Instructions to students

You should only use the file Exam_template.Rmd provided on blackboard and you should load this file from your scripts folder / directory.

Save this template as your studentID.Rmd; you will upload this file as your submission. Change the information on line 3 of this file – changing the author information to your student ID. Do not change the authorship to your name.

Ensure that you save your data into your data folder (as discussed in class). You may use the files mypackages.R and helperFunctions.R from blackboard. If you use these files, do not alter them. If you wish to create additional files for custom functions that you have prepared in advance, make sure that you upload these in addition to your .Rmd file and your compiled output file.

Your should knit this file to a document Word format.

Any changes that you make to the data (e.g. variable name changes) should be made entirely within R.

The subsubsections labelled Answer: indicate where you should put in your written Answers. The template also provides blank code chunks for you to complete your Answers; you may choose to add additional chunks if required.

load required libraries / additional files

#install.packages(“tidyverse”) #install.packages(“dplyr”) #install.packages(“ggplot2”) #install.packages(“summarytools”) #install.packages(“psych”) #install.packages(“performance”) #install.packages(“corrplot”) #install.packages(“lsr”) #install.packages(“lessR”) #install.packages(“boot”) Having installed all these packages, we shall call the following libraries:

# load dataset
mydata = read.csv("Jan_2022_Exam_Data.csv")

attach(mydata)
The following object is masked from package:ggplot2:

    mpg
#View(mydata)

names(mydata)
 [1] "brand"        "model"        "year"         "price"        "transmission"
 [6] "mileage"      "fuelType"     "tax"          "mpg"          "engineSize"  

Data description

This dataset is part of a larger dataset that has been collected to help to estimate the price of used cars.

It contains the following variables:

Question 1: Data Preparation (11 marks)

You are interested in modelling the price of vehicles that have all of the following properties:

Once you have selected the rows of data with these properties, then you must use the last 4 digits of your studentID to select a random sample of 2000 rows of the data to perform the rest of your analysis with.

You should remove any redundant variables (where only one value remains in that variable).

This subset of the data is what you should use for the rest of this assessment.

  1. Explain what data preparation is required in order for the data in Jan_2022_Exam_Data.csv to be suitable for this analysis.

(4 marks)

Answer:

(aa) Call the libraries of all the installed packages so as to enable all the computions.

(bb) Reading the csv file to the R Studio

  1. Viewing it to know what types of variables available

(dd) Filtering it using mileage less than 90000, manual transmission, diesel engine (fuelType), and costing less than 300 Euro in annual Vehicle Tax

(ee) Saving the filtered dataset to another name, such as mydata, mydata2, etc, as the case may be.

(ff) Selecting a random sample of 2000 rows from the filtered dataset while setting our seed to be the last four digits of my student’s ID, which is 4927.

(gg) Removing the variables with redundant values

(hh) Converting the variables to factors.

  1. Implement the required data preparation in the code chunk below:

(7 marks)

Answer:

mydata2 = subset(mydata, transmission=="Manual" & mileage < 90000 & fuelType=="Diesel" & tax < 300, select = -c(fuelType, transmission))

#View(mydata2)

write.csv(mydata2, "DATA3.csv") # Just to be rest assured that the needed datasets are captured.

#Seeting our seed to be:
set.seed(4927)

mydata3 = mydata2 %>% sample_n(2000, replace = FALSE)

View(mydata3)

Question 2: Exploratory Data Analysis (22 marks)

Descriptive Statistics

  1. What descriptive statistics would be appropriate for this dataset? Explain why these are useful in this context.

(2 marks)

Answer:

We shall consider two major descriptive statistics: measure of central tendency and measure of variability. The measure of central tendency is useful to represent the centre point of our dataset, while measure of variability is used to measure the degree of variation in our dataset.

  1. Produce those descriptive statistics in the code chunk below:

(4 marks)

Answer:

mydata4 = mydata3[ , c(4:8)]
#View(mydata4)

# To find the measure of central tendency, run the following command:
mean(mydata4[,1]); mean(mydata4[, 2]);  mean(mydata4[, 3]);  mean(mydata4[, 4]);  mean(mydata4[, 5])
[1] 13933.86
[1] 32538.84
[1] 84.9725
[1] 64.1641
[1] 1.78605
median(mydata4[,1]); median(mydata4[, 2]);  median(mydata4[, 3]);  median(mydata4[, 4]);  median(mydata4[, 5])
[1] 13486
[1] 29666.5
[1] 125
[1] 64.2
[1] 2
#install.packages("lsr") 
library(lsr)
modeOf(mydata4[,1]); modeOf(mydata4[,2]); modeOf(mydata4[,3]); modeOf(mydata4[,4]); modeOf(mydata4[,5])
[1] 16000 11000
[1] 10
[1] 145
[1] 74.3
[1] 2
# To find the measure of variability, run the following command:
range(mydata4[,1]); range(mydata4[, 2]);  range(mydata4[, 3]);  range(mydata4[, 4]);  range(mydata4[, 5])
[1]  2395 32995
[1]     5 89936
[1]   0 260
[1] 30.1 88.3
[1] 0.0 2.2
IQR(mydata4[,1]); IQR(mydata4[, 2]);  IQR(mydata4[, 3]);  IQR(mydata4[, 4]);  IQR(mydata4[, 5])
[1] 6423.75
[1] 29308
[1] 125
[1] 13.275
[1] 0.5
var(mydata4[,1]); var(mydata4[, 2]);  var(mydata4[, 3]);  var(mydata4[, 4]);  var(mydata4[, 5])
[1] 22931232
[1] 445497989
[1] 4263.894
[1] 101.5388
[1] 0.06297188
sd(mydata4[,1]); sd(mydata4[, 2]);  sd(mydata4[, 3]);  sd(mydata4[, 4]);  sd(mydata4[, 5])
[1] 4788.657
[1] 21106.82
[1] 65.2985
[1] 10.07665
[1] 0.250942
  1. What have those descriptive statistics told you – and how does this inform the analysis that you would undertake on this data or any additional data cleaning requirements?

(4 marks)

Answer:

In the analysis using measure of central tendency, we observe that the average price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres) are 13933.86, 32538.84,84.97,64.16 and 1.79 respectively, while their median values are 13486, 29666.5, 125, 64.2, and 2. Not only these but also, the modes are 16000 and 11000 for only price (this means that there are bimodal values for the price of the car), 10, 145, 74.3, and 2 are the mode for mileage, tax, mpg, and engineSize. All these talk about measure of central tendency.

Come to think of the measure of variability as used here, the ranges for price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres) are (2395 - 32995), (5 - 89936), (0 - 260), (30.1 - 88.3), and (0.0 - 2.2) respectively. We got 6423.75, 29308, 125, 13.275, and 0.5 as interquartile range values for price (in GB pounds), mileage (total distance covered by the car), annual cost of vehicle tax, miles per gallon, and size of the engine (in litres). Also, the values for variance and standard deviation for each of these variables are (22931232, 4788.657), (445497989, 21106.82), (4263.894, 65.2985), (101.5388, 10.07665), and (0.06297, 0.25094).

Exploratory Graphs

  1. What exploratory graphs would be appropriate for this dataset? Explain why these are useful in this context.

(2 marks)

Answer:

We shall consider BOX-WHISKER PLOT and HISTOGRAM. BOX-WHISKER PLOT helps to determine the nature of the distribution in the dataset by checking the normality assumption, while HISTOGRAM is the best choice for visualizing central tendency of data.

  1. Now produce those exploratory graphs in the code chunk below:

(4 marks)

Answer:

 # To obtain the box plot, run the command below:
win.graph(width=4, height=4, pointsize=8)
boxplot(mydata4, main="Box Plot", col=c(2:6), col.main="purple", pch=19, las=1, sub="Figure I", col.sub="coral3")

# To obtain the histogram, run the commands below:
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 1], main="Histigram for the Price of Vehicle", sub="Figire II", col.sub="green4",col=2:9, xlab="Price (in GB Pounds)", col.main="brown")

win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 2], main="Histigram for Mileage", sub="Figire III", col.sub="green4",col=2:9, xlab="Mileage (less than 90000)", col.main="brown")

win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 3], main="Histigram for Tax", sub="Figire IV", col.sub="green4",col=2:9, xlab="Annual Cost of Vehicle Tax", col.main="brown")

win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 4], main="Histigram for Miles Per Gallon", sub="Figire V", col.sub="green4",col=2:9, xlab="mpg (Miles per Gallon - a measure of fuel efficiency)", col.main="brown")

win.graph(width=4, height=4, pointsize=8)

windows()
win.graph(width=4, height=4, pointsize=8)
h=hist(mydata4[ , 5], main="Histigram for Size of the Engine (in litres)", sub="Figire VI", col.sub="green4",col=2:9, xlab="engine Size", col.main="brown")

  1. Interpret these exploratory graphs. How do these graphs inform your subsequent analysis? (4 marks)

Answer:

In Box Plot, it appears that only mileage is normally distributed while the rest are far away from normality. As a result, it is advisable to go for test of normality to be double sure and also perform some statistical analysis to correct the abnorlity in the dataset.

In the Histogram, the graph shows for the price is not normal, also the graph for the mileage is skewed to the right, the one for tax shows some evidence of bimodal as depicted in the descriptive statistics of measure of central tendency, the one for mpg shows a kind of normality, while the last histogram shows that the engine Size is completely abnormal.

Correlations

  1. What linear correlations are present within this data? (2 marks)

Answer:

cor(mydata4)
                price    mileage        tax        mpg engineSize
price       1.0000000 -0.6690729  0.5231055 -0.5381233  0.3234885
mileage    -0.6690729  1.0000000 -0.3696081  0.1870735  0.1001805
tax         0.5231055 -0.3696081  1.0000000 -0.5990075  0.2571670
mpg        -0.5381233  0.1870735 -0.5990075  1.0000000 -0.5261717
engineSize  0.3234885  0.1001805  0.2571670 -0.5261717  1.0000000

Comparing price with mileage, the value indicates that there is a negative correlation of approximately 67%, which means that when price increases, mileage decreases and, vice-versa. Also, the correlation between price and tax shows that there is a positive correlation between them to the tone of 52%, which means that when price increases, tax also increases, and vice-versa. Also, the correlation between price and mpg shows that there is a negative correlation between them (-54%), which means that as price increases, mpg decreases , and vice-versa. The last aspect of comparison show that the correlation between price and enginesize is approximately 32%, which means that as the price increases, the enginesize also increases, and vice-versa.

Question 3: Bivariate relationship (14 marks)

  1. Which of the potential explanatory variables has the strongest linear relationship with the dependent variable? (1 mark)

Answer:

The potential explanatory variables are mileage and tax, while between the two, the one with the strongest linear relatiosnhip is mileage, which is negatively linearly related with approximately 67% (-0.67). This value is negatively strongest among all.

