loading packages

library(haven)
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'hms'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
library(psych)
## Warning: package 'psych' was built under R version 4.1.2
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(ez)
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
library(lavaan)
## Warning: package 'lavaan' was built under R version 4.1.2
## This is lavaan 0.6-10
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
library(ggpubr)
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble  3.1.2     ✓ purrr   0.3.4
## ✓ tidyr   1.1.3     ✓ stringr 1.4.0
## ✓ readr   2.1.2     ✓ forcats 0.5.1
## Warning: package 'readr' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x ggplot2::%+%()    masks psych::%+%()
## x ggplot2::alpha()  masks psych::alpha()
## x rstatix::filter() masks dplyr::filter(), stats::filter()
## x dplyr::lag()      masks stats::lag()
library(lme4, lmerTest)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(nlme)
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:lme4':
## 
##     lmList
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(pequod)
## Loading required package: car
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
## 
##     some
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:psych':
## 
##     logit

loading data file

library(haven)
StudioWalking_Clean280422 <- read_sav("StudioWalking_Clean280422.sav")

walk<- StudioWalking_Clean280422

descriptives

describe(walk$ETA)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 278 25.32 7.74     24   23.72 2.97  16  63    47 3.03      9.6 0.46
#278 total pps
#av age = 25, sd=7.74
male<- dplyr::filter(walk, SESSO == 1)
describe(male$SESSO)
##    vars  n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 65    1  0      1       1   0   1   1     0  NaN      NaN  0
#65 men 
female<- dplyr::filter(walk, SESSO == 2)
describe(female$SESSO)
##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 207    2  0      2       2   0   2   2     0  NaN      NaN  0
#207 women 

Removing incomplete data

pps<- aggregate(walk$'Q', by=list(walk$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

walk_comp <- merge(pps, walk, by="RecipientEmail")

walk_comp<- dplyr::filter(walk_comp, complete == "12")

describe(walk_comp$ETA)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 238 25.28 7.58     24   23.73 2.97  18  63    45 3.21    10.79 0.49
#238 complete data

one<- filter(walk_comp, C == "1")
describe(one$ETA)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 118 25.79 8.44     24   23.94 2.97  18  63    45 2.84     7.83 0.78
describe(one$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1180 6079.34 4915.08   5006 5430.54 4341.79   0 36154 36154 1.32
##    kurtosis     se
## X1     2.36 143.08
#118 pps in condition 1 (control)
#average steps = 6079, sd=4915

two<- filter(walk_comp, C == "2")
describe(two$ETA)
##    vars   n  mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 120 24.78 6.62   23.5   23.57 2.22  18  61    43 3.62    15.03 0.6
describe(two$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1200 5478.76 4618.69 4454.5 4839.76 4129.04   0 30725 30725  1.5
##    kurtosis     se
## X1      3.2 133.33
#120 pps in condition 2 (experimental)
#average steps 5479, sd=4619

Removing Outliers

#visualize data
ggplot(data = walk_comp, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
  geom_point() +
  geom_smooth(method = "lm", se = TRUE) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 476 rows containing non-finite values (stat_smooth).
## Warning: Removed 476 rows containing missing values (geom_point).

#removing outliers, condition 1
walk_one<- filter(walk_comp, C == 1)
walk_one<- filter(walk_one, Q > 1)
walk_one<- filter(walk_one, Q < 12)
SD(walk_one$PASSI_SELF)
## [1] 4915.078
describe(walk_one$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1180 6079.34 4915.08   5006 5430.54 4341.79   0 36154 36154 1.32
##    kurtosis     se
## X1     2.36 143.08
(4915.08*3)+6079.34
## [1] 20824.58
walk_one_out<- filter(walk_one, PASSI_SELF < 20824.58)
ggplot(data = walk_one_out, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
  geom_point() +
  geom_smooth(method = "lm", se = TRUE)
## `geom_smooth()` using formula 'y ~ x'

describe(walk_one_out$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1166 5863.18 4506.14 4953.5 5329.42 4278.04   0 20534 20534 0.97
##    kurtosis     se
## X1     0.52 131.96
#mean = 5863.18, sd=4506.14
dplyr::select(walk_one_out, PASSI_SELF, Q) %>% pairs.panels(lm= TRUE)

