0        0
## m_s_steps     0         0        0        0
## m_Prev_R      0         0        0        0
## m_R_Goal      0         0        0        0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## 
## Call:
## lm(formula = m_s_steps ~ total, data = goals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -43.208 -10.254   0.775  11.339  42.182 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 41.25026    3.01431  13.685   <2e-16 ***
## total        0.56479    0.06294   8.974   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.89 on 210 degrees of freedom
## Multiple R-squared:  0.2772, Adjusted R-squared:  0.2738 
## F-statistic: 80.54 on 1 and 210 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = m_s_steps ~ total * m_Prev_R, data = goals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.450  -5.449   1.246   6.912  18.972 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    34.94511    3.10213  11.265  < 2e-16 ***
## total           0.20787    0.06992   2.973   0.0033 ** 
## m_Prev_R        6.90785    0.82497   8.373 8.22e-15 ***
## total:m_Prev_R -0.01936    0.01485  -1.304   0.1937    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.38 on 208 degrees of freedom
## Multiple R-squared:  0.7505, Adjusted R-squared:  0.7469 
## F-statistic: 208.6 on 3 and 208 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = total ~ m_Prev_R, data = goals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.951 -10.545  -0.058  10.637  42.455 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  31.5717     1.8628  16.948  < 2e-16 ***
## m_Prev_R      3.4865     0.4132   8.438 5.24e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.06 on 210 degrees of freedom
## Multiple R-squared:  0.2532, Adjusted R-squared:  0.2496 
## F-statistic:  71.2 on 1 and 210 DF,  p-value: 5.239e-15
## 
## Call:
## lm(formula = total ~ m_R_Goal, data = goals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -52.232 -10.336   0.664  11.664  40.020 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   34.336      1.530  22.444   <2e-16 ***
## m_R_Goal      33.218      3.685   9.014   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.79 on 210 degrees of freedom
## Multiple R-squared:  0.279,  Adjusted R-squared:  0.2756 
## F-statistic: 81.26 on 1 and 210 DF,  p-value: < 2.2e-16
## Formula:
## total ~ m_Prev_R + m_R_Goal + m_Prev_R.XX.m_R_Goal
## <environment: 0x7f9abf691740>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.543  0.295     0.285 29.015  3.000  208   1e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -51.0553 -10.6514   0.6609   0.0000  11.0249  35.9975 
## 
## Coefficients
##                      Estimate   StdErr  t.value    beta p.value    
## (Intercept)          37.73836  3.41371 11.05494         < 2e-16 ***
## m_Prev_R             -4.53773  2.63842 -1.71987 -0.6549 0.08694 .  
## m_R_Goal             84.03797 23.92261  3.51291  1.3363 0.00054 ***
## m_Prev_R.XX.m_R_Goal -1.17008  1.36414 -0.85774 -0.1694 0.39202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                         VIF Tolerance
## m_Prev_R             42.781    0.0234
## m_R_Goal             42.693    0.0234
## m_Prev_R.XX.m_R_Goal 11.515    0.0868

**note total = total T1 habit score

Results: