You should only use the file Exam_template.Rmd provided on blackboard and you should load this file from your scripts folder / directory.
Save this template as your studentID.Rmd; you will upload this file as your submission. Change the information on line 3 of this file – changing the author information to your student ID. Do not change the authorship to your name.
Ensure that you save your data into your data folder (as discussed in class). You may use the files mypackages.R and helperFunctions.R from blackboard. If you use these files, do not alter them. If you wish to create additional files for custom functions that you have prepared in advance, make sure that you upload these in addition to your .Rmd file and your compiled output file.
Your should knit this file to a document Word format.
Any changes that you make to the data (e.g. variable name changes) should be made entirely within R.
The subsubsections labelled Answer: indicate where you should put in your written Answers. The template also provides blank code chunks for you to complete your Answers; you may choose to add additional chunks if required.
#install.packages(“tidyverse”) #install.packages(“dplyr”) #install.packages(“ggplot2”) #install.packages(“summarytools”) #install.packages(“psych”) #install.packages(“performance”) #install.packages(“corrplot”) #install.packages(“lsr”) #install.packages(“lessR”) #install.packages(“boot”) Having installed all these packages, we shall call the following libraries:
# load dataset
mydata = read.csv("Jan_2022_Exam_Data.csv")
attach(mydata)
The following object is masked from package:ggplot2:
mpg
#View(mydata)
names(mydata)
[1] "brand" "model" "year" "price" "transmission"
[6] "mileage" "fuelType" "tax" "mpg" "engineSize"
This dataset is part of a larger dataset that has been collected to help to estimate the price of used cars.
It contains the following variables:
You are interested in modelling the price of vehicles that have all of the following properties:
Once you have selected the rows of data with these properties, then you must use the last 4 digits of your studentID to select a random sample of 2000 rows of the data to perform the rest of your analysis with.
You should remove any redundant variables (where only one value remains in that variable).
This subset of the data is what you should use for the rest of this assessment.
(4 marks)
(aa) Call the libraries of all the installed packages so as to enable all the computions.
(bb) Reading the csv file to the R Studio
(dd) Filtering it using mileage less than 90000, manual transmission, diesel engine (fuelType), and costing less than 300 Euro in annual Vehicle Tax
(ee) Saving the filtered dataset to another name, such as mydata, mydata2, etc, as the case may be.
(ff) Selecting a random sample of 2000 rows from the filtered dataset while setting our seed to be the last four digits of my student’s ID, which is 4927.
(gg) Removing the variables with redundant values
(hh) Converting the variables to factors.
(7 marks)
mydata2 = subset(mydata, transmission=="Manual" & mileage < 90000 & fuelType=="Diesel" & tax < 300, select = -c(fuelType, transmission))
#View(mydata2)
write.csv(mydata2, "DATA3.csv") # Just to be rest assured that the needed datasets are captured.
#Seeting our seed to be:
set.seed(4927)
mydata3 = mydata2 %>% sample_n(2000, replace = FALSE)
View(mydata3)
(2 marks)
We shall consider two major descriptive statistics: measure of central tendency and measure of variability. The measure of central tendency is useful to represent the centre point of our dataset, while measure of variability is used to measure the degree of variation in our dataset.
(4 marks)
mydata4 = mydata3[ , c(4:8)]
#View(mydata4)
# To find the measure of central tendency, run the following command:
mean(mydata4[,1]); mean(mydata4[, 2]); mean(mydata4[, 3]); mean(mydata4[, 4]); mean(mydata4[, 5])
[1] 13933.86
[1] 32538.84
[1] 84.9725
[1] 64.1641
[1] 1.78605
median(mydata4[,1]); median(mydata4[, 2]); median(mydata4[, 3]); median(mydata4[, 4]); median(mydata4[, 5])
[1] 13486
[1] 29666.5
[1] 125
[1] 64.2
[1] 2
#install.packages("lsr")
library(lsr)
modeOf(mydata4[,1]); modeOf(mydata4[,2]); modeOf(mydata4[,3]); modeOf(mydata4[,4]); modeOf(mydata4[,5])
[1] 16000 11000
[1] 10
[1] 145
[1] 74.3
[1] 2
# To find the measure of variability, run the following command:
range(mydata4[,1]); range(mydata4[, 2]); range(mydata4[, 3]); range(mydata4[, 4]); range(mydata4[, 5])
[1] 2395 32995
[1] 5 89936
[1] 0 260
[1] 30.1 88.3
[1] 0.0 2.2
IQR(mydata4[,1]); IQR(mydata4[, 2]); IQR(mydata4[, 3]); IQR(mydata4[, 4]); IQR(mydata4[, 5])
[1] 6423.75
[1] 29308
[1] 125
[1] 13.275
[1] 0.5
var(mydata4[,1]); var(mydata4[, 2]); var(mydata4[, 3]); var(mydata4[, 4]); var(mydata4[, 5])
[1] 22931232
[1] 445497989
[1] 4263.894
[1] 101.5388
[1] 0.06297188
sd(mydata4[,1]); sd(mydata4[, 2]); sd(mydata4[, 3]); sd(mydata4[, 4]); sd(mydata4[, 5])
[1] 4788.657
[1] 21106.82
[1] 65.2985
[1] 10.07665
[1] 0.250942
(4 marks)
In the analysis using measure of central tendency, we observe that the average price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres) are 13933.86, 32538.84,84.97,64.16 and 1.79 respectively, while their median values are 13486, 29666.5, 125, 64.2, and 2. Not only these but also, the modes are 16000 and 11000 for only price (this means that there are bimodal values for the price of the car), 10, 145, 74.3, and 2 are the mode for mileage, tax, mpg, and engineSize. All these talk about measure of central tendency.
Come to think of the measure of variability as used here, the ranges for price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres) are (2395 - 32995), (5 - 89936), (0 - 260), (30.1 - 88.3), and (0.0 - 2.2) respectively. We got 6423.75, 29308, 125, 13.275, and 0.5 as interquartile range values for price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres). Also, the values for variance and standard deviation for each of these variables are (22931232, 4788.657), (445497989, 21106.82), (4263.894, 65.2985), (101.5388, 10.07665), and (0.06297, 0.25094).
(2 marks)
We shall consider BOX-WHISKER PLOT and HISTOGRAM. BOX-WHISKER PLOT helps to determine the nature of the distribution in the dataset by checking the normality assumption, while HISTOGRAM is the best choice for visualizing central tendency of data.
(4 marks)
# To obtain the box plot, run the command below:
win.graph(width=4, height=4, pointsize=8)
boxplot(mydata4, main="Box Plot", col=c(2:6), col.main="purple", pch=19, las=1, sub="Figure I", col.sub="coral3")
# To obtain the histogram, run the commands below:
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 1], main="Histigram for the Price of Vehicle", sub="Figire II", col.sub="green4",col=2:9, xlab="Price (in GB Pounds)", col.main="brown")
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 2], main="Histigram for Mileage", sub="Figire III", col.sub="green4",col=2:9, xlab="Mileage (less than 90000)", col.main="brown")
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 3], main="Histigram for Tax", sub="Figire IV", col.sub="green4",col=2:9, xlab="Annual Cost of Vehicle Tax", col.main="brown")
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 4], main="Histigram for Miles Per Gallon", sub="Figire V", col.sub="green4",col=2:9, xlab="mpg (Miles per Gallon - a measure of fuel efficiency)", col.main="brown")
win.graph(width=4, height=4, pointsize=8)
windows()
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 5], main="Histigram for Size of the Engine (in litres)", sub="Figire VI", col.sub="green4",col=2:9, xlab="engine Size", col.main="brown")
In Box Plot, it appears that only mileage is normally distributed while the rest are far away from normality. As a result, it is advisable to go for test of normality to be double sure and also perform some statistical analysis to correct the abnorlity in the dataset.
In the Histogram, the graph shows for the price is not normal, also the graph for the mileage is skewed to the right, the one for tax shows some evidence of bimodal as depicted in the descriptive statistics of measure of central tendency, the one for mpg shows a kind of normality, while the last histogram shows that the engine Size is completely abnormal.
cor(mydata4)
price mileage tax mpg engineSize
price 1.0000000 -0.6690729 0.5231055 -0.5381233 0.3234885
mileage -0.6690729 1.0000000 -0.3696081 0.1870735 0.1001805
tax 0.5231055 -0.3696081 1.0000000 -0.5990075 0.2571670
mpg -0.5381233 0.1870735 -0.5990075 1.0000000 -0.5261717
engineSize 0.3234885 0.1001805 0.2571670 -0.5261717 1.0000000
Comparing price with mileage, the value indicates that there is a negative correlation of approximately 67%, which means that when price increases, mileage decreases and, vice-versa. Also, the correlation between price and tax shows that there is a positive correlation between them to the tone of 52%, which means that when price increases, tax also increases, and vice-versa. Also, the correlation between price and mpg shows that there is a negative correlation between them (-54%), which means that as price increases, mpg decreases , and vice-versa. The last aspect of comparison show that the correlation between price and enginesize is approximately 32%, which means that as the price increases, the enginesize also increases, and vice-versa.
The potential explanatory variables are mileage and tax, while between the two, the one with the strongest linear relatiosnhip is mileage, which is negatively linearly related with approximately 67% (-0.67). This value is negatively strongest among all.
model_1 = lm(price ~ mileage, data = mydata4)
summary(model_1)
Call:
lm(formula = price ~ mileage, data = mydata4)
Residuals:
Min 1Q Median 3Q Max
-9014.3 -2466.4 7.5 2186.2 14214.7
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18873.168634 146.294585 129.01 <0.0000000000000002 ***
mileage -0.151797 0.003772 -40.24 <0.0000000000000002 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3560 on 1998 degrees of freedom
Multiple R-squared: 0.4477, Adjusted R-squared: 0.4474
F-statistic: 1619 on 1 and 1998 DF, p-value: < 0.00000000000000022
#install.packages("lessR")
library("lessR")
Plot(mileage, price, fit="lm", main="Scatter Plot showing the Relationship between Price and Mileage", xlab="Mileage", ylab="Price of the Vehicle", col.main="blue3", col.lab="red3", enhance=T, sub="Figure VII")
[Ellipse with Murdoch and Chow's function ellipse from their ellipse package]
>>> Suggestions
Plot(mileage, price, color="red") # exterior edge color of points
Plot(mileage, price, out_cut=.10) # label top 10% from center as outliers
>>> Pearson's product-moment correlation
Number of paired values with neither missing, n = 52533
Sample Correlation of mileage and price: r = -0.466
Hypothesis Test of 0 Correlation: t = -120.820, df = 52531, p-value = 0.000
95% Confidence Interval for Correlation: -0.473 to -0.460
>>> Outlier analysis with Mahalanobis Distance
MD ID
----- -----
214.05 9823
185.32 45614
172.81 49459
159.75 39420
146.96 4784
140.50 45801
139.85 39423
135.24 48152
133.71 45317
133.58 48548
132.96 50759
131.80 47279
131.00 48236
129.56 2256
128.41 4180
123.23 3368
121.50 48088
120.51 5460
120.25 52319
113.99 14307
112.35 45625
111.50 1647
107.34 10469
103.75 44174
103.49 42062
102.20 45638
101.82 4926
101.67 3360
100.69 43509
100.45 42044
94.74 7446
92.52 4743
91.84 7129
85.49 20088
85.12 5708
83.47 46549
81.70 3940
81.33 48574
75.93 4955
75.16 41395
74.31 48160
73.35 52475
73.27 6385
72.78 47243
67.42 44726
67.10 40426
66.15 10226
65.77 43502
65.50 43624
63.97 43393
62.48 18982
62.01 4401
60.19 45077
58.56 50996
58.01 40101
57.85 48656
57.68 16031
56.63 20083
54.67 3712
54.46 49696
52.89 8631
51.88 38553
51.11 5304
50.63 46543
50.59 38396
49.99 44194
49.70 4392
48.39 48087
48.27 50797
47.28 9691
46.85 50222
46.19 51343
45.20 20673
45.02 51355
44.85 20223
44.67 46727
44.58 5141
44.45 3377
44.10 43012
43.82 15445
43.76 40380
43.73 13578
43.68 50793
43.31 43468
42.19 48690
42.15 12482
41.56 20365
40.99 52063
40.90 4672
40.50 48085
40.49 4330
40.48 48086
40.28 19885
39.71 50667
39.51 46550
39.26 48165
39.00 19594
38.95 7188
38.73 51432
38.47 49981
38.39 4711
37.67 11390
37.63 4055
37.39 50538
37.29 51115
37.25 1108
37.20 45027
37.16 697
36.69 8421
36.52 49598
36.08 52125
36.02 37700
35.71 7405
35.38 38389
34.94 317
34.93 20318
34.77 20469
34.45 20422
34.16 40700
34.11 48097
33.76 10113
33.44 50518
33.23 5981
33.10 7847
32.76 47259
32.76 16546
32.69 18116
32.59 41324
32.26 42578
32.15 43273
31.88 45991
31.82 41449
31.82 10073
31.80 45654
31.40 16784
31.33 19860
31.26 49578
31.26 49614
31.25 47439
31.10 39192
31.07 17693
31.05 35958
30.91 47914
30.84 41469
30.76 37159
30.58 13271
30.53 17781
30.52 45427
30.44 45076
30.32 9435
30.27 47642
30.27 8271
30.21 13213
30.21 13607
30.17 13211
30.06 10910
29.92 17115
29.90 20364
29.60 50550
29.59 1839
29.39 38103
29.37 5476
29.27 44681
29.27 49590
29.18 36004
29.15 4946
29.14 20545
29.12 42049
28.97 35964
28.97 36006
28.89 18063
28.78 42726
28.63 45595
28.61 48894
28.59 38397
28.56 10239
28.46 7439
28.37 19110
28.13 12373
28.03 48316
27.92 49663
27.92 48352
27.71 50566
27.62 11478
27.60 37136
27.42 20080
27.37 14350
27.20 9865
27.19 45718
27.17 37521
27.12 48693
27.01 46933
27.00 47865
27.00 35817
26.98 7442
26.98 9727
26.90 36005
26.84 50567
26.79 15842
26.74 12517
26.70 49577
26.55 19530
26.53 15996
26.51 19248
26.50 19812
26.45 35965
26.45 20430
26.43 8639
26.38 43902
26.38 44653
26.35 46637
26.33 5076
26.15 35952
26.05 35044
26.05 19095
25.82 51422
25.74 13769
25.73 37824
25.67 41557
25.65 39419
25.64 51478
25.57 46552
25.54 18976
25.53 19575
25.50 17259
25.48 35957
25.47 49582
25.47 49617
25.45 46930
25.39 11597
25.35 47498
25.34 12298
25.34 17027
25.32 17681
25.26 10554
25.21 48963
25.18 18972
25.16 49597
25.15 19440
25.10 42141
25.06 20630
25.03 51273
25.03 50661
24.99 19589
24.89 20905
24.84 35947
24.83 6484
24.82 14166
24.82 8296
24.82 35956
24.82 35960
24.82 35975
24.77 10109
24.72 17550
24.70 19866
24.62 18967
24.62 18980
24.62 36007
24.56 7093
24.53 12627
24.52 16605
24.47 12665
24.47 9275
24.41 49084
24.32 4942
24.29 39491
24.25 20698
24.20 45717
24.20 9853
24.15 43341
24.14 16582
24.14 35951
24.14 35953
24.10 18073
24.05 9963
24.03 4741
24.01 35029
24.01 35974
24.01 35999
23.96 35948
23.96 19958
23.93 21383
23.85 38144
23.83 8297
23.83 8298
23.78 19987
23.72 43845
23.67 11029
23.66 10340
23.61 16117
23.58 48256
23.55 48559
23.54 38400
23.52 9896
23.49 49591
23.45 50819
23.45 20697
23.45 9360
23.40 35946
23.36 7056
23.33 36208
23.31 50542
23.26 20653
23.24 43486
23.21 20904
23.21 20497
23.20 17754
23.15 19884
23.08 9960
23.06 9883
23.03 16807
23.02 36204
22.88 9908
22.86 10260
22.79 45824
22.76 9076
22.71 52124
22.56 46740
22.51 19848
22.48 48398
22.43 3163
22.38 38312
22.37 17181
22.33 49576
22.33 49613
22.31 47955
22.29 36143
22.26 17575
22.25 17261
22.23 8878
22.22 16729
22.16 43930
22.03 17713
22.02 50938
22.00 8557
22.00 21377
22.00 13278
21.99 15183
21.91 9962
21.87 18138
21.83 10471
21.81 20662
21.77 11388
21.74 35959
21.74 20779
21.73 20577
21.73 2365
21.66 10099
21.63 9544
21.62 15106
21.61 12414
21.61 633
21.57 46914
21.56 45814
21.55 19916
21.54 7094
21.53 17654
21.52 15280
21.50 17528
21.46 8268
21.46 8300
21.46 8571
21.46 16382
21.45 41556
21.43 10199
21.42 45601
21.40 9260
21.38 16256
21.37 3636
21.37 41320
21.33 16785
21.32 20087
21.31 8491
21.31 36139
21.28 49592
21.23 8266
21.23 8299
21.21 49021
21.17 48543
21.17 8509
21.13 52417
21.13 52303
21.02 18010
21.01 11305
21.01 20089
20.99 47148
20.95 20541
20.94 9897
20.94 51433
20.88 12765
20.88 49005
20.85 18536
20.82 17415
20.81 9545
20.71 47061
20.68 52453
20.60 4593
20.60 10428
20.58 37754
20.55 50796
20.50 11403
20.45 5493
20.40 12023
20.39 51419
20.38 5877
20.35 13736
20.35 50267
20.30 4653
20.28 9898
20.28 17275
20.27 20543
20.26 13212
20.25 9884
20.23 9277
20.23 39428
20.20 15444
20.15 19551
20.14 9517
20.07 10598
20.06 47603
20.03 8251
20.03 8281
19.97 51025
19.96 42471
19.95 20648
19.94 41901
19.91 51279
19.91 38158
19.87 4956
19.87 11544
19.74 40453
19.73 11043
19.71 35973
19.71 8561
19.68 9372
19.67 4477
19.67 49029
19.66 38354
19.64 12695
19.64 20652
19.60 37856
19.60 49485
19.59 44405
19.58 10650
19.56 9941
19.55 43485
19.54 8510
19.50 2739
19.48 19893
19.45 41072
19.42 3998