#removing outliers, condition 2
walk_two<- filter(walk_comp, C == 2)
walk_one<- filter(walk_two, Q > 1)
walk_one<- filter(walk_two, Q < 12)
SD(walk_two$PASSI_SELF)
## [1] 4618.688
describe(walk_two$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1200 5478.76 4618.69 4454.5 4839.76 4129.04   0 30725 30725  1.5
##    kurtosis     se
## X1      3.2 133.33
(4618.69*3)+5478.76
## [1] 19334.83
walk_two_out<- filter(walk_two, PASSI_SELF < 19334.83)
ggplot(data = walk_two_out, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
  geom_point() +
  geom_smooth(method = "lm", se = TRUE)
## `geom_smooth()` using formula 'y ~ x'

describe(walk_two_out$PASSI_SELF)
##    vars    n    mean      sd median trimmed    mad min   max range skew
## X1    1 1181 5197.45 4056.05   4352 4715.97 4038.6   0 18930 18930 0.98
##    kurtosis     se
## X1     0.54 118.03
#mean=5197.45, sd=4056.05
dplyr::select(walk_two_out, PASSI_SELF, Q) %>% pairs.panels(lm= TRUE)

#new data set
walk_final<- rbind(walk_one_out, walk_two_out)

ANOVA Difference in condition for mean number of steps

walk_final$Q <- as.factor(walk_final$Q)

within<- select(walk_final, PASSI_SELF, Q, C, RecipientEmail)
within<- na.omit(within)
pps<- aggregate(within$'PASSI_SELF', by=list(within$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'

within <- merge(pps, within, by="RecipientEmail")
within<- dplyr::filter(within, comp == 10)

fit<- ezANOVA(data = within,
        dv = PASSI_SELF, 
        wid = RecipientEmail, 
        between = C,
        detailed = TRUE
        )
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
##   Effect DFn DFd      SSn        SSd        F         p p<.05        ges
## 1      C   1 213 24828962 1368304023 3.865054 0.0506008       0.01782239
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within,
        dv = PASSI_SELF, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

means<- ezPlot(data = within,
        dv = PASSI_SELF, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
##   C   N     Mean       SD     FLSD       lo       hi
## 1 1 109 5626.438 2807.680 681.4516 5285.712 5967.164
## 2 2 106 4946.714 2218.822 681.4516 4605.988 5287.440

ANOVA steps-7000

within_ach <- mutate(within, 
                    ach = PASSI_SELF - 7000)

fit<- ezANOVA(data = within_ach,
        dv = ach, 
        wid = RecipientEmail, 
        between = C,
        detailed = TRUE
        
        )
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
##   Effect DFn DFd      SSn        SSd        F         p p<.05        ges
## 1      C   1 213 24828962 1368304023 3.865054 0.0506008       0.01782239
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within_ach,
        dv = ach, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

means<- ezPlot(data = within_ach,
        dv = ach, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
##   C   N      Mean       SD     FLSD        lo        hi
## 1 1 109 -1373.562 2807.680 681.4516 -1714.288 -1032.836
## 2 2 106 -2053.286 2218.822 681.4516 -2394.012 -1712.560

Deviation from the MEAN ANOVA for steps

oneC<- dplyr::filter(within, C ==1)
describe(oneC$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1090 5626.44 4344.22 4770.5 5112.56 4089.01   0 19914 19914 0.99
##    kurtosis     se
## X1     0.61 131.58
twoC<- dplyr::filter(within, C == 2)
describe(twoC$PASSI_SELF)
##    vars    n    mean      sd median trimmed     mad min   max range skew
## X1    1 1060 4946.71 3841.51   4250 4501.86 3982.26   0 18743 18743 0.99
##    kurtosis     se
## X1      0.7 117.99
within$MEAN[within$C == 1]<- 5626.44
within$MEAN[within$C == 2]<- 4946.71

within<- mutate(within, 
                diff = 
                   PASSI_SELF - MEAN)


fit<- ezANOVA(data = within,
        dv = diff, 
        wid = RecipientEmail, 
        between = C,
        detailed = TRUE
        