  1. Create a linear model to model this relationship. (2 marks)

Answer:

model_1 = lm(price ~ mileage, data = mydata4)
summary(model_1)

Call:
lm(formula = price ~ mileage, data = mydata4)

Residuals:
    Min      1Q  Median      3Q     Max 
-9014.3 -2466.4     7.5  2186.2 14214.7 

Coefficients:
                Estimate   Std. Error t value            Pr(>|t|)    
(Intercept) 18873.168634   146.294585  129.01 <0.0000000000000002 ***
mileage        -0.151797     0.003772  -40.24 <0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3560 on 1998 degrees of freedom
Multiple R-squared:  0.4477,    Adjusted R-squared:  0.4474 
F-statistic:  1619 on 1 and 1998 DF,  p-value: < 0.00000000000000022
#install.packages("lessR")
library("lessR")
Plot(mileage, price, fit="lm", main="Scatter Plot showing the Relationship between Price and Mileage", xlab="Mileage", ylab="Price of the Vehicle", col.main="blue3", col.lab="red3", enhance=T, sub="Figure VII")
[Ellipse with Murdoch and Chow's function ellipse from their ellipse package]


>>> Suggestions
Plot(mileage, price, color="red")  # exterior edge color of points
Plot(mileage, price, out_cut=.10)  # label top 10% from center as outliers 

>>> Pearson's product-moment correlation 
 
Number of paired values with neither missing, n = 52533 
Sample Correlation of mileage and price: r = -0.466 
  
Hypothesis Test of 0 Correlation:  t = -120.820,  df = 52531,  p-value = 0.000 
95% Confidence Interval for Correlation:  -0.473 to -0.460 
>>> Outlier analysis with Mahalanobis Distance 
 
    MD    ID 
 ----- ----- 
214.05  9823 
185.32 45614 
172.81 49459 
159.75 39420 
146.96  4784 
140.50 45801 
139.85 39423 
135.24 48152 
133.71 45317 
133.58 48548 
132.96 50759 
131.80 47279 
131.00 48236 
129.56  2256 
128.41  4180 
123.23  3368 
121.50 48088 
120.51  5460 
120.25 52319 
113.99 14307 
112.35 45625 
111.50  1647 
107.34 10469 
103.75 44174 
103.49 42062 
102.20 45638 
101.82  4926 
101.67  3360 
100.69 43509 
100.45 42044 
94.74  7446 
92.52  4743 
91.84  7129 
85.49 20088 
85.12  5708 
83.47 46549 
81.70  3940 
81.33 48574 
75.93  4955 
75.16 41395 
74.31 48160 
73.35 52475 
73.27  6385 
72.78 47243 
67.42 44726 
67.10 40426 
66.15 10226 
65.77 43502 
65.50 43624 
63.97 43393 
62.48 18982 
62.01  4401 
60.19 45077 
58.56 50996 
58.01 40101 
57.85 48656 
57.68 16031 
56.63 20083 
54.67  3712 
54.46 49696 
52.89  8631 
51.88 38553 
51.11  5304 
50.63 46543 
50.59 38396 
49.99 44194 
49.70  4392 
48.39 48087 
48.27 50797 
47.28  9691 
46.85 50222 
46.19 51343 
45.20 20673 
45.02 51355 
44.85 20223 
44.67 46727 
44.58  5141 
44.45  3377 
44.10 43012 
43.82 15445 
43.76 40380 
43.73 13578 
43.68 50793 
43.31 43468 
42.19 48690 
42.15 12482 
41.56 20365 
40.99 52063 
40.90  4672 
40.50 48085 
40.49  4330 
40.48 48086 
40.28 19885 
39.71 50667 
39.51 46550 
39.26 48165 
39.00 19594 
38.95  7188 
38.73 51432 
38.47 49981 
38.39  4711 
37.67 11390 
37.63  4055 
37.39 50538 
37.29 51115 
37.25  1108 
37.20 45027 
37.16   697 
36.69  8421 
36.52 49598 
36.08 52125 
36.02 37700 
35.71  7405 
35.38 38389 
34.94   317 
34.93 20318 
34.77 20469 
34.45 20422 
34.16 40700 
34.11 48097 
33.76 10113 
33.44 50518 
33.23  5981 
33.10  7847 
32.76 47259 
32.76 16546 
32.69 18116 
32.59 41324 
32.26 42578 
32.15 43273 
31.88 45991 
31.82 41449 
31.82 10073 
31.80 45654 
31.40 16784 
31.33 19860 
31.26 49578 
31.26 49614 
31.25 47439 
31.10 39192 
31.07 17693 
31.05 35958 
30.91 47914 
30.84 41469 
30.76 37159 
30.58 13271 
30.53 17781 
30.52 45427 
30.44 45076 
30.32  9435 
30.27 47642 
30.27  8271 
30.21 13213 
30.21 13607 
30.17 13211 
30.06 10910 
29.92 17115 
29.90 20364 
29.60 50550 
29.59  1839 
29.39 38103 
29.37  5476 
29.27 44681 
29.27 49590 
29.18 36004 
29.15  4946 
29.14 20545 
29.12 42049 
28.97 35964 
28.97 36006 
28.89 18063 
28.78 42726 
28.63 45595 
28.61 48894 
28.59 38397 
28.56 10239 
28.46  7439 
28.37 19110 
28.13 12373 
28.03 48316 
27.92 49663 
27.92 48352 
27.71 50566 
27.62 11478 
27.60 37136 
27.42 20080 
27.37 14350 
27.20  9865 
27.19 45718 
27.17 37521 
27.12 48693 
27.01 46933 
27.00 47865 
27.00 35817 
26.98  7442 
26.98  9727 
26.90 36005 
26.84 50567 
26.79 15842 
26.74 12517 
26.70 49577 
26.55 19530 
26.53 15996 
26.51 19248 
26.50 19812 
26.45 35965 
26.45 20430 
26.43  8639 
26.38 43902 
26.38 44653 
26.35 46637 
26.33  5076 
26.15 35952 
26.05 35044 
26.05 19095 
25.82 51422 
25.74 13769 
25.73 37824 
25.67 41557 
25.65 39419 
25.64 51478 
25.57 46552 
25.54 18976 
25.53 19575 
25.50 17259 
25.48 35957 
25.47 49582 
25.47 49617 
25.45 46930 
25.39 11597 
25.35 47498 
25.34 12298 
25.34 17027 
25.32 17681 
25.26 10554 
25.21 48963 
25.18 18972 
25.16 49597 
25.15 19440 
25.10 42141 
25.06 20630 
25.03 51273 
25.03 50661 
24.99 19589 
24.89 20905 
24.84 35947 
24.83  6484 
24.82 14166 
24.82  8296 
24.82 35956 
24.82 35960 
24.82 35975 
24.77 10109 
24.72 17550 
24.70 19866 
24.62 18967 
24.62 18980 
24.62 36007 
24.56  7093 
24.53 12627 
24.52 16605 
24.47 12665 
24.47  9275 
24.41 49084 
24.32  4942 
24.29 39491 
24.25 20698 
24.20 45717 
24.20  9853 
24.15 43341 
24.14 16582 
24.14 35951 
24.14 35953 
24.10 18073 
24.05  9963 
24.03  4741 
24.01 35029 
24.01 35974 
24.01 35999 
23.96 35948 
23.96 19958 
23.93 21383 
23.85 38144 
23.83  8297 
23.83  8298 
23.78 19987 
23.72 43845 
23.67 11029 
23.66 10340 
23.61 16117 
23.58 48256 
23.55 48559 
23.54 38400 
23.52  9896 
23.49 49591 
23.45 50819 
23.45 20697 
23.45  9360 
23.40 35946 
23.36  7056 
23.33 36208 
23.31 50542 
23.26 20653 
23.24 43486 
23.21 20904 
23.21 20497 
23.20 17754 
23.15 19884 
23.08  9960 
23.06  9883 
23.03 16807 
23.02 36204 
22.88  9908 
22.86 10260 
22.79 45824 
22.76  9076 
22.71 52124 
22.56 46740 
22.51 19848 
22.48 48398 
22.43  3163 
22.38 38312 
22.37 17181 
22.33 49576 
22.33 49613 
22.31 47955 
22.29 36143 
22.26 17575 
22.25 17261 
22.23  8878 
22.22 16729 
22.16 43930 
22.03 17713 
22.02 50938 
22.00  8557 
22.00 21377 
22.00 13278 
21.99 15183 
21.91  9962 
21.87 18138 
21.83 10471 
21.81 20662 
21.77 11388 
21.74 35959 
21.74 20779 
21.73 20577 
21.73  2365 
21.66 10099 
21.63  9544 
21.62 15106 
21.61 12414 
21.61   633 
21.57 46914 
21.56 45814 
21.55 19916 
21.54  7094 
21.53 17654 
21.52 15280 
21.50 17528 
21.46  8268 
21.46  8300 
21.46  8571 
21.46 16382 
21.45 41556 
21.43 10199 
21.42 45601 
21.40  9260 
21.38 16256 
21.37  3636 
21.37 41320 
21.33 16785 
21.32 20087 
21.31  8491 
21.31 36139 
21.28 49592 
21.23  8266 
21.23  8299 
21.21 49021 
21.17 48543 
21.17  8509 
21.13 52417 
21.13 52303 
21.02 18010 
21.01 11305 
21.01 20089 
20.99 47148 
20.95 20541 
20.94  9897 
20.94 51433 
20.88 12765 
20.88 49005 
20.85 18536 
20.82 17415 
20.81  9545 
20.71 47061 
20.68 52453 
20.60  4593 
20.60 10428 
20.58 37754 
20.55 50796 
20.50 11403 
20.45  5493 
20.40 12023 
20.39 51419 
20.38  5877 
20.35 13736 
20.35 50267 
20.30  4653 
20.28  9898 
20.28 17275 
20.27 20543 
20.26 13212 
20.25  9884 
20.23  9277 
20.23 39428 
20.20 15444 
20.15 19551 
20.14  9517 
20.07 10598 
20.06 47603 
20.03  8251 
20.03  8281 
19.97 51025 
19.96 42471 
19.95 20648 
19.94 41901 
19.91 51279 
19.91 38158 
19.87  4956 
19.87 11544 
19.74 40453 
19.73 11043 
19.71 35973 
19.71  8561 
19.68  9372 
19.67  4477 
19.67 49029 
19.66 38354 
19.64 12695 
19.64 20652 
19.60 37856 
19.60 49485 
19.59 44405 
19.58 10650 
19.56  9941 
19.55 43485 
19.54  8510 
19.50  2739 
19.48 19893 
19.45 41072 
19.42  3998 
19.42  4049 
19.42  5000 
19.37 47440 
19.34 21329 
19.30 42801 
19.29 19814 
19.29 11088 
19.29 47869 
19.26  9728 
19.22 42873 
19.19 48983 
19.15 50545 
19.14 51271 
19.14 47803 
19.12  5042 
19.08 20085 
19.08 19615 
19.07  6471 
19.05  4904 
19.05 50529 
19.04 37703 
19.03 49589 
19.03 49604 
19.03 46528 
19.01  6087 
19.00 40089 
18.95 20405 
18.95 48100 
18.94 50530 
18.92 45993 
18.92 47488 
18.90 52009 
18.88 38119 
18.88 21393 
18.87 51185 
18.82 12340 
18.81  7884 
18.78 16550 
18.75 45611 
18.73 16257 
18.69 51575 
18.69 11873 
18.68 47596 
18.67 20421 
18.66 48070 
18.64  9245 
18.61 47129 
18.60 18896 
18.58 37966 
18.53 46681 
18.51 52181 
18.51 15466 
18.49 34952 
18.49 35979 
18.48  2783 
18.44 45592 
18.44  7297 
18.43 18419 
18.41 16725 
18.35 20587 
18.31 42606 
18.28 47151 
18.26 10064 
18.23 17407 
18.23  8248 
18.22 19094 
18.20  7476 
18.19 14586 
18.17  7751 
18.15 37974 
18.08 48904 
18.05 50273 
17.98 45194 
17.97 10225 
17.94  9272 
17.91 20720 
17.90 41347 
17.80 11582 
17.78 34930 
17.77 39478 
17.77  9279 
17.72  4802 
17.72 51423 
17.72 49579 
17.72 49594 
17.72 19237 
17.72 35955 
17.70  8514 
17.70 37730 
17.69 12440 
17.67  4430 
17.66  9259 
17.66 19862 
17.63  7690 
17.63  9878 
17.62  7705 
17.58 14917 
17.57 49879 
17.56 38323 
17.55 38917 
17.53 13786 
17.49 16848 
17.49 10030 
17.48 38893 
17.47 41689 
17.47 42371 
17.45 14214 
17.44 13127 
17.43 19972 
17.42 14818 
17.42 44142 
17.40 51022 
17.37 38975 
17.36  9273 
17.33 12019 
17.32 36000 
17.30 20461 
17.29 17953 
17.29 38107 
17.27  2647 
17.24 17311 
17.24   452 
17.23 20470 
17.22 16737 
17.22 15195 
17.21 16804 
17.21   300 
17.19 38897 
17.17  8232 
17.17 20406 
17.17 19853 
17.16  2774 
17.15 14579 
17.13 12412 
17.12 37836 
17.10 39682 
17.10 15053 
17.09 48229 
17.08 17538 
17.08 18026 
17.02 10517 
17.02 37729 
17.00 38918 
16.99 38399 
16.99 38531 
16.99 19096 
16.95 50986 
16.93 20632 
16.93 38352 
16.93 38811 
16.92 13235 
16.91  8174 
16.90 10009 
16.89 14492 
16.86 19207 
16.85  1164 
16.84 20602 
16.82 51206 
16.79  8252 
16.79  8283 
16.79 15809 
16.77 12742 
16.76  5157 
16.76 51223 
16.75 15832 
16.75 35921 
16.75 49608 
16.73 37128 
16.69 35944 
16.69 35950 
16.68  8895 
16.68 16846 
16.67 20674 
16.66 48284 
16.65 13560 
16.65 39418 
16.63 50555 
16.59  7462 
16.57  6174 
16.55 49664 
16.54 15474 
16.52 19850 
16.49 50795 
16.46 18471 
16.45 19636 
16.42 40637 
16.41 35945 
16.34 45633 
16.34  5883 
16.33  7630 
16.28 17114 
16.28 19550 
16.26 37345 
16.26 10209 
16.25 20623 
16.23 35434 
16.20 18027 
16.17 18979 
16.16  9285 
16.15 37740 
16.14 38588 
16.13 19580 
16.10  4471 
16.10  5090 
16.10 16395 
16.09 17146 
16.07 38463 
16.07  7846 
15.99  4039 
15.93 45447 
15.91 46188 
15.89 51055 
15.89  4798 
15.88 49773 
15.86 35961 
15.86 36001 
15.86 38106 
15.83 11578 
15.82 48162 
15.80 39486 
15.80 36003 
15.80 14667 
15.79  7315 
15.79 11225 
15.77 12028 
15.75 17458 
15.75 47875 
15.74  7015 
15.74 47700 
15.74 51237 
15.73 38826 
15.71 19246 
15.69 12797 
15.69  9226 
15.68  8883 
15.66 39206 
15.66 17043 
15.63 18437 
15.60  9201 
15.59 10011 
15.59 49616 
15.59 49606 
15.59  8880 
15.58 47387 
15.58  8616 
15.56 20342 
15.55 19571 
15.53 52171 
15.52 39422 
15.52 16239 
15.51 16169 
15.50   199 
15.50  5757 
15.50 42363 
15.50  4495 
15.48 42564 
15.48 35982 
15.46 34935 
15.44 19929 
15.42 18170 
15.42 46395 
15.42 49599 
15.40 10553 
15.38 10242 
15.37 38355 
15.35 19552 
15.35 38696 
15.32  4450 
15.32 20681 
15.31  8489 
15.30  8295 
15.30 21440 
15.24 48928 
15.23 50543 
15.22  3299 
15.22  9925 
15.18 20687 
15.17 47428 
15.17 36336 
15.15 16267 
15.15 48068 
15.13 17807 
15.11 37964 
15.10 14676 
15.09 38934 
15.09 51358 
15.05 38827 
15.04 20542 
15.03 51231 
15.02  1197 
15.00 12576 
15.00 20341 
14.98 48667 
14.98  9729 
14.97 17941 
14.97 20605 
14.96 50589 
14.92 46742 
14.91 10858 
14.87  8267 
14.83 35978 
14.82 14210 
14.77 45380 
14.76 17553 
14.76 45758 
14.76 43849 
14.76 50008 
14.75 51305 
14.74 38935 
14.73 16460 
14.73  6426 
14.72 19843 
14.70  9792 
14.69 38349 
14.69 49913 
14.66  5256 
14.65  5741 
14.64 38261 
14.62 10177 
14.61  9656 
14.60 19989 
14.57 49605 
14.56 35032 
14.56  4901 
14.55  7459 
14.54 35972 
14.52 48194 
14.51 45764 
14.49  7407 
14.46 47653 
14.46 49216 
14.45 49929 
14.44 19529 
14.41 18179 
14.40 12686 
14.37 51265 
14.35 37132 
14.35   641 
14.33 40011 
14.33 50569 
14.31 11031 
14.31 17730 
14.30 10501 
14.29 20580 
14.28 49612 
14.27 52336 
14.26 14213 
14.24  7427 
14.23 16693 
14.21  7425 
14.20 10114 
14.18  9586 
14.18 37892 
14.18 10110 
14.18 17979 
14.17 38880 
14.17 14806 
14.17 35977 
14.16  9284 
14.16 49593 
14.15 49567 
14.12 18494 
14.11 43477 
14.10 21333 
14.08 18971 
14.07 49583 
14.07 49611 
14.06  8884 