19.42 4049
19.42 5000
19.37 47440
19.34 21329
19.30 42801
19.29 19814
19.29 11088
19.29 47869
19.26 9728
19.22 42873
19.19 48983
19.15 50545
19.14 51271
19.14 47803
19.12 5042
19.08 20085
19.08 19615
19.07 6471
19.05 4904
19.05 50529
19.04 37703
19.03 49589
19.03 49604
19.03 46528
19.01 6087
19.00 40089
18.95 20405
18.95 48100
18.94 50530
18.92 45993
18.92 47488
18.90 52009
18.88 38119
18.88 21393
18.87 51185
18.82 12340
18.81 7884
18.78 16550
18.75 45611
18.73 16257
18.69 51575
18.69 11873
18.68 47596
18.67 20421
18.66 48070
18.64 9245
18.61 47129
18.60 18896
18.58 37966
18.53 46681
18.51 52181
18.51 15466
18.49 34952
18.49 35979
18.48 2783
18.44 45592
18.44 7297
18.43 18419
18.41 16725
18.35 20587
18.31 42606
18.28 47151
18.26 10064
18.23 17407
18.23 8248
18.22 19094
18.20 7476
18.19 14586
18.17 7751
18.15 37974
18.08 48904
18.05 50273
17.98 45194
17.97 10225
17.94 9272
17.91 20720
17.90 41347
17.80 11582
17.78 34930
17.77 39478
17.77 9279
17.72 4802
17.72 51423
17.72 49579
17.72 49594
17.72 19237
17.72 35955
17.70 8514
17.70 37730
17.69 12440
17.67 4430
17.66 9259
17.66 19862
17.63 7690
17.63 9878
17.62 7705
17.58 14917
17.57 49879
17.56 38323
17.55 38917
17.53 13786
17.49 16848
17.49 10030
17.48 38893
17.47 41689
17.47 42371
17.45 14214
17.44 13127
17.43 19972
17.42 14818
17.42 44142
17.40 51022
17.37 38975
17.36 9273
17.33 12019
17.32 36000
17.30 20461
17.29 17953
17.29 38107
17.27 2647
17.24 17311
17.24 452
17.23 20470
17.22 16737
17.22 15195
17.21 16804
17.21 300
17.19 38897
17.17 8232
17.17 20406
17.17 19853
17.16 2774
17.15 14579
17.13 12412
17.12 37836
17.10 39682
17.10 15053
17.09 48229
17.08 17538
17.08 18026
17.02 10517
17.02 37729
17.00 38918
16.99 38399
16.99 38531
16.99 19096
16.95 50986
16.93 20632
16.93 38352
16.93 38811
16.92 13235
16.91 8174
16.90 10009
16.89 14492
16.86 19207
16.85 1164
16.84 20602
16.82 51206
16.79 8252
16.79 8283
16.79 15809
16.77 12742
16.76 5157
16.76 51223
16.75 15832
16.75 35921
16.75 49608
16.73 37128
16.69 35944
16.69 35950
16.68 8895
16.68 16846
16.67 20674
16.66 48284
16.65 13560
16.65 39418
16.63 50555
16.59 7462
16.57 6174
16.55 49664
16.54 15474
16.52 19850
16.49 50795
16.46 18471
16.45 19636
16.42 40637
16.41 35945
16.34 45633
16.34 5883
16.33 7630
16.28 17114
16.28 19550
16.26 37345
16.26 10209
16.25 20623
16.23 35434
16.20 18027
16.17 18979
16.16 9285
16.15 37740
16.14 38588
16.13 19580
16.10 4471
16.10 5090
16.10 16395
16.09 17146
16.07 38463
16.07 7846
15.99 4039
15.93 45447
15.91 46188
15.89 51055
15.89 4798
15.88 49773
15.86 35961
15.86 36001
15.86 38106
15.83 11578
15.82 48162
15.80 39486
15.80 36003
15.80 14667
15.79 7315
15.79 11225
15.77 12028
15.75 17458
15.75 47875
15.74 7015
15.74 47700
15.74 51237
15.73 38826
15.71 19246
15.69 12797
15.69 9226
15.68 8883
15.66 39206
15.66 17043
15.63 18437
15.60 9201
15.59 10011
15.59 49616
15.59 49606
15.59 8880
15.58 47387
15.58 8616
15.56 20342
15.55 19571
15.53 52171
15.52 39422
15.52 16239
15.51 16169
15.50 199
15.50 5757
15.50 42363
15.50 4495
15.48 42564
15.48 35982
15.46 34935
15.44 19929
15.42 18170
15.42 46395
15.42 49599
15.40 10553
15.38 10242
15.37 38355
15.35 19552
15.35 38696
15.32 4450
15.32 20681
15.31 8489
15.30 8295
15.30 21440
15.24 48928
15.23 50543
15.22 3299
15.22 9925
15.18 20687
15.17 47428
15.17 36336
15.15 16267
15.15 48068
15.13 17807
15.11 37964
15.10 14676
15.09 38934
15.09 51358
15.05 38827
15.04 20542
15.03 51231
15.02 1197
15.00 12576
15.00 20341
14.98 48667
14.98 9729
14.97 17941
14.97 20605
14.96 50589
14.92 46742
14.91 10858
14.87 8267
14.83 35978
14.82 14210
14.77 45380
14.76 17553
14.76 45758
14.76 43849
14.76 50008
14.75 51305
14.74 38935
14.73 16460
14.73 6426
14.72 19843
14.70 9792
14.69 38349
14.69 49913
14.66 5256
14.65 5741
14.64 38261
14.62 10177
14.61 9656
14.60 19989
14.57 49605
14.56 35032
14.56 4901
14.55 7459
14.54 35972
14.52 48194
14.51 45764
14.49 7407
14.46 47653
14.46 49216
14.45 49929
14.44 19529
14.41 18179
14.40 12686
14.37 51265
14.35 37132
14.35 641
14.33 40011
14.33 50569
14.31 11031
14.31 17730
14.30 10501
14.29 20580
14.28 49612
14.27 52336
14.26 14213
14.24 7427
14.23 16693
14.21 7425
14.20 10114
14.18 9586
14.18 37892
14.18 10110
14.18 17979
14.17 38880
14.17 14806
14.17 35977
14.16 9284
14.16 49593
14.15 49567
14.12 18494
14.11 43477
14.10 21333
14.08 18971
14.07 49583
14.07 49611
14.06 8884
14.05 7498
14.04 18566
14.03 39944
14.03 17627
14.03 47782
14.01 19155
14.00 46669
14.00 47146
14.00 37701
13.98 4558
13.98 42057
13.98 50981
13.95 51236
13.94 19864
13.93 9239
13.89 9202
13.89 18135
13.86 48163
13.86 37813
13.85 10697
13.84 45594
13.82 4723
13.82 4948
13.81 50260
13.81 20416
13.81 5856
13.79 19346
13.77 14020
13.76 19878
13.76 15630
13.76 52292
13.75 19093
13.75 8261
13.74 4993
13.74 36349
13.73 39489
13.73 525
13.73 4101
13.73 42037
13.72 43726
13.72 1968
13.72 42721
13.71 48040
13.71 33508
13.71 49899
13.71 9690
13.70 17185
13.70 50599
13.69 4571
13.68 17679
13.66 38823
13.65 8250
13.65 8280
13.65 18097
13.63 19877
13.63 50798
13.63 42796
13.63 38437
13.63 5130
13.62 39204
13.62 38458
13.59 3961
13.59 42805
13.59 43617
13.59 43658
13.58 43654
13.57 7289
13.57 9269
13.56 49948
13.55 50548
13.55 4012
13.55 4078
13.55 16939
13.54 17610
13.53 49054
13.53 10213
13.52 9262
13.52 39201
13.50 3795
13.50 17029
13.47 12777
13.46 7222
13.46 43006
13.45 49954
13.45 45442
13.44 44784
13.43 4755
13.42 15240
13.42 15254
13.42 43519
13.41 8492
13.41 9408
13.41 47265
13.40 7875
13.39 47605
13.39 51477
13.39 47556
13.39 5517
13.37 4670
13.36 16618
13.35 13714
13.35 9587
13.34 3759
13.33 41319
13.32 47641
13.32 9635
13.32 17966
13.32 17731
13.32 38505
13.32 9899
13.31 223
13.31 14324
13.31 48015
13.31 52180
13.30 42354
13.30 47300
13.29 45924
13.29 48538
13.29 7796
13.29 47262
13.29 6396
13.29 49059
13.29 13795
13.28 10487
13.27 18098
13.26 50982
13.25 21062
13.25 46689
13.25 2813
13.23 50576
13.23 39575
13.22 19197
13.22 4409
13.21 8630
13.20 17329
13.18 19879
13.15 43668
13.14 49544
13.13 19549
13.13 19844
13.12 1812
13.10 19553
13.10 14580
13.08 34988
13.08 19876
13.05 8490
13.05 21328
13.04 20672
13.03 37721
13.02 35971
13.02 4897
13.00 19799
12.97 20690
12.97 16458
12.96 6255
12.96 37684
12.95 3068
12.95 38796
12.95 38861
12.95 19576
12.95 37942
12.95 38102
12.93 50564
12.93 8562
12.91 41882
12.91 14130
12.87 531
12.87 11893
12.87 16203
12.86 15019
12.84 17486
12.83 19966
12.82 4968
12.82 44024
12.81 6607
12.81 8181
12.80 8942
12.79 8892
12.79 980
12.78 7492
12.78 8282
12.76 46491
12.74 6853
12.72 8249
12.70 44151
12.68 38756
12.66 14180
12.66 4944
12.64 47004
12.64 15502
12.64 37825
12.63 51210
12.63 43737
12.63 10522
12.63 16127
12.61 18174
12.61 9869
12.60 1310
12.60 285
12.59 45243
12.58 51120
12.58 9238
12.58 4159
12.57 2255
12.57 41088
12.57 45378
12.56 11267
12.56 19491
12.56 11437
12.55 48670
12.54 19587
12.54 5642
12.53 5596
12.52 9830
12.50 46741
12.50 3320
12.47 20350
12.46 48758
12.45 8822
12.45 8881
12.44 49610
12.44 52156
12.43 8886
12.43 5641
12.43 18096
12.42 9231
12.42 20345
