Including a CURL package to grab the data from GITHUB link

getData <- getURL('https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/USArrests.csv')
USArrests <- read.csv(text = getData)

USArrests
##                 X Murder Assault UrbanPop Rape
## 1         Alabama   13.2     236       58 21.2
## 2          Alaska   10.0     263       48 44.5
## 3         Arizona    8.1     294       80 31.0
## 4        Arkansas    8.8     190       50 19.5
## 5      California    9.0     276       91 40.6
## 6        Colorado    7.9     204       78 38.7
## 7     Connecticut    3.3     110       77 11.1
## 8        Delaware    5.9     238       72 15.8
## 9         Florida   15.4     335       80 31.9
## 10        Georgia   17.4     211       60 25.8
## 11         Hawaii    5.3      46       83 20.2
## 12          Idaho    2.6     120       54 14.2
## 13       Illinois   10.4     249       83 24.0
## 14        Indiana    7.2     113       65 21.0
## 15           Iowa    2.2      56       57 11.3
## 16         Kansas    6.0     115       66 18.0
## 17       Kentucky    9.7     109       52 16.3
## 18      Louisiana   15.4     249       66 22.2
## 19          Maine    2.1      83       51  7.8
## 20       Maryland   11.3     300       67 27.8
## 21  Massachusetts    4.4     149       85 16.3
## 22       Michigan   12.1     255       74 35.1
## 23      Minnesota    2.7      72       66 14.9
## 24    Mississippi   16.1     259       44 17.1
## 25       Missouri    9.0     178       70 28.2
## 26        Montana    6.0     109       53 16.4
## 27       Nebraska    4.3     102       62 16.5
## 28         Nevada   12.2     252       81 46.0
## 29  New Hampshire    2.1      57       56  9.5
## 30     New Jersey    7.4     159       89 18.8
## 31     New Mexico   11.4     285       70 32.1
## 32       New York   11.1     254       86 26.1
## 33 North Carolina   13.0     337       45 16.1
## 34   North Dakota    0.8      45       44  7.3
## 35           Ohio    7.3     120       75 21.4
## 36       Oklahoma    6.6     151       68 20.0
## 37         Oregon    4.9     159       67 29.3
## 38   Pennsylvania    6.3     106       72 14.9
## 39   Rhode Island    3.4     174       87  8.3
## 40 South Carolina   14.4     279       48 22.5
## 41   South Dakota    3.8      86       45 12.8
## 42      Tennessee   13.2     188       59 26.9
## 43          Texas   12.7     201       80 25.5
## 44           Utah    3.2     120       80 22.9
## 45        Vermont    2.2      48       32 11.2
## 46       Virginia    8.5     156       63 20.7
## 47     Washington    4.0     145       73 26.2
## 48  West Virginia    5.7      81       39  9.3
## 49      Wisconsin    2.6      53       66 10.8
## 50        Wyoming    6.8     161       60 15.6

Q1

summary(USArrests)
##       X                 Murder          Assault         UrbanPop    
##  Length:50          Min.   : 0.800   Min.   : 45.0   Min.   :32.00  
##  Class :character   1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50  
##  Mode  :character   Median : 7.250   Median :159.0   Median :66.00  
##                     Mean   : 7.788   Mean   :170.8   Mean   :65.54  
##                     3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75  
##                     Max.   :17.400   Max.   :337.0   Max.   :91.00  
##       Rape      
##  Min.   : 7.30  
##  1st Qu.:15.07  
##  Median :20.10  
##  Mean   :21.23  
##  3rd Qu.:26.18  
##  Max.   :46.00
mean(USArrests$Murder)
## [1] 7.788
median(USArrests$Murder)
## [1] 7.25
mean(USArrests$Assault)
## [1] 170.76
median(USArrests$Assault)
## [1] 159

Q2

myDataFrame <- data.frame(USArrests[sample(1:nrow(USArrests), 5), c(1:3)] ) #created a data.frame of USArrest csv, created 5 row and 3 column
names(myDataFrame) <- c("State", "TotalMurderByState", "TotalAssaultByState") #changes the column name of the data frame
row.names(myDataFrame) <- 1:5 # this edit the row name 1 - 5
myDataFrame
##           State TotalMurderByState TotalAssaultByState
## 1      Missouri                9.0                 178
## 2 Massachusetts                4.4                 149
## 3       Wyoming                6.8                 161
## 4      Maryland               11.3                 300
## 5       Florida               15.4                 335

Q3

myDataFrame$theft <- sample(c(1:5), size=5, replace=TRUE) #created a new column name called THEFT and assigned random value between 1 - 5
#the size determine the number of ROW
myDataFrame
##           State TotalMurderByState TotalAssaultByState theft
## 1      Missouri                9.0                 178     3
## 2 Massachusetts                4.4                 149     1
## 3       Wyoming                6.8                 161     1
## 4      Maryland               11.3                 300     3
## 5       Florida               15.4                 335     1

Q4

summary(myDataFrame)
##     State           TotalMurderByState TotalAssaultByState     theft    
##  Length:5           Min.   : 4.40      Min.   :149.0       Min.   :1.0  
##  Class :character   1st Qu.: 6.80      1st Qu.:161.0       1st Qu.:1.0  
##  Mode  :character   Median : 9.00      Median :178.0       Median :1.0  
##                     Mean   : 9.38      Mean   :224.6       Mean   :1.8  
##                     3rd Qu.:11.30      3rd Qu.:300.0       3rd Qu.:3.0  
##                     Max.   :15.40      Max.   :335.0       Max.   :3.0
# mean and median of murder
mean(myDataFrame$TotalMurderByState)
## [1] 9.38
median(myDataFrame$TotalMurderByState)  
## [1] 9
#median and median of assault 
mean(myDataFrame$TotalAssaultByState)
## [1] 224.6
median(myDataFrame$TotalAssaultByState)  
## [1] 178