        )
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
##   Effect DFn DFd         SSn        SSd            F         p p<.05
## 1      C   1 213 0.002217293 1368304023 3.451597e-10 0.9999852      
##            ges
## 1 1.620468e-12
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd     SSn       SSd        F         p p<.05
## 1   1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within,
        dv = diff, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

means<- ezPlot(data = within,
        dv = diff, 
        wid = RecipientEmail, 
        between = C,
       x = C
        
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
##   C   N         Mean       SD     FLSD        lo       hi
## 1 1 109 -0.002272477 2807.680 681.4516 -340.7281 340.7235
## 2 2 106  0.004150943 2218.822 681.4516 -340.7216 340.7299

EMGB Constructs, Mixed ANOVA INT1_D

sub<- dplyr::filter(walk_comp, Q == 1 | Q == 12)

##INT1_D

dat_INT1_D<- dplyr::select(sub, INT1_D, Q, C, RecipientEmail)

#ggqqplot(sub, "INT1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT1_D", add = "point")

dat_INT1_D$RecipientEmail<- as.factor(dat_INT1_D$RecipientEmail)
dat_INT1_D$Q<- as.factor(dat_INT1_D$Q)
dat_INT1_D<- na.omit(dat_INT1_D)
pps<- aggregate(dat_INT1_D$'INT1_D', by=list(dat_INT1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'


dat_INT1_D <- merge(pps, dat_INT1_D, by="RecipientEmail")
dat_INT1_D<- dplyr::filter(dat_INT1_D, complete == 2)


fit<- ezANOVA(data = dat_INT1_D,
        dv = INT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, INT1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 13096.512766 707.8934 4310.6598092 2.743567e-152     *
## 2           C   1 233     1.093870 707.8934    0.3600425  5.490658e-01      
## 3           Q   1 233     3.576596 186.7459    4.4624644  3.571190e-02     *
## 4         C:Q   1 233     1.177533 186.7459    1.4691907  2.267011e-01      
##           ges
## 1 0.936056785
## 2 0.001221201
## 3 0.003981889
## 4 0.001314480
#effect of Q, or time, is significant

ezPlot(data = dat_INT1_D,
        dv = INT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_INT1_D,
        dv = INT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 5.465517 1.347662 0.2301195 5.350457 5.580577
## 2 1 12 116 5.189655 1.376282 0.2301195 5.074595 5.304715
## 3 2  1 119 5.268908 1.406387 0.2301195 5.153848 5.383967
## 4 2 12 119 5.193277 1.409876 0.2301195 5.078218 5.308337

INT2_D

#INT2_D

dat_INT2_D<- select(sub, INT2_D, Q, C, RecipientEmail)

dat_INT2_D<- na.omit(dat_INT2_D)
 
#ggqqplot(sub, "INT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_D", add = "point")

dat_INT2_D$RecipientEmail<- as.factor(dat_INT2_D$RecipientEmail)
dat_INT2_D$Q<- as.factor(dat_INT2_D$Q)
pps<- aggregate(dat_INT2_D$'INT2_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")
dat_INT2_D<- filter(dat_INT2_D, complete == 2)


fit<- ezANOVA(data = dat_INT2_D,
        dv = INT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, INT2_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn      SSd           F             p p<.05
## 1 (Intercept)   1 233 9526.502128 827.8709 2681.184925 8.249975e-130     *
## 2           C   1 233   17.626965 827.8709    4.961019  2.688101e-02     *
## 3           Q   1 233    3.404255 252.4857    3.141531  7.762883e-02      
## 4         C:Q   1 233    2.110088 252.4857    1.947242  1.642129e-01      
##           ges
## 1 0.898145474
## 2 0.016053943
## 3 0.003141150
## 4 0.001949333
#effect of Condition is sig
ezPlot(data = dat_INT2_D,
        dv = INT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_INT2_D,
        dv = INT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 4.715517 1.467361 0.2675754 4.581730 4.849305
## 2 1 12 116 4.681034 1.512839 0.2675754 4.547247 4.814822
## 3 2  1 119 4.462185 1.494566 0.2675754 4.328397 4.595973
## 4 2 12 119 4.159664 1.610259 0.2675754 4.025876 4.293452

Intention average

#INT1_D + INT2_D

dat_INT2_D<- select(sub, INT1_D, INT2_D, Q, C, RecipientEmail)

dat_INT2_D<- na.omit(dat_INT2_D)
 