12.41 8890
12.41 5302
12.41 13888
12.41 19554
12.41 19560
12.41 51618
12.40 52146
12.39 47249
12.39 37842
12.38 35962
12.38 35954
12.38 35976
12.38 19573
12.36 19924
12.36 50504
12.35 8604
12.34 12734
12.33 52471
12.32 4069
12.32 44478
12.31 8310
12.31 4735
12.30 44863
12.30 37792
12.30 10589
12.30 38837
12.29 37798
12.27 15438
12.27 49777
12.27 38460
12.26 13844
12.26 20468
12.25 4465
12.24 16572
12.23 10193
12.23 20415
12.22 13393
12.22 47122
12.22 42518
12.22 18019
12.20 2179
12.19 35940
12.19 41339
12.18 20157
12.18 20225
12.18 39735
12.18 18352
12.18 18831
12.17 14949
12.16 37075
12.15 51054
12.14 47501
12.13 41095
12.12 19685
12.10 20664
12.10 10259
12.10 52008
12.08 5513
12.08 20305
12.08 152
12.07 40607
12.07 51787
12.06 19113
12.06 37723
12.05 15429
12.05 50521
12.04 17036
12.03 40369
12.02 9221
12.02 17954
12.02 38318
12.01 14078
12.01 38900
12.01 4771
12.00 5077
12.00 4575
12.00 12736
11.99 7765
11.99 35031
11.99 10159
11.99 38526
11.98 1078
11.98 38123
11.98 7613
11.97 21063
11.97 15593
11.96 10086
11.96 20724
11.95 48695
11.95 13316
11.93 46673
11.92 596
11.90 15724
11.90 19883
11.90 4292
11.88 49043
11.87 37890
11.87 49214
11.87 18977
11.86 45441
11.86 18210
11.85 34997
11.85 20428
11.85 67
11.84 46443
11.84 7438
11.84 19091
11.83 19187
11.83 12339
11.83 9282
11.83 16567
11.82 40448
11.82 10151
11.82 18993
11.82 40027
11.82 29061
11.82 9232
11.80 4834
11.79 7049
11.79 9885
11.79 20645
11.77 35963
11.77 36002
11.76 51179
11.75 19574
11.75 15799
11.74 10531
11.73 20075
11.73 48294
11.72 51317
11.72 43705
11.72 4402
11.72 16495
11.72 10586
11.71 39497
11.70 48135
11.69 9242
11.69 35038
11.68 9524
11.68 6850
11.68 35030
11.68 38864
11.67 20678
11.66 10183
11.66 3925
11.66 8239
11.65 15376
11.64 24412
11.64 4832
11.63 7549
11.62 1177
11.62 8875
11.61 46887
11.60 43837
11.60 6285
11.58 43649
11.58 42793
11.58 43680
11.56 9879
11.55 41655
11.55 44187
11.54 17775
11.53 20166
11.53 6989
11.53 51043
11.52 17930
11.52 20059
11.52 39186
11.52 17418
11.51 38319
11.51 51828
11.50 14083
11.50 7986
11.49 6900
11.49 35920
11.49 18374
11.47 7636
11.47 7212
11.46 16472
11.45 18223
11.45 49575
11.45 49596
11.44 9479
11.43 38717
11.42 15134
11.42 14684
11.42 50738
11.41 52122
11.41 43424
11.40 36354
11.39 50835
11.39 48289
11.39 2278
11.39 15212
11.38 37846
11.38 248
11.37 35028
11.37 37133
11.37 17692
11.37 48455
11.37 38790
11.36 3327
11.36 49668
11.35 44021
11.35 10454
11.35 5447
11.35 42030
11.34 19202
11.34 37480
11.33 17465
11.33 6291
11.33 7525
11.33 39432
11.32 49008
11.31 47333
11.31 46462
11.31 19052
11.30 16928
11.28 9281
11.28 733
11.28 21071
11.27 2746
11.26 40381
11.25 20785
11.25 41933
11.24 200
11.24 15325
11.23 37129
11.23 1546
11.22 4240
11.22 12112
11.22 2363
11.22 4903
11.21 47111
11.19 16410
11.19 9868
11.18 50575
11.17 20583
11.17 16237
11.16 50306
11.16 1935
11.16 9186
11.16 20212
11.16 44112
11.15 18829
11.15 52405
11.14 11246
11.14 7495
11.13 17609
11.12 7441
11.11 18009
11.11 48475
11.11 3864
11.11 48296
11.10 9622
11.10 21031
11.09 7826
11.08 35672
11.08 12400
11.08 7769
11.07 19971
11.07 18383
11.07 19838
11.07 5907
11.06 50856
11.06 16931
11.06 16478
11.06 4564
11.06 38828
11.04 7729
11.03 45988
11.03 4428
11.02 9964
11.02 41507
11.01 46978
11.01 49168
11.01 10993
11.00 2830
11.00 44424
11.00 6172
11.00 8262
11.00 10096
11.00 9169
10.99 46682
10.99 17999
10.99 6938
10.99 17763
10.99 47334
10.98 6103
10.98 17479
10.97 5612
10.93 36348
10.93 43423
10.93 14928
10.92 49580
10.92 49609
10.92 20254
10.92 50763
10.91 15018
10.91 3457
10.90 42866
10.90 19193
10.89 5940
10.88 6806
10.87 33362
10.87 10480
10.87 18808
10.87 12667
10.87 2322
10.86 18233
10.86 16078
10.86 10050
10.85 11916
10.85 10034
10.82 19041
10.81 50666
10.81 6844
10.81 42069
10.80 45205
10.80 40608
10.80 14004
10.80 10043
10.79 8559
10.79 39556
10.79 11829
10.78 27681
10.78 11561
10.78 4362
10.78 45825
10.78 10502
10.77 19742
10.77 35980
10.77 1473
10.76 2726
10.76 5055
10.76 37802
10.76 38145
10.76 49349
10.76 9882
10.76 47799
10.75 47250
10.75 17748
10.75 8203
10.75 37357
10.74 49607
10.74 17944
10.73 20409
10.72 17473
10.72 3370
10.72 26644
10.71 3593
10.71 48796
10.70 49004
10.70 21167
10.70 6201
10.69 21326
10.69 8877
10.69 49007
10.68 51459
10.68 3001
10.68 8574
10.68 43009
10.68 10917
10.67 15021
10.67 18983
10.67 48926
10.67 13383
10.66 8606
10.66 7211
10.65 10662
10.64 8477
10.64 18489
10.64 20473
10.64 1271
10.63 20603
10.63 15405
10.63 21099
10.62 16446
10.62 4335
10.61 43552
10.60 3708
10.59 47973
10.59 48334
10.58 8928
10.58 50960
10.58 50525
10.57 10192
10.57 4112
10.57 5022
10.56 8682
10.56 37297
10.56 19931
10.56 19676
10.55 20907
10.54 38789
10.54 10187
10.53 40384
10.53 46542
10.53 9943
10.52 18405
10.52 37076
10.51 15595
10.51 10235
10.51 46672
10.50 1585
10.49 10094
10.49 20870
10.49 10237
10.49 20407
10.48 19875
10.48 39541
10.47 24921
10.47 7244
10.47 19663
10.47 3003
10.47 52473
10.47 37728
10.47 38792
10.46 10180
10.46 38822
10.45 9078
10.45 41498
10.44 20057
10.43 4336
10.43 1421
10.42 45238
10.41 17690
10.41 47236
10.40 17643
10.40 20915
10.39 47431
10.38 19725
10.37 18099
10.37 41624
10.36 1898
10.36 52272
10.35 158
10.35 7090
10.35 52367
10.35 46928
10.35 5735
10.34 8889
10.33 10722
10.33 7806
10.32 37637
10.32 12830
10.32 15773
10.31 6171
10.31 5123
10.31 50010
10.30 19592
10.30 18191
10.29 50190
10.28 49060
10.28 20588
10.27 51023
10.27 47252
10.26 18190
10.26 52084
10.26 40420
10.26 19640
10.25 49083
10.25 20829
10.25 43647
10.25 50265
10.25 15196
10.24 4061
10.24 20503
10.24 690
10.24 10430
10.23 38279
10.22 45604
10.22 52344
10.21 7969
10.20 38587
10.20 46400
10.20 47984
10.20 49806
10.19 50762
10.19 38693
10.19 16130
10.18 18818
10.18 46704
10.18 20704
10.17 46927
10.17 19889
10.17 38699
10.17 34929
10.17 9008
10.17 52533
10.17 12785
10.16 7447
10.15 20419
10.15 4790
10.14 37803
10.14 20689
10.14 43277
10.14 7688
10.14 49000
10.14 10837
10.14 39673
10.13 15689
10.13 45713
10.13 38006
10.13 40102
10.13 8900
10.13 5774
10.13 14622
10.12 5250
10.12 9881
10.11 20163
10.11 38809
10.11 5775
10.11 19970
10.10 13377
10.09 20167
10.09 20771
10.09 16513
10.08 46696
10.08 8236
10.08 9283
10.07 3166
10.07 49009
10.07 18402
10.07 13938
10.06 44048
10.06 17001
10.06 18100
10.06 9227
10.05 55
10.05 42304
10.05 49184
10.05 40763
10.04 2082
10.04 7101
10.04 4411
10.04 46236
10.03 19849
10.03 18365
10.03 1544
10.02 16884
10.02 19865
10.02 18307
10.02 20319
10.02 14326
10.01 18719
10.01 18176
10.01 28964
10.00 9450
10.00 11479
10.00 38178
9.99 19638
9.99 14989
9.99 18538
9.99 14241
9.98 4977
9.98 6325
9.98 4469
9.98 2291
9.96 42108
9.96 37158
9.95 51836
9.95 19932
9.94 19692
9.93 5027
9.93 45964
9.92 50565
9.91 50311
9.91 20675
9.91 41743
9.90 10182
9.90 14483
9.90 17600
9.89 38317
9.89 9989
9.89 20117
9.88 7478
9.88 47604
9.87 19517
9.86 16854
9.86 49595
9.85 19257
9.85 37078
9.85 20418
9.84 37286
9.83 19233
9.83 48002
9.82 50980
9.82 48493
9.82 7831
9.82 19236
9.82 19224
9.81 37726
9.81 5788
9.81 35969
9.81 8887
9.80 4657
9.80 43278
9.80 45786