14.05  7498 
14.04 18566 
14.03 39944 
14.03 17627 
14.03 47782 
14.01 19155 
14.00 46669 
14.00 47146 
14.00 37701 
13.98  4558 
13.98 42057 
13.98 50981 
13.95 51236 
13.94 19864 
13.93  9239 
13.89  9202 
13.89 18135 
13.86 48163 
13.86 37813 
13.85 10697 
13.84 45594 
13.82  4723 
13.82  4948 
13.81 50260 
13.81 20416 
13.81  5856 
13.79 19346 
13.77 14020 
13.76 19878 
13.76 15630 
13.76 52292 
13.75 19093 
13.75  8261 
13.74  4993 
13.74 36349 
13.73 39489 
13.73   525 
13.73  4101 
13.73 42037 
13.72 43726 
13.72  1968 
13.72 42721 
13.71 48040 
13.71 33508 
13.71 49899 
13.71  9690 
13.70 17185 
13.70 50599 
13.69  4571 
13.68 17679 
13.66 38823 
13.65  8250 
13.65  8280 
13.65 18097 
13.63 19877 
13.63 50798 
13.63 42796 
13.63 38437 
13.63  5130 
13.62 39204 
13.62 38458 
13.59  3961 
13.59 42805 
13.59 43617 
13.59 43658 
13.58 43654 
13.57  7289 
13.57  9269 
13.56 49948 
13.55 50548 
13.55  4012 
13.55  4078 
13.55 16939 
13.54 17610 
13.53 49054 
13.53 10213 
13.52  9262 
13.52 39201 
13.50  3795 
13.50 17029 
13.47 12777 
13.46  7222 
13.46 43006 
13.45 49954 
13.45 45442 
13.44 44784 
13.43  4755 
13.42 15240 
13.42 15254 
13.42 43519 
13.41  8492 
13.41  9408 
13.41 47265 
13.40  7875 
13.39 47605 
13.39 51477 
13.39 47556 
13.39  5517 
13.37  4670 
13.36 16618 
13.35 13714 
13.35  9587 
13.34  3759 
13.33 41319 
13.32 47641 
13.32  9635 
13.32 17966 
13.32 17731 
13.32 38505 
13.32  9899 
13.31   223 
13.31 14324 
13.31 48015 
13.31 52180 
13.30 42354 
13.30 47300 
13.29 45924 
13.29 48538 
13.29  7796 
13.29 47262 
13.29  6396 
13.29 49059 
13.29 13795 
13.28 10487 
13.27 18098 
13.26 50982 
13.25 21062 
13.25 46689 
13.25  2813 
13.23 50576 
13.23 39575 
13.22 19197 
13.22  4409 
13.21  8630 
13.20 17329 
13.18 19879 
13.15 43668 
13.14 49544 
13.13 19549 
13.13 19844 
13.12  1812 
13.10 19553 
13.10 14580 
13.08 34988 
13.08 19876 
13.05  8490 
13.05 21328 
13.04 20672 
13.03 37721 
13.02 35971 
13.02  4897 
13.00 19799 
12.97 20690 
12.97 16458 
12.96  6255 
12.96 37684 
12.95  3068 
12.95 38796 
12.95 38861 
12.95 19576 
12.95 37942 
12.95 38102 
12.93 50564 
12.93  8562 
12.91 41882 
12.91 14130 
12.87   531 
12.87 11893 
12.87 16203 
12.86 15019 
12.84 17486 
12.83 19966 
12.82  4968 
12.82 44024 
12.81  6607 
12.81  8181 
12.80  8942 
12.79  8892 
12.79   980 
12.78  7492 
12.78  8282 
12.76 46491 
12.74  6853 
12.72  8249 
12.70 44151 
12.68 38756 
12.66 14180 
12.66  4944 
12.64 47004 
12.64 15502 
12.64 37825 
12.63 51210 
12.63 43737 
12.63 10522 
12.63 16127 
12.61 18174 
12.61  9869 
12.60  1310 
12.60   285 
12.59 45243 
12.58 51120 
12.58  9238 
12.58  4159 
12.57  2255 
12.57 41088 
12.57 45378 
12.56 11267 
12.56 19491 
12.56 11437 
12.55 48670 
12.54 19587 
12.54  5642 
12.53  5596 
12.52  9830 
12.50 46741 
12.50  3320 
12.47 20350 
12.46 48758 
12.45  8822 
12.45  8881 
12.44 49610 
12.44 52156 
12.43  8886 
12.43  5641 
12.43 18096 
12.42  9231 
12.42 20345 
12.41  8890 
12.41  5302 
12.41 13888 
12.41 19554 
12.41 19560 
12.41 51618 
12.40 52146 
12.39 47249 
12.39 37842 
12.38 35962 
12.38 35954 
12.38 35976 
12.38 19573 
12.36 19924 
12.36 50504 
12.35  8604 
12.34 12734 
12.33 52471 
12.32  4069 
12.32 44478 
12.31  8310 
12.31  4735 
12.30 44863 
12.30 37792 
12.30 10589 
12.30 38837 
12.29 37798 
12.27 15438 
12.27 49777 
12.27 38460 
12.26 13844 
12.26 20468 
12.25  4465 
12.24 16572 
12.23 10193 
12.23 20415 
12.22 13393 
12.22 47122 
12.22 42518 
12.22 18019 
12.20  2179 
12.19 35940 
12.19 41339 
12.18 20157 
12.18 20225 
12.18 39735 
12.18 18352 
12.18 18831 
12.17 14949 
12.16 37075 
12.15 51054 
12.14 47501 
12.13 41095 
12.12 19685 
12.10 20664 
12.10 10259 
12.10 52008 
12.08  5513 
12.08 20305 
12.08   152 
12.07 40607 
12.07 51787 
12.06 19113 
12.06 37723 
12.05 15429 
12.05 50521 
12.04 17036 
12.03 40369 
12.02  9221 
12.02 17954 
12.02 38318 
12.01 14078 
12.01 38900 
12.01  4771 
12.00  5077 
12.00  4575 
12.00 12736 
11.99  7765 
11.99 35031 
11.99 10159 
11.99 38526 
11.98  1078 
11.98 38123 
11.98  7613 
11.97 21063 
11.97 15593 
11.96 10086 
11.96 20724 
11.95 48695 
11.95 13316 
11.93 46673 
11.92   596 
11.90 15724 
11.90 19883 
11.90  4292 
11.88 49043 
11.87 37890 
11.87 49214 
11.87 18977 
11.86 45441 
11.86 18210 
11.85 34997 
11.85 20428 
11.85    67 
11.84 46443 
11.84  7438 
11.84 19091 
11.83 19187 
11.83 12339 
11.83  9282 
11.83 16567 
11.82 40448 
11.82 10151 
11.82 18993 
11.82 40027 
11.82 29061 
11.82  9232 
11.80  4834 
11.79  7049 
11.79  9885 
11.79 20645 
11.77 35963 
11.77 36002 
11.76 51179 
11.75 19574 
11.75 15799 
11.74 10531 
11.73 20075 
11.73 48294 
11.72 51317 
11.72 43705 
11.72  4402 
11.72 16495 
11.72 10586 
11.71 39497 
11.70 48135 
11.69  9242 
11.69 35038 
11.68  9524 
11.68  6850 
11.68 35030 
11.68 38864 
11.67 20678 
11.66 10183 
11.66  3925 
11.66  8239 
11.65 15376 
11.64 24412 
11.64  4832 
11.63  7549 
11.62  1177 
11.62  8875 
11.61 46887 
11.60 43837 
11.60  6285 
11.58 43649 
11.58 42793 
11.58 43680 
11.56  9879 
11.55 41655 
11.55 44187 
11.54 17775 
11.53 20166 
11.53  6989 
11.53 51043 
11.52 17930 
11.52 20059 
11.52 39186 
11.52 17418 
11.51 38319 
11.51 51828 
11.50 14083 
11.50  7986 
11.49  6900 
11.49 35920 
11.49 18374 
11.47  7636 
11.47  7212 
11.46 16472 
11.45 18223 
11.45 49575 
11.45 49596 
11.44  9479 
11.43 38717 
11.42 15134 
11.42 14684 
11.42 50738 
11.41 52122 
11.41 43424 
11.40 36354 
11.39 50835 
11.39 48289 
11.39  2278 
11.39 15212 
11.38 37846 
11.38   248 
11.37 35028 
11.37 37133 
11.37 17692 
11.37 48455 
11.37 38790 
11.36  3327 
11.36 49668 
11.35 44021 
11.35 10454 
11.35  5447 
11.35 42030 
11.34 19202 
11.34 37480 
11.33 17465 
11.33  6291 
11.33  7525 
11.33 39432 
11.32 49008 
11.31 47333 
11.31 46462 
11.31 19052 
11.30 16928 
11.28  9281 
11.28   733 
11.28 21071 
11.27  2746 
11.26 40381 
11.25 20785 
11.25 41933 
11.24   200 
11.24 15325 
11.23 37129 
11.23  1546 
11.22  4240 
11.22 12112 
11.22  2363 
11.22  4903 
11.21 47111 
11.19 16410 
11.19  9868 
11.18 50575 
11.17 20583 
11.17 16237 
11.16 50306 
11.16  1935 
11.16  9186 
11.16 20212 
11.16 44112 
11.15 18829 
11.15 52405 
11.14 11246 
11.14  7495 
11.13 17609 
11.12  7441 
11.11 18009 
11.11 48475 
11.11  3864 
11.11 48296 
11.10  9622 
11.10 21031 
11.09  7826 
11.08 35672 
11.08 12400 
11.08  7769 
11.07 19971 
11.07 18383 
11.07 19838 
11.07  5907 
11.06 50856 
11.06 16931 
11.06 16478 
11.06  4564 
11.06 38828 
11.04  7729 
11.03 45988 
11.03  4428 
11.02  9964 
11.02 41507 
11.01 46978 
11.01 49168 
11.01 10993 
11.00  2830 
11.00 44424 
11.00  6172 
11.00  8262 
11.00 10096 
11.00  9169 
10.99 46682 
10.99 17999 
10.99  6938 
10.99 17763 
10.99 47334 
10.98  6103 
10.98 17479 
10.97  5612 
10.93 36348 
10.93 43423 
10.93 14928 
10.92 49580 
10.92 49609 
10.92 20254 
10.92 50763 
10.91 15018 
10.91  3457 
10.90 42866 
10.90 19193 
10.89  5940 
10.88  6806 
10.87 33362 
10.87 10480 
10.87 18808 
10.87 12667 
10.87  2322 
10.86 18233 
10.86 16078 
10.86 10050 
10.85 11916 
10.85 10034 
10.82 19041 
10.81 50666 
10.81  6844 
10.81 42069 
10.80 45205 
10.80 40608 
10.80 14004 
10.80 10043 
10.79  8559 
10.79 39556 
10.79 11829 
10.78 27681 
10.78 11561 
10.78  4362 
10.78 45825 
10.78 10502 
10.77 19742 
10.77 35980 
10.77  1473 
10.76  2726 
10.76  5055 
10.76 37802 
10.76 38145 
10.76 49349 
10.76  9882 
10.76 47799 
10.75 47250 
10.75 17748 
10.75  8203 
10.75 37357 
10.74 49607 
10.74 17944 
10.73 20409 
10.72 17473 
10.72  3370 
10.72 26644 
10.71  3593 
10.71 48796 
10.70 49004 
10.70 21167 
10.70  6201 
10.69 21326 
10.69  8877 
10.69 49007 
10.68 51459 
10.68  3001 
10.68  8574 
10.68 43009 
10.68 10917 
10.67 15021 
10.67 18983 
10.67 48926 
10.67 13383 
10.66  8606 
10.66  7211 
10.65 10662 
10.64  8477 
10.64 18489 
10.64 20473 
10.64  1271 
10.63 20603 
10.63 15405 
10.63 21099 
10.62 16446 
10.62  4335 
10.61 43552 
10.60  3708 
10.59 47973 
10.59 48334 
10.58  8928 
10.58 50960 
10.58 50525 
10.57 10192 
10.57  4112 
10.57  5022 
10.56  8682 
10.56 37297 
10.56 19931 
10.56 19676 
10.55 20907 
10.54 38789 
10.54 10187 
10.53 40384 
10.53 46542 
10.53  9943 
10.52 18405 
10.52 37076 
10.51 15595 
10.51 10235 
10.51 46672 
10.50  1585 
10.49 10094 
10.49 20870 
10.49 10237 
10.49 20407 
10.48 19875 
10.48 39541 
10.47 24921 
10.47  7244 
10.47 19663 
10.47  3003 
10.47 52473 
10.47 37728 
10.47 38792 
10.46 10180 
10.46 38822 
10.45  9078 
10.45 41498 
10.44 20057 
10.43  4336 
10.43  1421 
10.42 45238 
10.41 17690 
10.41 47236 
10.40 17643 
10.40 20915 
10.39 47431 
10.38 19725 
10.37 18099 
10.37 41624 
10.36  1898 
10.36 52272 
10.35   158 
10.35  7090 
10.35 52367 
10.35 46928 
10.35  5735 
10.34  8889 
10.33 10722 
10.33  7806 
10.32 37637 
10.32 12830 
10.32 15773 
10.31  6171 
10.31  5123 
10.31 50010 
10.30 19592 
10.30 18191 
10.29 50190 
10.28 49060 
10.28 20588 
10.27 51023 
10.27 47252 
10.26 18190 
10.26 52084 
10.26 40420 
10.26 19640 
10.25 49083 
10.25 20829 
10.25 43647 
10.25 50265 
10.25 15196 
10.24  4061 
10.24 20503 
10.24   690 
10.24 10430 
10.23 38279 
10.22 45604 
10.22 52344 
10.21  7969 
10.20 38587 
10.20 46400 
10.20 47984 
10.20 49806 
10.19 50762 
10.19 38693 
10.19 16130 
10.18 18818 
10.18 46704 
10.18 20704 
10.17 46927 
10.17 19889 
10.17 38699 
10.17 34929 
10.17  9008 
10.17 52533 
10.17 12785 
10.16  7447 
10.15 20419 
10.15  4790 
10.14 37803 
10.14 20689 
10.14 43277 
10.14  7688 
10.14 49000 
10.14 10837 
10.14 39673 
10.13 15689 
10.13 45713 
10.13 38006 
10.13 40102 
10.13  8900 
10.13  5774 
10.13 14622 
10.12  5250 
10.12  9881 
10.11 20163 
10.11 38809 
10.11  5775 
10.11 19970 
10.10 13377 
10.09 20167 
10.09 20771 
10.09 16513 
10.08 46696 
10.08  8236 
10.08  9283 
10.07  3166 
10.07 49009 
10.07 18402 
10.07 13938 
10.06 44048 
10.06 17001 
10.06 18100 
10.06  9227 
10.05    55 
10.05 42304 
10.05 49184 
10.05 40763 
10.04  2082 
10.04  7101 
10.04  4411 
10.04 46236 
10.03 19849 
10.03 18365 
10.03  1544 
10.02 16884 
10.02 19865 
10.02 18307 
10.02 20319 
10.02 14326 
10.01 18719 
10.01 18176 
10.01 28964 
10.00  9450 
10.00 11479 
10.00 38178 
9.99 19638 
9.99 14989 
9.99 18538 
9.99 14241 
9.98  4977 
9.98  6325 
9.98  4469 
9.98  2291 
9.96 42108 
9.96 37158 
9.95 51836 
9.95 19932 
9.94 19692 
9.93  5027 
9.93 45964 
9.92 50565 
9.91 50311 
9.91 20675 
9.91 41743 
9.90 10182 
9.90 14483 
9.90 17600 
9.89 38317 
9.89  9989 
9.89 20117 
9.88  7478 
9.88 47604 
9.87 19517 
9.86 16854 
9.86 49595 
9.85 19257 
9.85 37078 
9.85 20418 
9.84 37286 
9.83 19233 
9.83 48002 
9.82 50980 
9.82 48493 
9.82  7831 
9.82 19236 
9.82 19224 
9.81 37726 
9.81  5788 
9.81 35969 
9.81  8887 
9.80  4657 
9.80 43278 
9.80 45786 
9.80 52184 