#ggqqplot(sub, "INT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_D", add = "point")

dat_INT2_D$RecipientEmail<- as.factor(dat_INT2_D$RecipientEmail)
dat_INT2_D$Q<- as.factor(dat_INT2_D$Q)
pps<- aggregate(dat_INT2_D$'INT2_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")

pps<- aggregate(dat_INT2_D$'INT1_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")
dat_INT2_D<- filter(dat_INT2_D, complete.x == 2)
dat_INT2_D<- filter(dat_INT2_D, complete.y == 2)

dat_INT2_D<- mutate(dat_INT2_D, 
                    av = (INT1_D + INT2_D)/2)


fit<- ezANOVA(data = dat_INT2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, av)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 1.124064e+04 647.1062 4.047357e+03 2.879961e-149     *
## 2           C   1 233 6.875750e+00 647.1062 2.475714e+00  1.169738e-01      
## 3           Q   1 233 3.489894e+00 164.6013 4.940088e+00  2.720133e-02     *
## 4         C:Q   1 233 3.375895e-02 164.6013 4.778718e-02  8.271508e-01      
##            ges
## 1 9.326515e-01
## 2 8.399573e-03
## 3 4.281041e-03
## 4 4.158831e-05
#effect of time is sig
#for both conditions, intention decreases over time
#for condition 2 intention is overall lower
ezPlot(data = dat_INT2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_INT2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 5.090517 1.260778 0.2160452 4.982495 5.198540
## 2 1 12 116 4.935345 1.316336 0.2160452 4.827322 5.043367
## 3 2  1 119 4.865546 1.328784 0.2160452 4.757524 4.973569
## 4 2 12 119 4.676471 1.369443 0.2160452 4.568448 4.784493

GOAL1_D

 #GOAL1_D

dat_GOAL1_D<- select(sub, GOAL1_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "GOAL1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GOAL1_D", add = "point")

dat_GOAL1_D$RecipientEmail<- as.factor(dat_GOAL1_D$RecipientEmail)
dat_GOAL1_D$Q<- as.factor(dat_GOAL1_D$Q)
dat_GOAL1_D$GOAL1_D<- as.numeric(dat_GOAL1_D$GOAL1_D)
dat_GOAL1_D<- na.omit(dat_GOAL1_D)
pps<- aggregate(dat_GOAL1_D$'GOAL1_D', by=list(dat_GOAL1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GOAL1_D <- merge(pps, dat_GOAL1_D, by="RecipientEmail")
dat_GOAL1_D<- dplyr::filter(dat_GOAL1_D, complete == 2)


fit<- ezANOVA(data = dat_GOAL1_D,
        dv = GOAL1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, GOAL1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 176 1.152999e+04 343.9393 5.900105e+03 2.697521e-137     *
## 2           C   1 176 7.195702e-02 343.9393 3.682172e-02  8.480497e-01      
## 3           Q   1 176 7.191011e-01 124.0726 1.020062e+00  3.138907e-01      
## 4         C:Q   1 176 1.208287e+00 124.0726 1.713984e+00  1.921760e-01      
##            ges
## 1 0.9609925099
## 2 0.0001537268
## 3 0.0015341446
## 4 0.0025750952
#no sig effects
ezPlot(data = dat_GOAL1_D,
        dv = GOAL1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_GOAL1_D,
        dv = GOAL1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q  N     Mean       SD     FLSD       lo       hi
## 1 1  1 93 5.666667 1.154701 0.248397 5.542468 5.790865
## 2 1 12 93 5.688172 1.206671 0.248397 5.563974 5.812371
## 3 2  1 85 5.811765 1.139069 0.248397 5.687566 5.935963
## 4 2 12 85 5.600000 1.104105 0.248397 5.475802 5.724198