9.80 52184
9.79 52121
9.79 6075
9.79 534
9.78 11504
9.78 46794
9.78 51031
9.77 1858
9.77 19726
9.76 48899
9.76 44554
9.75 40080
9.74 10434
9.74 10038
9.74 10090
9.74 7033
9.74 5425
9.74 11039
9.74 5964
9.73 45632
9.73 19759
9.73 19788
9.73 19789
9.73 6284
9.73 38287
9.73 18336
9.72 47400
9.71 10314
9.71 3501
9.70 1110
9.70 9204
9.69 6474
9.69 18800
9.68 6281
9.68 2084
9.68 4885
9.67 16678
9.67 8672
9.67 20098
9.67 37845
9.67 46666
9.66 16542
9.64 7458
9.64 15843
9.64 14772
9.64 7515
9.64 9101
9.63 41973
9.62 41598
9.62 20665
9.62 18502
9.62 6422
9.61 38445
9.61 7415
9.61 38944
9.61 37591
9.61 49145
9.60 14704
9.60 20659
9.60 20998
9.59 42654
9.59 51035
9.58 16827
9.57 14549
9.57 45177
9.56 18401
9.56 16867
9.56 4453
9.56 12874
9.56 38436
9.55 18253
9.55 48724
9.55 13096
9.55 37687
9.54 35057
9.54 9570
9.54 8059
9.53 11495
9.53 15780
9.52 51274
9.52 5822
9.52 49477
9.51 4337
9.51 2086
9.51 35517
9.50 10603
9.50 4102
9.50 20900
9.49 39209
9.49 4126
9.48 49114
9.48 44714
9.48 12992
9.48 19898
9.48 18220
9.47 17180
9.47 48697
9.47 9205
9.47 21133
9.47 48924
9.47 21404
9.46 42431
9.46 18607
9.45 11195
9.45 6492
9.44 49646
9.44 5449
9.43 9948
9.43 10138
9.43 9166
9.43 12003
9.42 20794
9.42 7456
9.42 50553
9.41 7193
9.41 51131
9.41 43186
9.40 2259
9.39 49581
9.39 49618
9.39 41930
9.39 18865
9.39 682
9.39 16489
9.38 4936
9.38 41084
9.38 49881
9.37 38401
9.37 35493
9.37 8222
9.37 16089
9.37 42015
9.37 37741
9.37 10533
9.37 50293
9.36 38824
9.35 7136
9.35 8260
9.35 9756
9.34 2551
9.33 37731
9.33 35431
9.33 20685
9.33 8033
9.33 10649
9.33 18868
9.33 38431
9.33 18157
9.33 38295
9.32 5291
9.32 48181
9.32 51286
9.32 18117
9.32 38456
9.31 18006
9.31 18339
9.31 18340
9.30 50551
9.30 4131
9.30 9593
9.30 37072
9.29 37753
9.28 10186
9.28 9251
9.28 15233
9.27 20590
9.26 11915
9.26 50954
9.26 8355
9.26 41902
9.25 10935
9.25 678
9.25 42475
9.24 48618
9.24 10006
9.23 294
9.23 15936
9.23 15232
9.23 45597
9.22 9446
9.22 8494
9.21 49962
9.21 35949
9.21 35981
9.21 36368
9.20 4791
9.20 35908
9.20 14056
9.20 17718
9.18 36281
9.18 28495
9.17 24726
9.17 18354
9.16 17597
9.15 4388
9.15 5201
9.15 45437
9.15 16964
9.14 10233
9.14 10514
9.14 4667
9.14 5004
9.14 18795
9.14 43220
9.14 11775
9.14 10258
9.13 13590
9.13 18251
9.13 49817
9.13 51074
9.13 15441
9.12 19867
9.12 46335
9.12 47927
9.12 7131
9.11 20832
9.11 18271
9.11 35474
9.11 21342
9.11 18772
9.11 11254
9.10 17634
9.10 6825
9.10 22793
9.10 14779
9.09 3616
9.09 9810
9.09 39149
9.09 9944
9.09 19715
9.09 50652
9.09 6790
9.09 51116
9.09 11697
9.08 38794
9.08 52212
9.08 10158
9.08 45893
9.08 43637
9.07 45296
9.07 49884
9.07 42921
9.06 21091
9.06 11918
9.06 45733
9.06 34991
9.06 51012
9.06 35056
9.06 6112
9.05 14760
9.05 20347
9.05 38182
9.05 25787
9.05 20062
9.05 27831
9.05 1861
9.05 50312
9.05 38718
9.05 7402
9.05 20629
9.05 37791
9.05 38315
9.05 39470
9.05 38503
9.04 21413
9.04 36258
9.04 12801
9.03 17700
9.03 15653
9.02 15987
9.02 20203
9.02 21152
9.01 16644
9.01 49169
9.01 18289
9.01 43531
9.01 19031
9.00 18783
9.00 38420
8.99 12180
8.99 33363
8.99 49776
8.99 9038
8.99 49536
8.98 10007
8.98 21106
8.98 10010
8.98 49081
8.97 43015
8.97 13108
8.97 2748
8.97 47384
8.96 18735
8.95 9233
8.95 49204
8.95 18347
8.94 631
8.94 7363
8.94 40454
8.94 38324
8.94 18429
8.94 41124
8.93 3102
8.93 48975
8.92 43630
8.92 3996
8.92 38429
8.91 48205
8.91 21055
8.91 10234
8.90 19588
8.90 4837
8.90 41387
8.90 16293
8.90 16465
8.90 16486
8.90 8635
8.90 19761
8.89 11570
8.89 9723
8.89 19752
8.89 50987
8.89 51465
8.89 18148
8.89 37854
8.88 16362
8.88 18260
8.88 18059
8.88 10284
8.87 6537
8.87 37416
8.87 8323
8.87 1191
8.86 8066
8.86 11906
8.86 8605
8.86 43627
8.86 7942
8.86 10246
8.85 10173
8.85 9095
8.84 19973
8.84 2910
8.84 19847
8.84 3221
8.84 1982
8.83 17906
8.83 17905
8.83 46785
8.83 18013
8.83 7530
8.83 48473
8.83 4211
8.82 8053
8.82 8972
8.82 8204
8.82 46886
8.82 36307
8.82 45322
8.81 35053
8.81 6238
8.81 38896
8.81 38814
8.81 38798
8.80 35890
8.80 37806
8.80 37160
8.80 20349
8.79 41965
8.79 38426
8.79 9732
8.79 49270
8.79 10112
8.79 21283
8.79 8564
8.79 49713
8.78 37589
8.78 20686
8.78 37893
8.78 38906
8.78 37557
8.78 38894
8.77 39203
8.76 45080
8.76 14191
8.76 1893
8.76 8572
8.76 44105
8.75 8960
8.75 13794
8.75 5746
8.75 19245
8.75 45032
8.74 19915
8.74 18008
8.73 49893
8.72 18618
8.72 74
8.71 15580
8.71 37804
8.70 37162
8.70 1950
8.70 1188
8.68 8255
8.68 14662
8.67 755
8.67 16692
8.66 10988
8.66 49936
8.65 18360
8.65 20228
8.64 1415
8.64 21220
8.64 7163
8.64 8052
8.64 49305
8.63 48910
8.63 48903
8.63 48614
8.63 2216
8.63 51027
8.62 15600
8.62 15599
8.61 37084
8.61 20121
8.61 5063
8.60 38101
8.60 18480
8.60 15326
8.60 20789
8.60 13609
8.59 49971
8.59 12688
8.59 14240
8.58 10289
8.58 49920
8.58 7404
8.58 6409
8.58 46795
8.58 10651
8.57 21023
8.57 20778
8.56 8182
8.56 20392
8.55 8173
8.55 10145
8.55 9820
8.55 37756
8.55 14916
8.54 20489
8.54 756
8.53 19057
8.53 14403
8.53 45293
8.53 18447
8.53 19917
8.53 38239
8.53 13735
8.53 41711
8.52 51485
8.52 39211
8.52 16463
8.52 35055
8.51 38892
8.51 5023
8.51 10108
8.51 18036
8.51 38876
8.51 19014
8.50 10527
8.50 4839
8.49 7600
8.49 7715
8.49 6860
8.49 42870
8.49 40141
8.49 45660
8.48 23558
8.48 19186
8.48 44199
8.48 48922
8.48 37068
8.47 48161
8.47 39492
8.47 9825
8.47 19988
8.47 7303
8.47 5214
8.47 48940
8.47 48964
8.46 8573
8.46 4757
8.46 51122
8.45 44878
8.45 41307
8.45 1008
8.45 19066
8.44 20151
8.43 18810
8.43 38428
8.43 49301
8.43 7141
8.43 35887
8.43 17300
8.42 52198
8.42 3968
8.42 20622
8.41 35909
8.41 10497
8.40 44524
8.40 8974
8.40 34925
8.40 38415
8.40 39185
8.39 17303
8.39 18444
8.39 5468
8.39 5514
8.38 5807
8.37 7745
8.37 634
8.37 19637
8.37 45599
8.36 374
8.36 20483
8.36 50489
8.36 19034
8.35 13937
8.35 16125
8.35 16552
8.35 16620
8.35 9344
8.35 13344
8.34 15051
8.34 6118
8.34 51180
8.34 14785
8.34 12842
8.33 51667
8.33 15435
8.33 15893
8.33 39475
8.32 51304
8.30 20270
8.30 7967
8.30 602
8.30 50384
8.30 37130
8.30 20650
8.30 45689
8.29 44916
8.29 4384
8.27 8893
8.27 38014
8.26 21417
8.26 11789
8.26 37968
8.25 9895
8.25 10168
8.25 39498
8.25 9642
8.25 46837
8.24 7457
8.24 50524
8.23 45143
8.21 10429
8.21 18439
8.20 12815
8.19 20472
8.18 17302
8.17 37692
8.17 42031
8.17 48864
8.16 9935
8.16 13007
8.16 19251
8.16 51069
8.16 7594
8.14 19836
8.14 48877
8.13 8976
8.13 50730
8.13 8089
8.13 10535
8.12 21054
8.12 11799
8.11 18229
8.11 1958
8.11 7869
8.11 10148
8.11 8977
8.11 20301
8.10 38433
8.10 14512
8.10 21187
8.10 47912
8.10 38421
8.10 10263
8.10 2081
8.10 50983
8.09 15008
8.09 16400
8.09 20340
8.09 48623
8.08 18313
8.08 51966
8.08 50713
8.07 11052
8.07 48368
8.07 44
8.07 37074
8.06 15617
8.05 47233
8.05 37395
8.05 37693
8.05 2513
8.05 14543
8.05 5040
8.04 8143
8.04 7889
8.04 13044
8.04 14955
8.03 19665
8.03 18275
8.03 10720
8.03 2609
8.02 51002
8.02 42669
8.02 3814
8.02 11020
8.02 4745
8.01 50845
8.01 5310
8.01 18816
8.01 14722
8.01 21318
8.01 39119
8.01 38104
8.01 19926
8.01 49624
8.00 19019
8.00 38345
8.00 13992
7.99 10207
7.99 52182
7.98 9835
7.97 16595
7.97 1067
7.97 1579
7.97 37686
7.96 51222