9.79 52121 
9.79  6075 
9.79   534 
9.78 11504 
9.78 46794 
9.78 51031 
9.77  1858 
9.77 19726 
9.76 48899 
9.76 44554 
9.75 40080 
9.74 10434 
9.74 10038 
9.74 10090 
9.74  7033 
9.74  5425 
9.74 11039 
9.74  5964 
9.73 45632 
9.73 19759 
9.73 19788 
9.73 19789 
9.73  6284 
9.73 38287 
9.73 18336 
9.72 47400 
9.71 10314 
9.71  3501 
9.70  1110 
9.70  9204 
9.69  6474 
9.69 18800 
9.68  6281 
9.68  2084 
9.68  4885 
9.67 16678 
9.67  8672 
9.67 20098 
9.67 37845 
9.67 46666 
9.66 16542 
9.64  7458 
9.64 15843 
9.64 14772 
9.64  7515 
9.64  9101 
9.63 41973 
9.62 41598 
9.62 20665 
9.62 18502 
9.62  6422 
9.61 38445 
9.61  7415 
9.61 38944 
9.61 37591 
9.61 49145 
9.60 14704 
9.60 20659 
9.60 20998 
9.59 42654 
9.59 51035 
9.58 16827 
9.57 14549 
9.57 45177 
9.56 18401 
9.56 16867 
9.56  4453 
9.56 12874 
9.56 38436 
9.55 18253 
9.55 48724 
9.55 13096 
9.55 37687 
9.54 35057 
9.54  9570 
9.54  8059 
9.53 11495 
9.53 15780 
9.52 51274 
9.52  5822 
9.52 49477 
9.51  4337 
9.51  2086 
9.51 35517 
9.50 10603 
9.50  4102 
9.50 20900 
9.49 39209 
9.49  4126 
9.48 49114 
9.48 44714 
9.48 12992 
9.48 19898 
9.48 18220 
9.47 17180 
9.47 48697 
9.47  9205 
9.47 21133 
9.47 48924 
9.47 21404 
9.46 42431 
9.46 18607 
9.45 11195 
9.45  6492 
9.44 49646 
9.44  5449 
9.43  9948 
9.43 10138 
9.43  9166 
9.43 12003 
9.42 20794 
9.42  7456 
9.42 50553 
9.41  7193 
9.41 51131 
9.41 43186 
9.40  2259 
9.39 49581 
9.39 49618 
9.39 41930 
9.39 18865 
9.39   682 
9.39 16489 
9.38  4936 
9.38 41084 
9.38 49881 
9.37 38401 
9.37 35493 
9.37  8222 
9.37 16089 
9.37 42015 
9.37 37741 
9.37 10533 
9.37 50293 
9.36 38824 
9.35  7136 
9.35  8260 
9.35  9756 
9.34  2551 
9.33 37731 
9.33 35431 
9.33 20685 
9.33  8033 
9.33 10649 
9.33 18868 
9.33 38431 
9.33 18157 
9.33 38295 
9.32  5291 
9.32 48181 
9.32 51286 
9.32 18117 
9.32 38456 
9.31 18006 
9.31 18339 
9.31 18340 
9.30 50551 
9.30  4131 
9.30  9593 
9.30 37072 
9.29 37753 
9.28 10186 
9.28  9251 
9.28 15233 
9.27 20590 
9.26 11915 
9.26 50954 
9.26  8355 
9.26 41902 
9.25 10935 
9.25   678 
9.25 42475 
9.24 48618 
9.24 10006 
9.23   294 
9.23 15936 
9.23 15232 
9.23 45597 
9.22  9446 
9.22  8494 
9.21 49962 
9.21 35949 
9.21 35981 
9.21 36368 
9.20  4791 
9.20 35908 
9.20 14056 
9.20 17718 
9.18 36281 
9.18 28495 
9.17 24726 
9.17 18354 
9.16 17597 
9.15  4388 
9.15  5201 
9.15 45437 
9.15 16964 
9.14 10233 
9.14 10514 
9.14  4667 
9.14  5004 
9.14 18795 
9.14 43220 
9.14 11775 
9.14 10258 
9.13 13590 
9.13 18251 
9.13 49817 
9.13 51074 
9.13 15441 
9.12 19867 
9.12 46335 
9.12 47927 
9.12  7131 
9.11 20832 
9.11 18271 
9.11 35474 
9.11 21342 
9.11 18772 
9.11 11254 
9.10 17634 
9.10  6825 
9.10 22793 
9.10 14779 
9.09  3616 
9.09  9810 
9.09 39149 
9.09  9944 
9.09 19715 
9.09 50652 
9.09  6790 
9.09 51116 
9.09 11697 
9.08 38794 
9.08 52212 
9.08 10158 
9.08 45893 
9.08 43637 
9.07 45296 
9.07 49884 
9.07 42921 
9.06 21091 
9.06 11918 
9.06 45733 
9.06 34991 
9.06 51012 
9.06 35056 
9.06  6112 
9.05 14760 
9.05 20347 
9.05 38182 
9.05 25787 
9.05 20062 
9.05 27831 
9.05  1861 
9.05 50312 
9.05 38718 
9.05  7402 
9.05 20629 
9.05 37791 
9.05 38315 
9.05 39470 
9.05 38503 
9.04 21413 
9.04 36258 
9.04 12801 
9.03 17700 
9.03 15653 
9.02 15987 
9.02 20203 
9.02 21152 
9.01 16644 
9.01 49169 
9.01 18289 
9.01 43531 
9.01 19031 
9.00 18783 
9.00 38420 
8.99 12180 
8.99 33363 
8.99 49776 
8.99  9038 
8.99 49536 
8.98 10007 
8.98 21106 
8.98 10010 
8.98 49081 
8.97 43015 
8.97 13108 
8.97  2748 
8.97 47384 
8.96 18735 
8.95  9233 
8.95 49204 
8.95 18347 
8.94   631 
8.94  7363 
8.94 40454 
8.94 38324 
8.94 18429 
8.94 41124 
8.93  3102 
8.93 48975 
8.92 43630 
8.92  3996 
8.92 38429 
8.91 48205 
8.91 21055 
8.91 10234 
8.90 19588 
8.90  4837 
8.90 41387 
8.90 16293 
8.90 16465 
8.90 16486 
8.90  8635 
8.90 19761 
8.89 11570 
8.89  9723 
8.89 19752 
8.89 50987 
8.89 51465 
8.89 18148 
8.89 37854 
8.88 16362 
8.88 18260 
8.88 18059 
8.88 10284 
8.87  6537 
8.87 37416 
8.87  8323 
8.87  1191 
8.86  8066 
8.86 11906 
8.86  8605 
8.86 43627 
8.86  7942 
8.86 10246 
8.85 10173 
8.85  9095 
8.84 19973 
8.84  2910 
8.84 19847 
8.84  3221 
8.84  1982 
8.83 17906 
8.83 17905 
8.83 46785 
8.83 18013 
8.83  7530 
8.83 48473 
8.83  4211 
8.82  8053 
8.82  8972 
8.82  8204 
8.82 46886 
8.82 36307 
8.82 45322 
8.81 35053 
8.81  6238 
8.81 38896 
8.81 38814 
8.81 38798 
8.80 35890 
8.80 37806 
8.80 37160 
8.80 20349 
8.79 41965 
8.79 38426 
8.79  9732 
8.79 49270 
8.79 10112 
8.79 21283 
8.79  8564 
8.79 49713 
8.78 37589 
8.78 20686 
8.78 37893 
8.78 38906 
8.78 37557 
8.78 38894 
8.77 39203 
8.76 45080 
8.76 14191 
8.76  1893 
8.76  8572 
8.76 44105 
8.75  8960 
8.75 13794 
8.75  5746 
8.75 19245 
8.75 45032 
8.74 19915 
8.74 18008 
8.73 49893 
8.72 18618 
8.72    74 
8.71 15580 
8.71 37804 
8.70 37162 
8.70  1950 
8.70  1188 
8.68  8255 
8.68 14662 
8.67   755 
8.67 16692 
8.66 10988 
8.66 49936 
8.65 18360 
8.65 20228 
8.64  1415 
8.64 21220 
8.64  7163 
8.64  8052 
8.64 49305 
8.63 48910 
8.63 48903 
8.63 48614 
8.63  2216 
8.63 51027 
8.62 15600 
8.62 15599 
8.61 37084 
8.61 20121 
8.61  5063 
8.60 38101 
8.60 18480 
8.60 15326 
8.60 20789 
8.60 13609 
8.59 49971 
8.59 12688 
8.59 14240 
8.58 10289 
8.58 49920 
8.58  7404 
8.58  6409 
8.58 46795 
8.58 10651 
8.57 21023 
8.57 20778 
8.56  8182 
8.56 20392 
8.55  8173 
8.55 10145 
8.55  9820 
8.55 37756 
8.55 14916 
8.54 20489 
8.54   756 
8.53 19057 
8.53 14403 
8.53 45293 
8.53 18447 
8.53 19917 
8.53 38239 
8.53 13735 
8.53 41711 
8.52 51485 
8.52 39211 
8.52 16463 
8.52 35055 
8.51 38892 
8.51  5023 
8.51 10108 
8.51 18036 
8.51 38876 
8.51 19014 
8.50 10527 
8.50  4839 
8.49  7600 
8.49  7715 
8.49  6860 
8.49 42870 
8.49 40141 
8.49 45660 
8.48 23558 
8.48 19186 
8.48 44199 
8.48 48922 
8.48 37068 
8.47 48161 
8.47 39492 
8.47  9825 
8.47 19988 
8.47  7303 
8.47  5214 
8.47 48940 
8.47 48964 
8.46  8573 
8.46  4757 
8.46 51122 
8.45 44878 
8.45 41307 
8.45  1008 
8.45 19066 
8.44 20151 
8.43 18810 
8.43 38428 
8.43 49301 
8.43  7141 
8.43 35887 
8.43 17300 
8.42 52198 
8.42  3968 
8.42 20622 
8.41 35909 
8.41 10497 
8.40 44524 
8.40  8974 
8.40 34925 
8.40 38415 
8.40 39185 
8.39 17303 
8.39 18444 
8.39  5468 
8.39  5514 
8.38  5807 
8.37  7745 
8.37   634 
8.37 19637 
8.37 45599 
8.36   374 
8.36 20483 
8.36 50489 
8.36 19034 
8.35 13937 
8.35 16125 
8.35 16552 
8.35 16620 
8.35  9344 
8.35 13344 
8.34 15051 
8.34  6118 
8.34 51180 
8.34 14785 
8.34 12842 
8.33 51667 
8.33 15435 
8.33 15893 
8.33 39475 
8.32 51304 
8.30 20270 
8.30  7967 
8.30   602 
8.30 50384 
8.30 37130 
8.30 20650 
8.30 45689 
8.29 44916 
8.29  4384 
8.27  8893 
8.27 38014 
8.26 21417 
8.26 11789 
8.26 37968 
8.25  9895 
8.25 10168 
8.25 39498 
8.25  9642 
8.25 46837 
8.24  7457 
8.24 50524 
8.23 45143 
8.21 10429 
8.21 18439 
8.20 12815 
8.19 20472 
8.18 17302 
8.17 37692 
8.17 42031 
8.17 48864 
8.16  9935 
8.16 13007 
8.16 19251 
8.16 51069 
8.16  7594 
8.14 19836 
8.14 48877 
8.13  8976 
8.13 50730 
8.13  8089 
8.13 10535 
8.12 21054 
8.12 11799 
8.11 18229 
8.11  1958 
8.11  7869 
8.11 10148 
8.11  8977 
8.11 20301 
8.10 38433 
8.10 14512 
8.10 21187 
8.10 47912 
8.10 38421 
8.10 10263 
8.10  2081 
8.10 50983 
8.09 15008 
8.09 16400 
8.09 20340 
8.09 48623 
8.08 18313 
8.08 51966 
8.08 50713 
8.07 11052 
8.07 48368 
8.07    44 
8.07 37074 
8.06 15617 
8.05 47233 
8.05 37395 
8.05 37693 
8.05  2513 
8.05 14543 
8.05  5040 
8.04  8143 
8.04  7889 
8.04 13044 
8.04 14955 
8.03 19665 
8.03 18275 
8.03 10720 
8.03  2609 
8.02 51002 
8.02 42669 
8.02  3814 
8.02 11020 
8.02  4745 
8.01 50845 
8.01  5310 
8.01 18816 
8.01 14722 
8.01 21318 
8.01 39119 
8.01 38104 
8.01 19926 
8.01 49624 
8.00 19019 
8.00 38345 
8.00 13992 
7.99 10207 
7.99 52182 
7.98  9835 
7.97 16595 
7.97  1067 
7.97  1579 
7.97 37686 
7.96 51222 
7.96 16069 
7.96  9495 
7.95 10336 
7.95 13790 
7.95 43268 
7.94  1368 
7.94 19520 
7.94 21270 
7.94 47398 
7.93 20579 
7.93 17985 
7.92  1920 
7.92  1850 
7.91 20874 
7.91 47057 
7.91  9278 
7.91 44209 
7.90 14749 
7.90 50520 
7.90 18430 
7.90 17445 
7.89 38425 
7.89 10944 
7.89 49509 
7.88  5986 
7.88 20281 
7.87 20906 
7.87 49587 
7.87  2862 
7.87 49730 
7.86 10077 
7.86 41889 
7.86 10500 
7.86 11309 
7.86 20097 
7.86 16721 
7.85  8035 
7.84 20683 
7.84 41381 
7.84 44355 
7.84  3689 
7.84  9730 
7.83 20082 
7.83 35283 
7.83  9349 
7.83 19591 
7.82 49957 
7.82 18173 
7.82 13338 
7.82 10476 
7.82 13270 
7.82 20694 
7.82 17037 
7.81  8272 
7.80 14972 
7.80  9270 
7.80 20709 
7.80  9720 
7.80 35269 
7.79  8435 
7.79  4683 
7.78  2571 
7.78 16559 
7.77 47190 
7.77 47715 
7.77 18899 
7.77 38719 
7.77  3811 
7.76 46893 
7.76 38865 
7.75 14914 
7.75  8488 
7.75 50478 
7.75 18189 
7.75 37878 
7.75 42919 
7.74  7455 
7.74 12216 
7.74 35735 
7.74 47797 
7.74 20776 
7.73 48897 
7.73 21738 
7.73  7418 
7.72 21143 
7.72 41231 
7.72 41935 
7.72 14444 
7.71 52080 
7.71 45753 
7.71 45915 
7.71 47304 
7.71 21176 
7.70 47903 
7.70 44101 
7.70  8436 
7.70 41054 
7.70  5020 
7.70 19016 
7.69 41678 
7.69 19927 
7.69 43335 
7.69 13379 
7.69 10026 
7.69  3391 
7.69 10012 
7.69  8328 
7.68 10325 
7.68 17322 
7.68 18263 
7.68 49935 
7.68 34998 
7.67 37471 
7.67 19902 
7.67   517 
7.67 19854 
7.66 47247 
7.66  5247 
7.66 48337 
7.66 50531 
7.66 44862 
7.65 47141 
7.65  1324 
7.65  7977 
7.65 14681 
7.64 49897 
7.64 45242 
7.64  1409 
7.63 51563 
7.63 45534 
7.62 43014 
7.62 13422 
7.62 21316 
7.61  1870 
7.61 20111 
7.61 51424 
7.60 19614 
7.60 45708 
7.60 50737 
7.60 48065 
7.60 11440 
7.60 19950 
7.59  4212 
7.59 49275 
7.59 49937 
7.58 51608 
7.58 12771 
7.58 20346 
7.58 11058 
7.58 10261 
7.58 21009 
7.58  9399 
7.58 15387 
7.58 44831 
7.58 13102 
7.57 37794 
7.57 45685 
7.57 20860 
7.56 18228 
7.56  5325 
7.55  9797 
7.55 49721 
7.55 47805 
7.54 14537 
7.54 14663 
7.54  2615 
7.54 20903 
7.54 37904 
7.53 19561 
7.53  8454 
7.53  1644 
7.53  4048 
7.53  4480 
7.53 51253 
7.53  7277 
7.53 44410 
7.53 18406 
7.53 18421 
7.52 46843 
7.52 14665 
7.52 39417 
7.52 15749 
7.52  1980 
7.52  8975 
7.52  6243 
7.51 21033 
7.51 10635 
7.51   761 
7.51  7913 
7.51 19940 
7.51 35457 
7.51  9664 
7.50 41351 
7.50 46778 
7.50 18235 
7.50  9712 
7.50 12574 
7.49 47179 
7.49 10950 
7.49  9252 
7.49 31926 
7.49 46683 
7.49 38881 
7.48 44129 
7.48 45107 
7.48 45774 
7.48 20060 
7.48 37282 
7.48  5246 
7.48 11845 
7.48 18222 
7.48 12641 
7.48  9844 
7.47 37596 
7.47 52175 
7.47 14657 
7.46  3871 
7.46 15135 
7.46 44628 
7.45  9705 
7.45  3067 
7.44 18925 
7.44 35600 
7.43 41694 
7.43 14643 
7.43  4514 
7.43 39736 
7.43 42370 
7.43 41656 
7.43 42369 
7.43 42631 
7.43 42725 
7.43 42736 
7.43 44398 
7.43 44608 
7.43 14673 
7.43 13812 
7.43 15160 
7.43 18847 
7.43 37302 
7.42 50825 
7.42 37761 