GD2_D

 #GD2_D

dat_GD2_D<- select(sub, GD2_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "GD2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_D", add = "point")

dat_GD2_D$RecipientEmail<- as.factor(dat_GD2_D$RecipientEmail)
dat_GD2_D$Q<- as.factor(dat_GD2_D$Q)
dat_GD2_D$GOAL1_D<- as.numeric(dat_GD2_D$GD2_D)
dat_GD2_D<- na.omit(dat_GD2_D)
pps<- aggregate(dat_GD2_D$'GD2_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete == 2)


fit<- ezANOVA(data = dat_GD2_D,
        dv = GD2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, GOAL1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.520934e+04 464.1351 7700.7609366 1.322001e-181     *
## 2           C   1 235 2.029407e+00 464.1351    1.0275256  3.117831e-01      
## 3           Q   1 235 9.303797e-01 168.4582    1.2978840  2.557600e-01      
## 4         C:Q   1 235 1.113938e-01 168.4582    0.1553948  6.937898e-01      
##            ges
## 1 0.9600684119
## 2 0.0031978168
## 3 0.0014685791
## 4 0.0001760596
#no sig effects
ezPlot(data = dat_GD2_D,
        dv = GD2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_GD2_D,
        dv = GD2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.538462 1.185679 0.2166998 5.430112 5.646811
## 2 1 12 117 5.658120 1.138377 0.2166998 5.549770 5.766470
## 3 2  1 120 5.700000 1.213371 0.2166998 5.591650 5.808350
## 4 2 12 120 5.758333 1.100006 0.2166998 5.649983 5.866683

Goal Desire Average

 #GOAL1_D + GD2_D

dat_GD2_D<- select(sub,GOAL1_D, GD2_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "GD2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_D", add = "point")

dat_GD2_D$RecipientEmail<- as.factor(dat_GD2_D$RecipientEmail)
dat_GD2_D$Q<- as.factor(dat_GD2_D$Q)
dat_GD2_D$GOAL1_D<- as.numeric(dat_GD2_D$GD2_D)
dat_GD2_D<- na.omit(dat_GD2_D)
pps<- aggregate(dat_GD2_D$'GD2_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete == 2)

pps<- aggregate(dat_GD2_D$'GOAL1_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete.y == 2)
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete.x == 2)
dat_GD2_D<- mutate(dat_GD2_D, 
                   av = ((GOAL1_D + GD2_D)/2))


fit<- ezANOVA(data = dat_GD2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, av)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.520934e+04 464.1351 7700.7609366 1.322001e-181     *
## 2           C   1 235 2.029407e+00 464.1351    1.0275256  3.117831e-01      
## 3           Q   1 235 9.303797e-01 168.4582    1.2978840  2.557600e-01      
## 4         C:Q   1 235 1.113938e-01 168.4582    0.1553948  6.937898e-01      
##            ges
## 1 0.9600684119
## 2 0.0031978168
## 3 0.0014685791
## 4 0.0001760596
#no sig effects
ezPlot(data = dat_GD2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_GD2_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.538462 1.185679 0.2166998 5.430112 5.646811
## 2 1 12 117 5.658120 1.138377 0.2166998 5.549770 5.766470
## 3 2  1 120 5.700000 1.213371 0.2166998 5.591650 5.808350
## 4 2 12 120 5.758333 1.100006 0.2166998 5.649983 5.866683

BD_D

 #BD_D

dat_BD_D<- select(sub, BD_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "BD_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="BD_D", add = "point")

dat_BD_D$RecipientEmail<- as.factor(dat_BD_D$RecipientEmail)
dat_BD_D$Q<- as.factor(dat_BD_D$Q)
dat_BD_D$GOAL1_D<- as.numeric(dat_BD_D$BD_D)
dat_BD_D<- na.omit(dat_BD_D)
pps<- aggregate(dat_BD_D$'BD_D', by=list(dat_BD_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_BD_D <- merge(pps, dat_BD_D, by="RecipientEmail")
dat_BD_D<- dplyr::filter(dat_BD_D, complete == 2)


fit<- ezANOVA(data = dat_BD_D,
        dv = BD_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, GOAL1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 1.360817e+04 632.0833 5.016275e+03 1.358184e-159     *
## 2           C   1 233 2.443142e-01 632.0833 9.005964e-02  7.643689e-01      
## 3           Q   1 233 7.680851e-01 155.1343 1.153605e+00  2.839067e-01      
## 4         C:Q   1 233 5.975698e-01 155.1343 8.975044e-01  3.444332e-01      
##            ges
## 1 0.9453145980
## 2 0.0003102552
## 3 0.0009747449
## 4 0.0007585151
#no sig effects
ezPlot(data = dat_BD_D,
        dv = BD_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_BD_D,
        dv = BD_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 5.353448 1.340047 0.2097403 5.248578 5.458318
## 2 1 12 116 5.362069 1.294783 0.2097403 5.257199 5.466939
## 3 2  1 119 5.327731 1.353647 0.2097403 5.222861 5.432601
## 4 2 12 119 5.478992 1.206260 0.2097403 5.374121 5.583862