7.96 16069
7.96 9495
7.95 10336
7.95 13790
7.95 43268
7.94 1368
7.94 19520
7.94 21270
7.94 47398
7.93 20579
7.93 17985
7.92 1920
7.92 1850
7.91 20874
7.91 47057
7.91 9278
7.91 44209
7.90 14749
7.90 50520
7.90 18430
7.90 17445
7.89 38425
7.89 10944
7.89 49509
7.88 5986
7.88 20281
7.87 20906
7.87 49587
7.87 2862
7.87 49730
7.86 10077
7.86 41889
7.86 10500
7.86 11309
7.86 20097
7.86 16721
7.85 8035
7.84 20683
7.84 41381
7.84 44355
7.84 3689
7.84 9730
7.83 20082
7.83 35283
7.83 9349
7.83 19591
7.82 49957
7.82 18173
7.82 13338
7.82 10476
7.82 13270
7.82 20694
7.82 17037
7.81 8272
7.80 14972
7.80 9270
7.80 20709
7.80 9720
7.80 35269
7.79 8435
7.79 4683
7.78 2571
7.78 16559
7.77 47190
7.77 47715
7.77 18899
7.77 38719
7.77 3811
7.76 46893
7.76 38865
7.75 14914
7.75 8488
7.75 50478
7.75 18189
7.75 37878
7.75 42919
7.74 7455
7.74 12216
7.74 35735
7.74 47797
7.74 20776
7.73 48897
7.73 21738
7.73 7418
7.72 21143
7.72 41231
7.72 41935
7.72 14444
7.71 52080
7.71 45753
7.71 45915
7.71 47304
7.71 21176
7.70 47903
7.70 44101
7.70 8436
7.70 41054
7.70 5020
7.70 19016
7.69 41678
7.69 19927
7.69 43335
7.69 13379
7.69 10026
7.69 3391
7.69 10012
7.69 8328
7.68 10325
7.68 17322
7.68 18263
7.68 49935
7.68 34998
7.67 37471
7.67 19902
7.67 517
7.67 19854
7.66 47247
7.66 5247
7.66 48337
7.66 50531
7.66 44862
7.65 47141
7.65 1324
7.65 7977
7.65 14681
7.64 49897
7.64 45242
7.64 1409
7.63 51563
7.63 45534
7.62 43014
7.62 13422
7.62 21316
7.61 1870
7.61 20111
7.61 51424
7.60 19614
7.60 45708
7.60 50737
7.60 48065
7.60 11440
7.60 19950
7.59 4212
7.59 49275
7.59 49937
7.58 51608
7.58 12771
7.58 20346
7.58 11058
7.58 10261
7.58 21009
7.58 9399
7.58 15387
7.58 44831
7.58 13102
7.57 37794
7.57 45685
7.57 20860
7.56 18228
7.56 5325
7.55 9797
7.55 49721
7.55 47805
7.54 14537
7.54 14663
7.54 2615
7.54 20903
7.54 37904
7.53 19561
7.53 8454
7.53 1644
7.53 4048
7.53 4480
7.53 51253
7.53 7277
7.53 44410
7.53 18406
7.53 18421
7.52 46843
7.52 14665
7.52 39417
7.52 15749
7.52 1980
7.52 8975
7.52 6243
7.51 21033
7.51 10635
7.51 761
7.51 7913
7.51 19940
7.51 35457
7.51 9664
7.50 41351
7.50 46778
7.50 18235
7.50 9712
7.50 12574
7.49 47179
7.49 10950
7.49 9252
7.49 31926
7.49 46683
7.49 38881
7.48 44129
7.48 45107
7.48 45774
7.48 20060
7.48 37282
7.48 5246
7.48 11845
7.48 18222
7.48 12641
7.48 9844
7.47 37596
7.47 52175
7.47 14657
7.46 3871
7.46 15135
7.46 44628
7.45 9705
7.45 3067
7.44 18925
7.44 35600
7.43 41694
7.43 14643
7.43 4514
7.43 39736
7.43 42370
7.43 41656
7.43 42369
7.43 42631
7.43 42725
7.43 42736
7.43 44398
7.43 44608
7.43 14673
7.43 13812
7.43 15160
7.43 18847
7.43 37302
7.42 50825
7.42 37761
7.42 48913
7.41 9419
7.41 10046
7.41 51350
7.40 41493
7.40 4456
7.40 44293
7.40 49895
7.40 6730
7.40 16747
7.40 50860
7.39 14648
7.39 18428
7.39 21130
7.39 20624
7.39 9721
7.39 5819
7.39 10005
7.39 45600
7.39 9815
7.39 1456
7.39 13371
7.39 42367
7.39 47281
7.38 38457
7.38 20758
7.38 44173
7.38 9735
7.38 38748
7.38 13761
7.38 15467
7.37 8263
7.37 45714
7.36 15133
7.36 10137
7.36 42769
7.36 18889
7.36 51866
7.36 31457
7.36 9840
7.36 20432
7.35 10132
7.35 16762
7.35 45576
7.35 15214
7.35 11270
7.35 19199
7.35 10339
7.34 2395
7.34 48537
7.34 49892
7.34 2527
7.34 51064
7.34 783
7.34 15269
7.34 47837
7.34 20142
7.33 11070
7.33 38797
7.33 14613
7.33 12354
7.33 13954
7.33 45643
7.32 4759
7.32 8556
7.32 19532
7.32 9733
7.32 3072
7.32 18329
7.32 18268
7.32 39805
7.32 8502
7.32 10307
7.31 11994
7.31 19949
7.31 13957
7.31 1925
7.31 43232
7.31 1932
7.31 539
7.31 222
7.31 19787
7.31 41693
7.31 42148
7.31 42416
7.30 15297
7.30 18805
7.30 19785
7.30 46751
7.29 52172
7.29 8970
7.28 4549
7.28 48856
7.27 49896
7.27 11658
7.27 18280
7.27 42598
7.26 18327
7.26 38154
7.26 38353
7.26 35602
7.26 47995
7.26 38339
7.26 19745
7.26 9514
7.26 9271
7.26 11082
7.26 11750
7.25 7024
7.25 46918
7.25 20600
7.25 38313
7.25 7522
7.25 48898
7.24 13440
7.24 20110
7.24 20658
7.23 9877
7.23 47054
7.23 7616
7.22 18809
7.22 51538
7.22 271
7.21 49137
7.21 14901
7.21 6788
7.21 39872
7.21 20544
7.21 50184
7.21 19238
7.21 20413
7.20 35928
7.20 46517
7.19 40168
7.19 42741
7.19 42005
7.19 37445
7.19 8527
7.19 46922
7.18 19597
7.18 4375
7.18 12598
7.18 50217
7.17 20408
7.17 51037
7.17 47668
7.17 42841
7.17 43471
7.17 10519
7.17 10146
7.17 49139
7.17 49166
7.17 18846
7.17 18206
7.16 40940
7.16 21161
7.16 21941
7.16 46331
7.15 38879
7.15 16646
7.15 38054
7.15 12299
7.14 45063
7.14 40192
7.14 2085
7.14 16682
7.13 48443
7.13 5241
7.13 18172
7.13 10288
7.13 51026
7.13 7248
7.12 48117
7.12 11086
7.12 47418
7.12 9056
7.12 1114
7.12 43631
7.12 29289
7.11 18838
7.11 27793
7.11 38700
7.11 50514
7.10 25096
7.10 15419
7.10 46810
7.10 3010
7.10 8666
7.10 33360
7.09 38527
7.09 2346
7.09 4617
7.09 39210
7.09 37888
7.09 47667
7.08 50528
7.08 13681
7.08 14331
7.08 44883
7.08 8145
7.08 5097
7.08 46656
7.07 49915
7.06 25776
7.06 16715
7.06 19763
7.06 49917
7.06 13193
7.06 18981
7.05 13020
7.05 15553
7.05 10181
7.05 19033
7.05 50547
7.04 3146
7.04 9225
7.04 42022
7.04 20852
7.04 51238
7.03 16673
7.03 19032
7.03 17102
7.03 16115
7.03 44166
7.02 12190
7.02 37848
7.02 18974
7.02 3536
7.02 50642
7.02 14103
7.01 2924
7.01 5202
7.01 42734
7.01 4517
7.00 38356
7.00 14795
7.00 16942
7.00 42955
6.99 9734
6.99 7417
6.99 41272
6.98 46953
6.98 7988
6.98 41143
6.98 32805
6.97 18373
6.97 20327
6.97 12172
6.97 24831
6.97 37081
6.97 50048
6.97 44449
6.97 35037
6.97 5148
6.97 11110
6.96 21093
6.96 47491
6.95 41378
6.95 559
6.95 42215
6.95 150
6.94 49774
6.94 10803
6.94 5492
6.93 20296
6.93 43861
6.93 51093
6.93 44742
6.92 14348
6.92 42394
6.92 42607
6.92 42633
6.92 42638
6.92 44318
6.92 44400
6.92 43609
6.92 11547
6.92 8899
6.92 2073
6.92 38060
6.92 4219
6.91 17070
6.91 15137
6.91 43563
6.91 9369
6.90 15272
6.90 37965
6.90 45655
6.90 20402
6.90 39472
6.89 47220
6.89 50501
6.89 46589
6.89 39758
6.89 17309
6.88 51321
6.88 37805
6.88 9858
6.88 7770
6.87 4916
6.87 15506
6.87 2832
6.87 46942
6.87 20598
6.87 19008
6.87 2649
6.87 19928
6.87 13829
6.86 4809
6.86 9096
6.86 49729
6.86 10415
6.85 4054
6.85 14420
6.85 16238
6.85 52046
6.84 10711
6.84 7691
6.84 12038
6.84 44163
6.84 43317
6.84 51024
6.83 37073
6.83 44908
6.83 39584
6.83 13730
6.83 42534
6.83 50533
6.83 6298
6.83 2433
6.83 14823
6.83 10547
6.82 19164
6.82 19690
6.82 48696
6.82 38537
6.82 49754
6.81 38098
6.81 10188
6.81 18151
6.80 6816
6.80 18539
6.80 13165
6.80 15490
6.80 48029
6.80 14019
6.80 12922
6.80 45150
6.80 6424
6.79 49125
6.79 7956
6.79 17297
6.79 13532
6.79 10681
6.79 46578
6.79 45609
6.78 8554
6.78 2848
6.78 49229
6.78 49814
6.78 11434
6.78 5599
6.78 9873
6.78 18410
6.77 37550
6.77 17287
6.77 50485
6.77 45868
6.77 6417
6.77 42738
6.77 43523
6.77 19564
6.77 38532
6.76 19968
6.76 7645
6.76 51175
6.76 4651
6.76 41860
6.76 18773
6.76 43972
6.75 44099
6.75 17290
6.75 1529
6.75 48995
6.75 13394
6.75 20856
6.74 43164
6.74 17385
6.74 46509
6.74 10820
6.73 2713
6.73 5031
6.73 39645
6.73 19718
6.73 1326
6.72 13090
6.72 4737
6.72 12846
6.72 42948
6.72 39966
6.72 21925
6.71 8543
6.70 3295
6.70 9261
6.69 309
6.69 52158
6.69 8478