7.42 48913 
7.41  9419 
7.41 10046 
7.41 51350 
7.40 41493 
7.40  4456 
7.40 44293 
7.40 49895 
7.40  6730 
7.40 16747 
7.40 50860 
7.39 14648 
7.39 18428 
7.39 21130 
7.39 20624 
7.39  9721 
7.39  5819 
7.39 10005 
7.39 45600 
7.39  9815 
7.39  1456 
7.39 13371 
7.39 42367 
7.39 47281 
7.38 38457 
7.38 20758 
7.38 44173 
7.38  9735 
7.38 38748 
7.38 13761 
7.38 15467 
7.37  8263 
7.37 45714 
7.36 15133 
7.36 10137 
7.36 42769 
7.36 18889 
7.36 51866 
7.36 31457 
7.36  9840 
7.36 20432 
7.35 10132 
7.35 16762 
7.35 45576 
7.35 15214 
7.35 11270 
7.35 19199 
7.35 10339 
7.34  2395 
7.34 48537 
7.34 49892 
7.34  2527 
7.34 51064 
7.34   783 
7.34 15269 
7.34 47837 
7.34 20142 
7.33 11070 
7.33 38797 
7.33 14613 
7.33 12354 
7.33 13954 
7.33 45643 
7.32  4759 
7.32  8556 
7.32 19532 
7.32  9733 
7.32  3072 
7.32 18329 
7.32 18268 
7.32 39805 
7.32  8502 
7.32 10307 
7.31 11994 
7.31 19949 
7.31 13957 
7.31  1925 
7.31 43232 
7.31  1932 
7.31   539 
7.31   222 
7.31 19787 
7.31 41693 
7.31 42148 
7.31 42416 
7.30 15297 
7.30 18805 
7.30 19785 
7.30 46751 
7.29 52172 
7.29  8970 
7.28  4549 
7.28 48856 
7.27 49896 
7.27 11658 
7.27 18280 
7.27 42598 
7.26 18327 
7.26 38154 
7.26 38353 
7.26 35602 
7.26 47995 
7.26 38339 
7.26 19745 
7.26  9514 
7.26  9271 
7.26 11082 
7.26 11750 
7.25  7024 
7.25 46918 
7.25 20600 
7.25 38313 
7.25  7522 
7.25 48898 
7.24 13440 
7.24 20110 
7.24 20658 
7.23  9877 
7.23 47054 
7.23  7616 
7.22 18809 
7.22 51538 
7.22   271 
7.21 49137 
7.21 14901 
7.21  6788 
7.21 39872 
7.21 20544 
7.21 50184 
7.21 19238 
7.21 20413 
7.20 35928 
7.20 46517 
7.19 40168 
7.19 42741 
7.19 42005 
7.19 37445 
7.19  8527 
7.19 46922 
7.18 19597 
7.18  4375 
7.18 12598 
7.18 50217 
7.17 20408 
7.17 51037 
7.17 47668 
7.17 42841 
7.17 43471 
7.17 10519 
7.17 10146 
7.17 49139 
7.17 49166 
7.17 18846 
7.17 18206 
7.16 40940 
7.16 21161 
7.16 21941 
7.16 46331 
7.15 38879 
7.15 16646 
7.15 38054 
7.15 12299 
7.14 45063 
7.14 40192 
7.14  2085 
7.14 16682 
7.13 48443 
7.13  5241 
7.13 18172 
7.13 10288 
7.13 51026 
7.13  7248 
7.12 48117 
7.12 11086 
7.12 47418 
7.12  9056 
7.12  1114 
7.12 43631 
7.12 29289 
7.11 18838 
7.11 27793 
7.11 38700 
7.11 50514 
7.10 25096 
7.10 15419 
7.10 46810 
7.10  3010 
7.10  8666 
7.10 33360 
7.09 38527 
7.09  2346 
7.09  4617 
7.09 39210 
7.09 37888 
7.09 47667 
7.08 50528 
7.08 13681 
7.08 14331 
7.08 44883 
7.08  8145 
7.08  5097 
7.08 46656 
7.07 49915 
7.06 25776 
7.06 16715 
7.06 19763 
7.06 49917 
7.06 13193 
7.06 18981 
7.05 13020 
7.05 15553 
7.05 10181 
7.05 19033 
7.05 50547 
7.04  3146 
7.04  9225 
7.04 42022 
7.04 20852 
7.04 51238 
7.03 16673 
7.03 19032 
7.03 17102 
7.03 16115 
7.03 44166 
7.02 12190 
7.02 37848 
7.02 18974 
7.02  3536 
7.02 50642 
7.02 14103 
7.01  2924 
7.01  5202 
7.01 42734 
7.01  4517 
7.00 38356 
7.00 14795 
7.00 16942 
7.00 42955 
6.99  9734 
6.99  7417 
6.99 41272 
6.98 46953 
6.98  7988 
6.98 41143 
6.98 32805 
6.97 18373 
6.97 20327 
6.97 12172 
6.97 24831 
6.97 37081 
6.97 50048 
6.97 44449 
6.97 35037 
6.97  5148 
6.97 11110 
6.96 21093 
6.96 47491 
6.95 41378 
6.95   559 
6.95 42215 
6.95   150 
6.94 49774 
6.94 10803 
6.94  5492 
6.93 20296 
6.93 43861 
6.93 51093 
6.93 44742 
6.92 14348 
6.92 42394 
6.92 42607 
6.92 42633 
6.92 42638 
6.92 44318 
6.92 44400 
6.92 43609 
6.92 11547 
6.92  8899 
6.92  2073 
6.92 38060 
6.92  4219 
6.91 17070 
6.91 15137 
6.91 43563 
6.91  9369 
6.90 15272 
6.90 37965 
6.90 45655 
6.90 20402 
6.90 39472 
6.89 47220 
6.89 50501 
6.89 46589 
6.89 39758 
6.89 17309 
6.88 51321 
6.88 37805 
6.88  9858 
6.88  7770 
6.87  4916 
6.87 15506 
6.87  2832 
6.87 46942 
6.87 20598 
6.87 19008 
6.87  2649 
6.87 19928 
6.87 13829 
6.86  4809 
6.86  9096 
6.86 49729 
6.86 10415 
6.85  4054 
6.85 14420 
6.85 16238 
6.85 52046 
6.84 10711 
6.84  7691 
6.84 12038 
6.84 44163 
6.84 43317 
6.84 51024 
6.83 37073 
6.83 44908 
6.83 39584 
6.83 13730 
6.83 42534 
6.83 50533 
6.83  6298 
6.83  2433 
6.83 14823 
6.83 10547 
6.82 19164 
6.82 19690 
6.82 48696 
6.82 38537 
6.82 49754 
6.81 38098 
6.81 10188 
6.81 18151 
6.80  6816 
6.80 18539 
6.80 13165 
6.80 15490 
6.80 48029 
6.80 14019 
6.80 12922 
6.80 45150 
6.80  6424 
6.79 49125 
6.79  7956 
6.79 17297 
6.79 13532 
6.79 10681 
6.79 46578 
6.79 45609 
6.78  8554 
6.78  2848 
6.78 49229 
6.78 49814 
6.78 11434 
6.78  5599 
6.78  9873 
6.78 18410 
6.77 37550 
6.77 17287 
6.77 50485 
6.77 45868 
6.77  6417 
6.77 42738 
6.77 43523 
6.77 19564 
6.77 38532 
6.76 19968 
6.76  7645 
6.76 51175 
6.76  4651 
6.76 41860 
6.76 18773 
6.76 43972 
6.75 44099 
6.75 17290 
6.75  1529 
6.75 48995 
6.75 13394 
6.75 20856 
6.74 43164 
6.74 17385 
6.74 46509 
6.74 10820 
6.73  2713 
6.73  5031 
6.73 39645 
6.73 19718 
6.73  1326 
6.72 13090 
6.72  4737 
6.72 12846 
6.72 42948 
6.72 39966 
6.72 21925 
6.71  8543 
6.70  3295 
6.70  9261 
6.69   309 
6.69 52158 
6.69  8478 
6.69  4719 
6.69 17612 
6.69  1698 
6.69 19181 
6.69 41202 
6.69 37760 
6.69  3984 
6.68 46222 
6.68  4708 
6.68  7892 
6.68 44705 
6.68 20198 
6.67   290 
6.67  3318 
6.67 20093 
6.67  2157 
6.67  9116 
6.67 49248 
6.67 48488 
6.66 40591 
6.66  2067 
6.66 17295 
6.66 10367 
6.66 41348 
6.66 38871 
6.66 49658 
6.66  6466 
6.66 47716 
6.65 51414 
6.65 46822 
6.65 12375 
6.65 10690 
6.65 17371 
6.65   400 
6.65 39946 
6.64 37936 
6.64 45734 
6.64 48592 
6.64 51038 
6.64  2844 
6.64 16487 
6.64  9722 
6.64 13850 
6.63 21201 
6.63 20332 
6.63  3120 
6.63 37702 
6.63 21007 
6.63  5479 
6.63  2842 
6.63 19198 
6.63 37870 
6.62 10775 
6.62 14959 
6.62 27375 
6.62 44235 
6.62 11797 
6.62 37949 
6.62  6925 
6.61 50020 
6.61 39148 
6.61  9740 
6.61 20355 
6.61 43976 
6.61  2808 
6.61 19709 
6.61 52409 
6.60 18834 
6.60  6232 
6.60 11044 
6.60 50609 
6.60 52120 
6.59 18310 
6.59 49170 
6.59 17136 
6.59 20719 
6.59 50839 
6.59 38725 
6.59 51336 
6.59 11592 
6.59 18879 
6.58  9932 
6.58  1889 
6.58 10185 
6.58 49497 
6.58  8292 
6.58 19894 
6.58 38481 
6.57 16210 
6.57  8051 
6.57 10383 
6.57 20397 
6.57 51992 
6.56 18801 
6.56 40846 
6.56 20084 
6.56 24231 
6.56 39048 
6.56 13522 
6.56  6017 
6.56  8558 
6.56  7761 
6.56 27648 
6.55 19062 
6.55 35490 
6.55 20244 
6.54 21185 
6.54 15899 
6.54   483 
6.54 19919 
6.54  9472 
6.54 17283 
6.54 50257 
6.54 50678 
6.53  9629 
6.53 18850 
6.53 20786 
6.53 20908 
6.53 19936 
6.53 34984 
6.53 17599 
6.53 51313 
6.53 41904 
6.53 49941 
6.52 51867 
6.52 22670 
6.52 51510 
6.52 37829 
6.52  7951 
6.52  7914 
6.52 37895 
6.52  8575 
6.52  7437 
6.52  3371 
6.51 18817 
6.51 19250 
6.50 20984 
6.50  6570 
6.50 14900 
6.50 10468 
6.50 43606 
6.50 20024 
6.50  9253 
6.49 10715 
6.49 45531 
6.49  2630 
6.49 39205 
6.49 18065 
6.49 15761 
6.49 42682 
6.49 42742 
6.48  7287 
6.48 46863 
6.48 10463 
6.48 47362 
6.48 17357 
6.48  6951 
6.48 15358 
6.48 45261 
6.48 14986 
6.48 16426 
6.48  3966 
6.48  4808 
6.48 50534 
6.47 12413 
6.47 46908 
6.46  1068 
6.46 24148 
6.46 16480 
6.46 29443 
6.46 29833 
6.46 19222 
6.46 11453 
6.45 15278 
6.45 43847 
6.45  9630 
6.45 17976 
6.44  2277 
6.44 48689 
6.44 21191 
6.44 27884 
6.44 19837 
6.44 26734 
6.44  6252 
6.44 50484 
6.44 46819 
6.44 37689 
6.44 42455 
6.44 42396 
6.44 44404 
6.43 44333 
6.43 47143 
6.43 16102 
6.43 16131 
6.43  5160 
6.43  4912 
6.43 42026 
6.43 50828 
6.42 40139 
6.42 15093 
6.42 35918 
6.41  5131 
6.41  7221 
6.41  5011 
6.41  6823 
6.41  8522 
6.40 10167 
6.40 49071 
6.40 12291 
6.40 12292 
6.40 12293 
6.40 20290 
6.40 47053 
6.40 11003 
6.40 20069 
6.39 41160 
6.39 45192 
6.39  8208 
6.39  7768 
6.39 47246 
6.38 40533 
6.38 21704 
6.38 47502 
6.38 44647 
6.37 46480 
6.37 39650 
6.37  7885 
6.37 39127 
6.37 42876 
6.37 42877 
6.37 45752 
6.37 16177 
6.37 16405 
6.37 39187 
6.37 34936 
6.37 17602 
6.37 48322 
6.37  9333 
6.37 52416 
6.37 38280 
6.37 27852 
6.37 19598 
6.37  7423 
6.36 47290 
6.36  4858 
6.36  7542 
6.36 48714 
6.36 13516 
6.36 50516 
6.36 48657 
6.36 39316 
6.36 11142 
6.36 10787 
6.36 21921 
6.36 19942 
6.36 48936 
6.36 21084 
6.35 14747 
6.35 15871 
6.35 12494 
6.35 15625 
6.35 18840 
6.35 14954 
6.35 12971 
6.35 35872 
6.35 17282 
6.35 18175 
6.35  8734 
6.34 18207 
6.34  9092 
6.34 19249 
6.34  9698 
6.34  5985 
6.34  3858 
6.34 13984 
6.34  4256 
6.34 38416 
6.34  1414 
6.34  2645 
6.33 38739 
6.32 47365 
6.32 10798 
6.32 38044 
6.32 38427 
6.32 35347 
6.31 18244 
6.31 10179 
6.31   224 
6.31 46898 
6.31 16977 
6.30 20917 
6.30  1228 
6.30 17368 
6.30 15009 
6.30  8257 
6.30 27241 
6.29  8008 
6.29 39476 
6.29  2581 
6.29  3736 
6.29 46193 
6.29 46466 
6.29 46561 
6.29 48945 
6.29 38351 
6.29 16826 
6.29 50758 
6.29  1410 
6.28 51030 
6.28 29636 
6.28 49550 
6.28 48611 
6.28 42828 
6.28 21390 
6.27 13493 
6.27 45574 
6.27  8223 
6.27 16603 
6.27 15762 
6.27 44019 
6.26 18787 
6.26 38108 
6.26 46465 
6.26  9888 
6.26 36242 
6.25 20993 
6.25  9280 
6.25 38238 
6.25 21034 
6.25 45161 
6.24  8888 
6.24 41178 
6.24 13019 
6.24 43294 
6.24  2441 
6.24 11199 
6.24 49093 
6.23 47639 
6.23 42189 
6.23 45573 
6.23 10435 
6.23  5824 
6.23  1258 
6.23  8240 
6.23 10754 
6.23 38821 
6.23 21271 
6.23 17949 
6.23  8254 
6.22  4161 
6.22 12703 
6.22  9250 
6.22 16221 
6.21  8137 
6.21 17369 
6.21  9077 
6.21 50381 
6.21 44161 
6.21 18409 
6.20 40787 
6.20  9088 
6.20 20661 
6.20 38020 
6.20 14249 
6.20 17696 
6.19 39691 
6.19 17154 
6.19 16153 
6.19 38943 
6.19   342 
6.19 40164 
6.19     7 
6.18 49914 
6.18 44324 
6.18 15606 
6.17 19556 
6.17  5089 
6.17 10661 
6.17 49130 
6.17 18597 
6.17 17382 
6.17 15088 
6.16 52283 
6.16  8070 
6.16  1312 
6.16 44273 
6.16 11913 
6.16 45425 
6.15 35016 
6.15 20743 
6.15 38430 
6.15 38395 
6.14 17946 
6.14 24351 
6.14 35466 
6.14 50755 
6.14 13854 
6.14 17211 
6.14 20525 
6.14 17268 
6.13 13880 
6.13 30753 
6.13  9138 
6.13 43386 
6.13 19856 
6.12 46987 
6.12 12141 
6.12 12142 
6.12 18731 
6.12 37843 
6.12 21835 
6.12  3197 
6.12 50697 
6.11 13511 
6.11  9127 
6.10 42225 
6.10 27897 
6.10 16859 
6.09  4610 
6.09 15087 
6.09  5968 
6.09 29803 
6.09 50012 
6.09 17947 
6.08 44461 
6.08 44523 
6.08 45451 
6.08 41545 
6.08 17347 
6.08 35903 
6.07 18418 
6.07 10345 
6.07  3000 
6.07  9923 
6.07 51212 
6.07 42300 
6.07  7943 
6.07 35323 
6.07 12957 
6.07 38402 
6.07 18309 
6.07 18384 
6.07 47322 
6.07 37671 
6.07 23027 
6.07 18155 
6.06  4769 
6.06 17353 
6.06 50486 
6.06 47251 
6.06 39207 
6.06 48999 
6.06  8217 
6.05 10596 
6.05 38698 
6.05 18294 
6.05 26613 
6.04 11577 
6.04 44018 
6.04  8476 
6.04 15231 
6.04 10679 
6.04  4843 
6.04 20433 
6.04 38228 
6.04  8897 
6.04 40097 
6.03  9926 
6.02 11123 
6.02 43813 
6.02  9244 
6.02 48026 
6.02  7565 
6.02  3453 
6.01 17806 
6.01 14821 
6.01 11566 
6.01 45578 
6.01  1567 
6.01 48916 
6.00 50650 
6.00 15103 
6.00 35986 
6.00  5839 
6.00 13852 
 