ATT1_D

 #ATT1_D

dat_ATT1_D<- select(sub, ATT1_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT1_D", add = "point")

dat_ATT1_D$RecipientEmail<- as.factor(dat_ATT1_D$RecipientEmail)
dat_ATT1_D$Q<- as.factor(dat_ATT1_D$Q)
dat_ATT1_D$GOAL1_D<- as.numeric(dat_ATT1_D$ATT1_D)
dat_ATT1_D<- na.omit(dat_ATT1_D)
pps<- aggregate(dat_ATT1_D$'ATT1_D', by=list(dat_ATT1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT1_D <- merge(pps, dat_ATT1_D, by="RecipientEmail")
dat_ATT1_D<- dplyr::filter(dat_ATT1_D, complete == 2)


fit<- ezANOVA(data = dat_ATT1_D,
        dv = ATT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.936899e+04 306.8893 1.483177e+04 2.525986e-214     *
## 2           C   1 235 1.233420e-01 306.8893 9.444893e-02  7.588678e-01      
## 3           Q   1 235 5.400844e-01 127.4295 9.960005e-01  3.193067e-01      
## 4         C:Q   1 235 3.042843e-02 127.4295 5.611481e-02  8.129519e-01      
##            ges
## 1 9.780684e-01
## 2 2.839089e-04
## 3 1.241976e-03
## 4 7.005522e-05
#no sig effects
ezPlot(data = dat_ATT1_D,
        dv = ATT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT1_D,
        dv = ATT1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean        SD      FLSD       lo       hi
## 1 1  1 117 6.350427 0.9314083 0.1884722 6.256191 6.444663
## 2 1 12 117 6.401709 1.0090951 0.1884722 6.307473 6.495946
## 3 2  1 120 6.366667 1.0365856 0.1884722 6.272431 6.460903
## 4 2 12 120 6.450000 0.8584724 0.1884722 6.355764 6.544236

ATT2_D

 #ATT2_D

dat_ATT2_D<- select(sub, ATT2_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_D", add = "point")

dat_ATT2_D$RecipientEmail<- as.factor(dat_ATT2_D$RecipientEmail)
dat_ATT2_D$Q<- as.factor(dat_ATT2_D$Q)
dat_ATT2_D$ATT2_D<- as.numeric(dat_ATT2_D$ATT2_D)
dat_ATT2_D<- na.omit(dat_ATT2_D)
pps<- aggregate(dat_ATT2_D$'ATT2_D', by=list(dat_ATT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT2_D <- merge(pps, dat_ATT2_D, by="RecipientEmail")
dat_ATT2_D<- dplyr::filter(dat_ATT2_D, complete == 2)


fit<- ezANOVA(data = dat_ATT2_D,
        dv = ATT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT2_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.500609e+04 616.6239 5718.9352039 6.103865e-167     *
## 2           C   1 235 7.811317e-01 616.6239    0.2976951  5.858485e-01      
## 3           Q   1 235 2.027426e+00 224.8906    2.1185641  1.468575e-01      
## 4         C:Q   1 235 5.819755e-01 224.8906    0.6081368  4.362749e-01      
##            ges
## 1 0.9468995919
## 2 0.0009273842
## 3 0.0024034681
## 4 0.0006911032
#no sig effects
ezPlot(data = dat_ATT2_D,
        dv = ATT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT2_D,
        dv = ATT2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.615385 1.325129 0.2503791 5.490195 5.740574
## 2 1 12 117 5.555556 1.348335 0.2503791 5.430366 5.680745
## 3 2  1 120 5.766667 1.345602 0.2503791 5.641477 5.891856
## 4 2 12 120 5.566667 1.333053 0.2503791 5.441477 5.691856