6.69 4719
6.69 17612
6.69 1698
6.69 19181
6.69 41202
6.69 37760
6.69 3984
6.68 46222
6.68 4708
6.68 7892
6.68 44705
6.68 20198
6.67 290
6.67 3318
6.67 20093
6.67 2157
6.67 9116
6.67 49248
6.67 48488
6.66 40591
6.66 2067
6.66 17295
6.66 10367
6.66 41348
6.66 38871
6.66 49658
6.66 6466
6.66 47716
6.65 51414
6.65 46822
6.65 12375
6.65 10690
6.65 17371
6.65 400
6.65 39946
6.64 37936
6.64 45734
6.64 48592
6.64 51038
6.64 2844
6.64 16487
6.64 9722
6.64 13850
6.63 21201
6.63 20332
6.63 3120
6.63 37702
6.63 21007
6.63 5479
6.63 2842
6.63 19198
6.63 37870
6.62 10775
6.62 14959
6.62 27375
6.62 44235
6.62 11797
6.62 37949
6.62 6925
6.61 50020
6.61 39148
6.61 9740
6.61 20355
6.61 43976
6.61 2808
6.61 19709
6.61 52409
6.60 18834
6.60 6232
6.60 11044
6.60 50609
6.60 52120
6.59 18310
6.59 49170
6.59 17136
6.59 20719
6.59 50839
6.59 38725
6.59 51336
6.59 11592
6.59 18879
6.58 9932
6.58 1889
6.58 10185
6.58 49497
6.58 8292
6.58 19894
6.58 38481
6.57 16210
6.57 8051
6.57 10383
6.57 20397
6.57 51992
6.56 18801
6.56 40846
6.56 20084
6.56 24231
6.56 39048
6.56 13522
6.56 6017
6.56 8558
6.56 7761
6.56 27648
6.55 19062
6.55 35490
6.55 20244
6.54 21185
6.54 15899
6.54 483
6.54 19919
6.54 9472
6.54 17283
6.54 50257
6.54 50678
6.53 9629
6.53 18850
6.53 20786
6.53 20908
6.53 19936
6.53 34984
6.53 17599
6.53 51313
6.53 41904
6.53 49941
6.52 51867
6.52 22670
6.52 51510
6.52 37829
6.52 7951
6.52 7914
6.52 37895
6.52 8575
6.52 7437
6.52 3371
6.51 18817
6.51 19250
6.50 20984
6.50 6570
6.50 14900
6.50 10468
6.50 43606
6.50 20024
6.50 9253
6.49 10715
6.49 45531
6.49 2630
6.49 39205
6.49 18065
6.49 15761
6.49 42682
6.49 42742
6.48 7287
6.48 46863
6.48 10463
6.48 47362
6.48 17357
6.48 6951
6.48 15358
6.48 45261
6.48 14986
6.48 16426
6.48 3966
6.48 4808
6.48 50534
6.47 12413
6.47 46908
6.46 1068
6.46 24148
6.46 16480
6.46 29443
6.46 29833
6.46 19222
6.46 11453
6.45 15278
6.45 43847
6.45 9630
6.45 17976
6.44 2277
6.44 48689
6.44 21191
6.44 27884
6.44 19837
6.44 26734
6.44 6252
6.44 50484
6.44 46819
6.44 37689
6.44 42455
6.44 42396
6.44 44404
6.43 44333
6.43 47143
6.43 16102
6.43 16131
6.43 5160
6.43 4912
6.43 42026
6.43 50828
6.42 40139
6.42 15093
6.42 35918
6.41 5131
6.41 7221
6.41 5011
6.41 6823
6.41 8522
6.40 10167
6.40 49071
6.40 12291
6.40 12292
6.40 12293
6.40 20290
6.40 47053
6.40 11003
6.40 20069
6.39 41160
6.39 45192
6.39 8208
6.39 7768
6.39 47246
6.38 40533
6.38 21704
6.38 47502
6.38 44647
6.37 46480
6.37 39650
6.37 7885
6.37 39127
6.37 42876
6.37 42877
6.37 45752
6.37 16177
6.37 16405
6.37 39187
6.37 34936
6.37 17602
6.37 48322
6.37 9333
6.37 52416
6.37 38280
6.37 27852
6.37 19598
6.37 7423
6.36 47290
6.36 4858
6.36 7542
6.36 48714
6.36 13516
6.36 50516
6.36 48657
6.36 39316
6.36 11142
6.36 10787
6.36 21921
6.36 19942
6.36 48936
6.36 21084
6.35 14747
6.35 15871
6.35 12494
6.35 15625
6.35 18840
6.35 14954
6.35 12971
6.35 35872
6.35 17282
6.35 18175
6.35 8734
6.34 18207
6.34 9092
6.34 19249
6.34 9698
6.34 5985
6.34 3858
6.34 13984
6.34 4256
6.34 38416
6.34 1414
6.34 2645
6.33 38739
6.32 47365
6.32 10798
6.32 38044
6.32 38427
6.32 35347
6.31 18244
6.31 10179
6.31 224
6.31 46898
6.31 16977
6.30 20917
6.30 1228
6.30 17368
6.30 15009
6.30 8257
6.30 27241
6.29 8008
6.29 39476
6.29 2581
6.29 3736
6.29 46193
6.29 46466
6.29 46561
6.29 48945
6.29 38351
6.29 16826
6.29 50758
6.29 1410
6.28 51030
6.28 29636
6.28 49550
6.28 48611
6.28 42828
6.28 21390
6.27 13493
6.27 45574
6.27 8223
6.27 16603
6.27 15762
6.27 44019
6.26 18787
6.26 38108
6.26 46465
6.26 9888
6.26 36242
6.25 20993
6.25 9280
6.25 38238
6.25 21034
6.25 45161
6.24 8888
6.24 41178
6.24 13019
6.24 43294
6.24 2441
6.24 11199
6.24 49093
6.23 47639
6.23 42189
6.23 45573
6.23 10435
6.23 5824
6.23 1258
6.23 8240
6.23 10754
6.23 38821
6.23 21271
6.23 17949
6.23 8254
6.22 4161
6.22 12703
6.22 9250
6.22 16221
6.21 8137
6.21 17369
6.21 9077
6.21 50381
6.21 44161
6.21 18409
6.20 40787
6.20 9088
6.20 20661
6.20 38020
6.20 14249
6.20 17696
6.19 39691
6.19 17154
6.19 16153
6.19 38943
6.19 342
6.19 40164
6.19 7
6.18 49914
6.18 44324
6.18 15606
6.17 19556
6.17 5089
6.17 10661
6.17 49130
6.17 18597
6.17 17382
6.17 15088
6.16 52283
6.16 8070
6.16 1312
6.16 44273
6.16 11913
6.16 45425
6.15 35016
6.15 20743
6.15 38430
6.15 38395
6.14 17946
6.14 24351
6.14 35466
6.14 50755
6.14 13854
6.14 17211
6.14 20525
6.14 17268
6.13 13880
6.13 30753
6.13 9138
6.13 43386
6.13 19856
6.12 46987
6.12 12141
6.12 12142
6.12 18731
6.12 37843
6.12 21835
6.12 3197
6.12 50697
6.11 13511
6.11 9127
6.10 42225
6.10 27897
6.10 16859
6.09 4610
6.09 15087
6.09 5968
6.09 29803
6.09 50012
6.09 17947
6.08 44461
6.08 44523
6.08 45451
6.08 41545
6.08 17347
6.08 35903
6.07 18418
6.07 10345
6.07 3000
6.07 9923
6.07 51212
6.07 42300
6.07 7943
6.07 35323
6.07 12957
6.07 38402
6.07 18309
6.07 18384
6.07 47322
6.07 37671
6.07 23027
6.07 18155
6.06 4769
6.06 17353
6.06 50486
6.06 47251
6.06 39207
6.06 48999
6.06 8217
6.05 10596
6.05 38698
6.05 18294
6.05 26613
6.04 11577
6.04 44018
6.04 8476
6.04 15231
6.04 10679
6.04 4843
6.04 20433
6.04 38228
6.04 8897
6.04 40097
6.03 9926
6.02 11123
6.02 43813
6.02 9244
6.02 48026
6.02 7565
6.02 3453
6.01 17806
6.01 14821
6.01 11566
6.01 45578
6.01 1567
6.01 48916
6.00 50650
6.00 15103
6.00 35986
6.00 5839
6.00 13852
6.00 13408
5.99 27753
5.99 15880
... ...
The estimated coefficient of mileage (-0.151797) shows that there is a negative correlation between price and mileage, which equally confirms the result obtained previously under correlation matrix. The p-values for mileage (0.0000000) shows that the null hypothesis is rejected indicating that the model is statistically significant, when we set our level of significance to be 0.05 respectively. The value of Adjusted R-squared (0.4474) shows that only 44% variations in price can be explained by mileage, while the rest cannot be explained. This suggests that there are still other variables that are supposed to be included in the model, but not captured here.
library(performance)
model_performance(model_1)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
38389.597 | 38406.400 | 0.448 | 0.447 | 3558.024 | 3559.805
shapiro.test(mydata4[, 1])
Shapiro-Wilk normality test
data: mydata4[, 1]
W = 0.97235, p-value < 0.00000000000000022
shapiro.test(mydata4[, 2])
Shapiro-Wilk normality test
data: mydata4[, 2]
W = 0.96004, p-value < 0.00000000000000022
The estimated coefficient of mileage (-0.151797) shows that there is a negative correlation between price and mileage, which equally confirms the result obtained previously under correlation matrix. The p-values for mileage (0.0000000) shows that the null hypothesis is rejected indicating that the model is statistically significant, when we set our level of significance to be 0.05 respectively. The value of Adjusted R-squared (0.4474) shows that only 44% variations in price can be explained by mileage, while the rest cannot be explained. This suggests that there are still other variables that are supposed to be included in the model, but not captured here.