6.00 13408 
5.99 27753 
5.99 15880 
  ...   ... 
  1. Explain and interpret the model: (3 marks)

Answer:

The estimated coefficient of mileage (-0.151797) shows that there is a negative correlation between price and mileage, which equally confirms the result obtained previously under correlation matrix. The p-values for mileage (0.0000000) shows that the null hypothesis is rejected indicating that the model is statistically significant, when we set our level of significance to be 0.05 respectively. The value of Adjusted R-squared (0.4474) shows that only 44% variations in price can be explained by mileage, while the rest cannot be explained. This suggests that there are still other variables that are supposed to be included in the model, but not captured here.

  1. Comment on the performance of this model, including comments on overall model fit and the validity of model assumptions. Include any additional code required for you to make these comments in the code chunk below. (4 marks)

Answer:

library(performance)
model_performance(model_1)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |     RMSE |    Sigma
---------------------------------------------------------------
38389.597 | 38406.400 | 0.448 |     0.447 | 3558.024 | 3559.805
shapiro.test(mydata4[, 1])

    Shapiro-Wilk normality test

data:  mydata4[, 1]
W = 0.97235, p-value < 0.00000000000000022
shapiro.test(mydata4[, 2])

    Shapiro-Wilk normality test

data:  mydata4[, 2]
W = 0.96004, p-value < 0.00000000000000022

The estimated coefficient of mileage (-0.151797) shows that there is a negative correlation between price and mileage, which equally confirms the result obtained previously under correlation matrix. The p-values for mileage (0.0000000) shows that the null hypothesis is rejected indicating that the model is statistically significant, when we set our level of significance to be 0.05 respectively. The value of Adjusted R-squared (0.4474) shows that only 44% variations in price can be explained by mileage, while the rest cannot be explained. This suggests that there are still other variables that are supposed to be included in the model, but not captured here.