Q5

USArrests <- cbind(USArrests, theft = factor(NA, levels = 1)) # created a column in the existing dataset. 
USArrests
##                 X Murder Assault UrbanPop Rape theft
## 1         Alabama   13.2     236       58 21.2  <NA>
## 2          Alaska   10.0     263       48 44.5  <NA>
## 3         Arizona    8.1     294       80 31.0  <NA>
## 4        Arkansas    8.8     190       50 19.5  <NA>
## 5      California    9.0     276       91 40.6  <NA>
## 6        Colorado    7.9     204       78 38.7  <NA>
## 7     Connecticut    3.3     110       77 11.1  <NA>
## 8        Delaware    5.9     238       72 15.8  <NA>
## 9         Florida   15.4     335       80 31.9  <NA>
## 10        Georgia   17.4     211       60 25.8  <NA>
## 11         Hawaii    5.3      46       83 20.2  <NA>
## 12          Idaho    2.6     120       54 14.2  <NA>
## 13       Illinois   10.4     249       83 24.0  <NA>
## 14        Indiana    7.2     113       65 21.0  <NA>
## 15           Iowa    2.2      56       57 11.3  <NA>
## 16         Kansas    6.0     115       66 18.0  <NA>
## 17       Kentucky    9.7     109       52 16.3  <NA>
## 18      Louisiana   15.4     249       66 22.2  <NA>
## 19          Maine    2.1      83       51  7.8  <NA>
## 20       Maryland   11.3     300       67 27.8  <NA>
## 21  Massachusetts    4.4     149       85 16.3  <NA>
## 22       Michigan   12.1     255       74 35.1  <NA>
## 23      Minnesota    2.7      72       66 14.9  <NA>
## 24    Mississippi   16.1     259       44 17.1  <NA>
## 25       Missouri    9.0     178       70 28.2  <NA>
## 26        Montana    6.0     109       53 16.4  <NA>
## 27       Nebraska    4.3     102       62 16.5  <NA>
## 28         Nevada   12.2     252       81 46.0  <NA>
## 29  New Hampshire    2.1      57       56  9.5  <NA>
## 30     New Jersey    7.4     159       89 18.8  <NA>
## 31     New Mexico   11.4     285       70 32.1  <NA>
## 32       New York   11.1     254       86 26.1  <NA>
## 33 North Carolina   13.0     337       45 16.1  <NA>
## 34   North Dakota    0.8      45       44  7.3  <NA>
## 35           Ohio    7.3     120       75 21.4  <NA>
## 36       Oklahoma    6.6     151       68 20.0  <NA>
## 37         Oregon    4.9     159       67 29.3  <NA>
## 38   Pennsylvania    6.3     106       72 14.9  <NA>
## 39   Rhode Island    3.4     174       87  8.3  <NA>
## 40 South Carolina   14.4     279       48 22.5  <NA>
## 41   South Dakota    3.8      86       45 12.8  <NA>
## 42      Tennessee   13.2     188       59 26.9  <NA>
## 43          Texas   12.7     201       80 25.5  <NA>
## 44           Utah    3.2     120       80 22.9  <NA>
## 45        Vermont    2.2      48       32 11.2  <NA>
## 46       Virginia    8.5     156       63 20.7  <NA>
## 47     Washington    4.0     145       73 26.2  <NA>
## 48  West Virginia    5.7      81       39  9.3  <NA>
## 49      Wisconsin    2.6      53       66 10.8  <NA>
## 50        Wyoming    6.8     161       60 15.6  <NA>

Q6

head(USArrests, 20)
##              X Murder Assault UrbanPop Rape theft
## 1      Alabama   13.2     236       58 21.2  <NA>
## 2       Alaska   10.0     263       48 44.5  <NA>
## 3      Arizona    8.1     294       80 31.0  <NA>
## 4     Arkansas    8.8     190       50 19.5  <NA>
## 5   California    9.0     276       91 40.6  <NA>
## 6     Colorado    7.9     204       78 38.7  <NA>
## 7  Connecticut    3.3     110       77 11.1  <NA>
## 8     Delaware    5.9     238       72 15.8  <NA>
## 9      Florida   15.4     335       80 31.9  <NA>
## 10     Georgia   17.4     211       60 25.8  <NA>
## 11      Hawaii    5.3      46       83 20.2  <NA>
## 12       Idaho    2.6     120       54 14.2  <NA>
## 13    Illinois   10.4     249       83 24.0  <NA>
## 14     Indiana    7.2     113       65 21.0  <NA>
## 15        Iowa    2.2      56       57 11.3  <NA>
## 16      Kansas    6.0     115       66 18.0  <NA>
## 17    Kentucky    9.7     109       52 16.3  <NA>
## 18   Louisiana   15.4     249       66 22.2  <NA>
## 19       Maine    2.1      83       51  7.8  <NA>
## 20    Maryland   11.3     300       67 27.8  <NA>

Q7

Bonus: I have used the original csv from the github and read the files from the link.