However, the result for the model performance shows that R2 is 0.45 (by approximation) indicating that thereare only 45% variations in price that can be explained by mileage. The results obtained from using Shapiro-wilk test for normality shaow that none of the two variables are statistically normally distributed.
model_2 = step(model_1)
Start: AIC=32711.84
price ~ mileage
Df Sum of Sq RSS AIC
<none> 25319073503 32712
- mileage 1 20520460250 45839533752 33897
#Set up the bootstrap as follows:
# function to obtain R-Squared from the data:
set.seed(4927)
library(boot)
#define function to calculate R-squared
rsq_function = function(formula, data, indices) {
d = data[indices,] #allows boot to select sample
fit = lm(formula, data=d) #fit regression model
return(summary(fit)$r.square) #return R-squared of model
}
#perform bootstrapping with 2000 replications
reps = boot(data=mydata4, statistic=rsq_function, R=2000, formula=price~mileage)
#view results of boostrapping
reps
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = mydata4, statistic = rsq_function, R = 2000, formula = price ~
mileage)
Bootstrap Statistics :
original bias std. error
t1* 0.4476586 0.00004506277 0.01378635
#plot(reps)
#We can also use the following code to calculate the 95% confidence interval for the estimated R-squared of the model:
#calculate adjusted bootstrap percentile (BCa) interval
boot.ci(reps, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL :
boot.ci(boot.out = reps, type = "bca")
Intervals :
Level BCa
95% ( 0.4217, 0.4761 )
Calculations and Intervals on Original Scale
Create a model with all of the appropriate remaining explanatory variables included: The remaining explanatory variables are tax, mpg, and engineSize:
model_3 = lm(price ~ tax + + mpg + engineSize - 1, data = mydata4)
summary(model_3)
Call:
lm(formula = price ~ tax + +mpg + engineSize - 1, data = mydata4)
Residuals:
Min 1Q Median 3Q Max
-16590.4 -2286.1 71.5 2314.2 15820.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
tax 34.103 1.518 22.460 <0.0000000000000002 ***
mpg 2.600 5.800 0.448 0.654
engineSize 6044.215 242.987 24.875 <0.0000000000000002 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4015 on 1997 degrees of freedom
Multiple R-squared: 0.9259, Adjusted R-squared: 0.9257
F-statistic: 8313 on 3 and 1997 DF, p-value: < 0.00000000000000022
anova(model_3)
Analysis of Variance Table
Response: price
Df Sum Sq Mean Sq F value Pr(>F)
tax 1 316268751564 316268751564 19622.20 < 0.00000000000000022 ***
mpg 1 75715160476 75715160476 4697.58 < 0.00000000000000022 ***
engineSize 1 9972929338 9972929338 618.75 < 0.00000000000000022 ***
Residuals 1997 32187462035 16117908
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
From the results of the model, it is pobvious that NOT all the three remaining explanatory variables are statistically significant at 0.05 level of significance; only two of them (tax and engineSize) are significant (p-values are less than 0.05) while mpg is not significant (p-value > 0.05). However, the results for the multiple R-squared and Adjusted multiple R-squared (0.9259 and 0.9257) tend towards 0.93 by approximation, meaning that 93% variations in the price of the vehicle can be jointly explained by these explanatory variables while only 7% cannot be explained.
However, the results of the analysis of variance show that all the three of them are statistically significant which is contrary to what we have in the model estimation. There is a suspect of a particular problem in the datasets.
(4 marks)
library(performance)
model_performance(model_3)
# Indices of model performance
AIC | BIC | R2 | R2 (adj.) | RMSE | Sigma
---------------------------------------------------------------
38871.635 | 38894.038 | 0.926 | 0.926 | 4011.699 | 4014.711
# Using Normal Q-Q Plot to detect the normality assumption:
res=resid(model_3)
qqnorm(res, col=3,lwd=1, pch=19, col.main="blue", col.lab="purple")
## Breusch-Pagan Test for Heteroscedasticity Assumption
# H0: Homoscedasticity is present verse H1: Heteroscedasticity is present
library(lmtest)
Loading required package: zoo
Attaching package: 'zoo'
The following objects are masked from 'package:base':
as.Date, as.Date.numeric
bptest(model_3, studentize=FALSE)
Breusch-Pagan test
data: model_3
BP = 464.56, df = 2, p-value < 0.00000000000000022
From the model performance results, it is established that multiple R-squared is approximately 93% which shows that 93% variations in the price of the vehicle can be explained by all the remaining explanatory variables. From the Normal Q-Q plot, the behaviour of the model is somehow normal as a straight line is almost formed. From the results obtained from Breusch-Pagan test, it is established, since the p-value (0.0000) is less than 0.05, that the null hypothesis should be rejected, indicating that the datasets do not have equal variances.
So far, we observe that the datasets used for this analysis have some kinds of issues that need to be addresed before any conclusions can be made. The high value of R-squared shows that the model is fit and adequate but at the same time, repports from the normality and homoscedasticity do not support this model adequacy.
Though there are about three model simplification approaches (maximal model, minimum adequate model, and null model), we will be selecting maximal model. This is because of the following reasons: - We are dealing with multiple regression cases - It is more efficient - It is more reliable - It is more dependable
A client is looking to purchase a used Skoda Superb (registration year either 2018 or 2019, manual transmission, diesel engine) and wants to understand what factors influence the expected price of a used car, (and how they influence the price).
Write a short report of 300-500 words for the client.
Furthermore, include an explanation as to which statistical model you would recommend, and why you have selected that statistical model.
Comment on any suggestions for alterations to the statistical model that would be appropriate to consider.
Highlight what may or may not be directly transferable from the scenario analysed in Questions 1 to 5.
A client who wants to buy to a used Skoda Superb (registration year either 2018 or 2019, manual transmission, diesel engine) car would need to understand that some basic factors such as brand, model, fuel type, and tax would influence the expected price of a used car. In the first instance, someone who needs Audi will know that its price will surely be different (either less or more than) from the price of another brand, say BMW. Also, the model of the car will determine its price. It is expected that Audi with model A4 will be different in price while comparing it with BWM of model X3. The type of the fuel a car uses determines the price of such a car. In this scenario, you cannot expect a car using diesel to be at the same price with that of a car using petrol. Also, annual cost of vehicle tax influences its price.
I would like to recommend that a multiple linear regression model of price connecting with brand, model, fuel type, and tax be used because of the roles played by all these explanatory variables in explaining the price of this used car.
However, it is a good idea to suggest that some modifications should be made to our previous models such that the new model can be captured or incorporated into our analysis.
From the scenario analyzed in Questions 1 - 5, mileage less tha 90000 may not be transferable while manual transmission, diesel engine, and cost less than 300 Euro are transferable.
Do not edit this part. Make sure that you compile your document so that the information about your session (including software / package versions) is included in your submission.
sessionInfo()
R version 4.2.0 (2022-04-22 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lmtest_0.9-40 zoo_1.8-10 boot_1.3-28 lessR_4.2.2
[5] lsr_0.5.2 corrplot_0.92 performance_0.9.1 psych_2.2.5
[9] summarytools_1.0.1 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.9
[13] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.7
[17] ggplot2_3.3.6 tidyverse_1.3.1
loaded via a namespace (and not attached):
[1] nlme_3.1-158 matrixStats_0.62.0 fs_1.5.2
[4] lubridate_1.8.0 RColorBrewer_1.1-3 insight_0.18.0
[7] httr_1.4.3 tools_4.2.0 backports_1.4.1
[10] bslib_0.3.1 utf8_1.2.2 R6_2.5.1
[13] DBI_1.1.3 colorspace_2.0-3 withr_2.5.0
[16] tidyselect_1.1.2 mnormt_2.1.0 compiler_4.2.0
[19] cli_3.3.0 rvest_1.0.2 xml2_1.3.3
[22] sass_0.4.1 scales_1.2.0 checkmate_2.1.0
[25] DEoptimR_1.0-11 robustbase_0.95-0 digest_0.6.29
[28] rmarkdown_2.14 jpeg_0.1-9 base64enc_0.1-3
[31] pkgconfig_2.0.3 htmltools_0.5.2 highr_0.9
[34] dbplyr_2.2.1 fastmap_1.1.0 rlang_1.0.4
[37] readxl_1.4.0 rstudioapi_0.13 pryr_0.1.5
[40] jquerylib_0.1.4 generics_0.1.3 jsonlite_1.8.0
[43] zip_2.2.0 magrittr_2.0.3 rapportools_1.1
[46] leaps_3.1 interp_1.1-3 Rcpp_1.0.9
[49] munsell_0.5.0 fansi_1.0.3 lifecycle_1.0.1
[52] stringi_1.7.8 yaml_2.3.5 MASS_7.3-57
[55] plyr_1.8.7 grid_4.2.0 parallel_4.2.0
[58] crayon_1.5.1 deldir_1.0-6 lattice_0.20-45
[61] haven_2.5.0 pander_0.6.5 hms_1.1.1
[64] magick_2.7.3 knitr_1.39 pillar_1.7.0
[67] tcltk_4.2.0 reshape2_1.4.4 codetools_0.2-18
[70] reprex_2.0.1 glue_1.6.2 evaluate_0.15
[73] latticeExtra_0.6-30 modelr_0.1.8 png_0.1-7
[76] vctrs_0.4.1 tzdb_0.3.0 cellranger_1.1.0
[79] gtable_0.3.0 assertthat_0.2.1 xfun_0.31
[82] openxlsx_4.2.5 broom_1.0.0 viridisLite_0.4.0
[85] ellipse_0.4.3 ellipsis_0.3.2