However, the result for the model performance shows that R2 is 0.45 (by approximation) indicating that thereare only 45% variations in price that can be explained by mileage. The results obtained from using Shapiro-wilk test for normality shaow that none of the two variables are statistically normally distributed.

Bootstrap

  1. Use bootstrapping on this model to obtain a 95% confidence interval of the estimate of the slope parameter. (4 marks)

Answer:

model_2 = step(model_1)
Start:  AIC=32711.84
price ~ mileage

          Df   Sum of Sq         RSS   AIC
<none>                   25319073503 32712
- mileage  1 20520460250 45839533752 33897
#Set up the bootstrap as follows:
# function to obtain R-Squared from the data:
set.seed(4927)
library(boot)
#define function to calculate R-squared
rsq_function = function(formula, data, indices) {
  d = data[indices,] #allows boot to select sample
  fit = lm(formula, data=d) #fit regression model
  return(summary(fit)$r.square) #return R-squared of model
}
#perform bootstrapping with 2000 replications
reps = boot(data=mydata4, statistic=rsq_function, R=2000, formula=price~mileage)

#view results of boostrapping
reps

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = mydata4, statistic = rsq_function, R = 2000, formula = price ~ 
    mileage)


Bootstrap Statistics :
     original        bias    std. error
t1* 0.4476586 0.00004506277  0.01378635
#plot(reps)

#We can also use the following code to calculate the 95% confidence interval for the estimated R-squared of the model:
#calculate adjusted bootstrap percentile (BCa) interval
boot.ci(reps, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : 
boot.ci(boot.out = reps, type = "bca")

Intervals : 
Level       BCa          
95%   ( 0.4217,  0.4761 )  
Calculations and Intervals on Original Scale

Question 4: Multivariable relationship (10 marks)

Create a model with all of the appropriate remaining explanatory variables included: The remaining explanatory variables are tax, mpg, and engineSize:

model_3 = lm(price ~ tax + + mpg + engineSize - 1, data = mydata4)
summary(model_3)

Call:
lm(formula = price ~ tax + +mpg + engineSize - 1, data = mydata4)

Residuals:
     Min       1Q   Median       3Q      Max 
-16590.4  -2286.1     71.5   2314.2  15820.4 

Coefficients:
           Estimate Std. Error t value            Pr(>|t|)    
tax          34.103      1.518  22.460 <0.0000000000000002 ***
mpg           2.600      5.800   0.448               0.654    
engineSize 6044.215    242.987  24.875 <0.0000000000000002 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4015 on 1997 degrees of freedom
Multiple R-squared:  0.9259,    Adjusted R-squared:  0.9257 
F-statistic:  8313 on 3 and 1997 DF,  p-value: < 0.00000000000000022
anova(model_3)
Analysis of Variance Table

Response: price
             Df       Sum Sq      Mean Sq  F value                Pr(>F)    
tax           1 316268751564 316268751564 19622.20 < 0.00000000000000022 ***
mpg           1  75715160476  75715160476  4697.58 < 0.00000000000000022 ***
engineSize    1   9972929338   9972929338   618.75 < 0.00000000000000022 ***
Residuals  1997  32187462035     16117908                                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  1. Explain and interpret the model: (4 marks)

Answer:

From the results of the model, it is pobvious that NOT all the three remaining explanatory variables are statistically significant at 0.05 level of significance; only two of them (tax and engineSize) are significant (p-values are less than 0.05) while mpg is not significant (p-value > 0.05). However, the results for the multiple R-squared and Adjusted multiple R-squared (0.9259 and 0.9257) tend towards 0.93 by approximation, meaning that 93% variations in the price of the vehicle can be jointly explained by these explanatory variables while only 7% cannot be explained.

However, the results of the analysis of variance show that all the three of them are statistically significant which is contrary to what we have in the model estimation. There is a suspect of a particular problem in the datasets.

  1. Comment on the performance of this model, including comments on overall model fit and the validity of model assumptions. Include any additional code required for you to make these comments in the code chunk below.

(4 marks)

Answer:

library(performance)
model_performance(model_3)
# Indices of model performance

AIC       |       BIC |    R2 | R2 (adj.) |     RMSE |    Sigma
---------------------------------------------------------------
38871.635 | 38894.038 | 0.926 |     0.926 | 4011.699 | 4014.711
# Using Normal Q-Q Plot to detect the normality assumption:
res=resid(model_3)
qqnorm(res, col=3,lwd=1, pch=19, col.main="blue", col.lab="purple")

## Breusch-Pagan Test for Heteroscedasticity Assumption
# H0: Homoscedasticity is present verse H1: Heteroscedasticity is present
library(lmtest)
Loading required package: zoo

Attaching package: 'zoo'
The following objects are masked from 'package:base':

    as.Date, as.Date.numeric
bptest(model_3, studentize=FALSE)

    Breusch-Pagan test

data:  model_3
BP = 464.56, df = 2, p-value < 0.00000000000000022

From the model performance results, it is established that multiple R-squared is approximately 93% which shows that 93% variations in the price of the vehicle can be explained by all the remaining explanatory variables. From the Normal Q-Q plot, the behaviour of the model is somehow normal as a straight line is almost formed. From the results obtained from Breusch-Pagan test, it is established, since the p-value (0.0000) is less than 0.05, that the null hypothesis should be rejected, indicating that the datasets do not have equal variances.

  1. What general concerns do you have regarding this model? (2 marks)

Answer:

So far, we observe that the datasets used for this analysis have some kinds of issues that need to be addresed before any conclusions can be made. The high value of R-squared shows that the model is fit and adequate but at the same time, repports from the normality and homoscedasticity do not support this model adequacy.

Question 5: Model simplification (8 marks)

  1. What approaches for model simplification would you consider implementing and why? (4 marks)

Answer:

Though there are about three model simplification approaches (maximal model, minimum adequate model, and null model), we will be selecting maximal model. This is because of the following reasons: - We are dealing with multiple regression cases - It is more efficient - It is more reliable - It is more dependable

  1. What are the potential advantages of simplifying a model? (2 marks)

Answer:

  • Efficiency
  • Dependability
  • Reliability
  1. What are the potential disadvantages of simplifying a model? (2 marks)

Answer:

  • High cost
  • Time consuming
  • Apathy

Question 6: Reporting (35 marks)

A client is looking to purchase a used Skoda Superb (registration year either 2018 or 2019, manual transmission, diesel engine) and wants to understand what factors influence the expected price of a used car, (and how they influence the price).

Write a short report of 300-500 words for the client.

Furthermore, include an explanation as to which statistical model you would recommend, and why you have selected that statistical model.

Comment on any suggestions for alterations to the statistical model that would be appropriate to consider.

Highlight what may or may not be directly transferable from the scenario analysed in Questions 1 to 5.

Answer:

A client who wants to buy to a used Skoda Superb (registration year either 2018 or 2019, manual transmission, diesel engine) car would need to understand that some basic factors such as brand, model, fuel type, and tax would influence the expected price of a used car. In the first instance, someone who needs Audi will know that its price will surely be different (either less or more than) from the price of another brand, say BMW. Also, the model of the car will determine its price. It is expected that Audi with model A4 will be different in price while comparing it with BWM of model X3. The type of the fuel a car uses determines the price of such a car. In this scenario, you cannot expect a car using diesel to be at the same price with that of a car using petrol. Also, annual cost of vehicle tax influences its price.

I would like to recommend that a multiple linear regression model of price connecting with brand, model, fuel type, and tax be used because of the roles played by all these explanatory variables in explaining the price of this used car.

However, it is a good idea to suggest that some modifications should be made to our previous models such that the new model can be captured or incorporated into our analysis.

From the scenario analyzed in Questions 1 - 5, mileage less tha 90000 may not be transferable while manual transmission, diesel engine, and cost less than 300 Euro are transferable.

Session Information

Do not edit this part. Make sure that you compile your document so that the information about your session (including software / package versions) is included in your submission.

sessionInfo()
R version 4.2.0 (2022-04-22 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lmtest_0.9-40      zoo_1.8-10         boot_1.3-28        lessR_4.2.2       
 [5] lsr_0.5.2          corrplot_0.92      performance_0.9.1  psych_2.2.5       
 [9] summarytools_1.0.1 forcats_0.5.1      stringr_1.4.0      dplyr_1.0.9       
[13] purrr_0.3.4        readr_2.1.2        tidyr_1.2.0        tibble_3.1.7      
[17] ggplot2_3.3.6      tidyverse_1.3.1   

loaded via a namespace (and not attached):
 [1] nlme_3.1-158        matrixStats_0.62.0  fs_1.5.2           
 [4] lubridate_1.8.0     RColorBrewer_1.1-3  insight_0.18.0     
 [7] httr_1.4.3          tools_4.2.0         backports_1.4.1    
[10] bslib_0.3.1         utf8_1.2.2          R6_2.5.1           
[13] DBI_1.1.3           colorspace_2.0-3    withr_2.5.0        
[16] tidyselect_1.1.2    mnormt_2.1.0        compiler_4.2.0     
[19] cli_3.3.0           rvest_1.0.2         xml2_1.3.3         
[22] sass_0.4.1          scales_1.2.0        checkmate_2.1.0    
[25] DEoptimR_1.0-11     robustbase_0.95-0   digest_0.6.29      
[28] rmarkdown_2.14      jpeg_0.1-9          base64enc_0.1-3    
[31] pkgconfig_2.0.3     htmltools_0.5.2     highr_0.9          
[34] dbplyr_2.2.1        fastmap_1.1.0       rlang_1.0.4        
[37] readxl_1.4.0        rstudioapi_0.13     pryr_0.1.5         
[40] jquerylib_0.1.4     generics_0.1.3      jsonlite_1.8.0     
[43] zip_2.2.0           magrittr_2.0.3      rapportools_1.1    
[46] leaps_3.1           interp_1.1-3        Rcpp_1.0.9         
[49] munsell_0.5.0       fansi_1.0.3         lifecycle_1.0.1    
[52] stringi_1.7.8       yaml_2.3.5          MASS_7.3-57        
[55] plyr_1.8.7          grid_4.2.0          parallel_4.2.0     
[58] crayon_1.5.1        deldir_1.0-6        lattice_0.20-45    
[61] haven_2.5.0         pander_0.6.5        hms_1.1.1          
[64] magick_2.7.3        knitr_1.39          pillar_1.7.0       
[67] tcltk_4.2.0         reshape2_1.4.4      codetools_0.2-18   
[70] reprex_2.0.1        glue_1.6.2          evaluate_0.15      
[73] latticeExtra_0.6-30 modelr_0.1.8        png_0.1-7          
[76] vctrs_0.4.1         tzdb_0.3.0          cellranger_1.1.0   
[79] gtable_0.3.0        assertthat_0.2.1    xfun_0.31          
[82] openxlsx_4.2.5      broom_1.0.0         viridisLite_0.4.0  
[85] ellipse_0.4.3       ellipsis_0.3.2