ATT3_D

 #ATT3_D

dat_ATT3_D<- select(sub, ATT3_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT3_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT3_D", add = "point")

dat_ATT3_D$RecipientEmail<- as.factor(dat_ATT3_D$RecipientEmail)
dat_ATT3_D$Q<- as.factor(dat_ATT3_D$Q)
dat_ATT3_D$ATT3_D<- as.numeric(dat_ATT3_D$ATT3_D)
dat_ATT3_D<- na.omit(dat_ATT3_D)
pps<- aggregate(dat_ATT3_D$'ATT3_D', by=list(dat_ATT3_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT3_D <- merge(pps, dat_ATT3_D, by="RecipientEmail")
dat_ATT3_D<- dplyr::filter(dat_ATT3_D, complete == 2)


fit<- ezANOVA(data = dat_ATT3_D,
        dv = ATT3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT3_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.368609e+04 779.7779 4.124549e+03 4.942643e-151     *
## 2           C   1 235 2.162718e+01 779.7779 6.517737e+00  1.131376e-02     *
## 3           Q   1 235 5.274262e-02 300.3249 4.127035e-02  8.391928e-01      
## 4         C:Q   1 235 1.122364e+00 300.3249 8.782342e-01  3.496479e-01      
##            ges
## 1 9.268530e-01
## 2 1.963020e-02
## 3 4.882872e-05
## 4 1.038049e-03
#sig effect of condition
ezPlot(data = dat_ATT3_D,
        dv = ATT3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT3_D,
        dv = ATT3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.529915 1.528875 0.2893397 5.385245 5.674584
## 2 1 12 117 5.649573 1.434286 0.2893397 5.504903 5.794243
## 3 2  1 120 5.200000 1.504056 0.2893397 5.055330 5.344670
## 4 2 12 120 5.125000 1.590743 0.2893397 4.980330 5.269670

ATT4

 #ATT4_D

dat_ATT4_D<- select(sub, ATT4_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT4_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT4_D", add = "point")

dat_ATT4_D$RecipientEmail<- as.factor(dat_ATT4_D$RecipientEmail)
dat_ATT4_D$Q<- as.factor(dat_ATT4_D$Q)
dat_ATT4_D$ATT4_D<- as.numeric(dat_ATT4_D$ATT4_D)
dat_ATT4_D<- na.omit(dat_ATT4_D)
pps<- aggregate(dat_ATT4_D$'ATT4_D', by=list(dat_ATT4_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT4_D <- merge(pps, dat_ATT4_D, by="RecipientEmail")
dat_ATT4_D<- dplyr::filter(dat_ATT4_D, complete == 2)


fit<- ezANOVA(data = dat_ATT4_D,
        dv = ATT4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT4_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.344003e+04 847.0432 3728.7449716 3.565774e-146     *
## 2           C   1 235 1.092308e+01 847.0432    3.0304528  8.302403e-02      
## 3           Q   1 235 5.400844e-01 351.2718    0.3613152  5.483561e-01      
## 4         C:Q   1 235 2.188121e+00 351.2718    1.4638476  2.275346e-01      
##            ges
## 1 0.9181386521
## 2 0.0090330290
## 3 0.0004505002
## 4 0.0018226698
#no sig main effects
ezPlot(data = dat_ATT4_D,
        dv = ATT4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT4_D,
        dv = ATT4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.376068 1.685263 0.3129205 5.219608 5.532529
## 2 1 12 117 5.581197 1.515661 0.3129205 5.424736 5.737657
## 3 2  1 120 5.208333 1.466121 0.3129205 5.051873 5.364794
## 4 2 12 120 5.141667 1.706615 0.3129205 4.985206 5.298127

Att5

 #ATT5_D

dat_ATT5_D<- select(sub, ATT5_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT5_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT5_D", add = "point")

dat_ATT5_D$RecipientEmail<- as.factor(dat_ATT5_D$RecipientEmail)
dat_ATT5_D$Q<- as.factor(dat_ATT5_D$Q)
dat_ATT5_D$ATT5_D<- as.numeric(dat_ATT5_D$ATT5_D)
dat_ATT5_D<- na.omit(dat_ATT5_D)
pps<- aggregate(dat_ATT5_D$'ATT5_D', by=list(dat_ATT5_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT5_D <- merge(pps, dat_ATT5_D, by="RecipientEmail")
dat_ATT5_D<- dplyr::filter(dat_ATT5_D, complete == 2)


fit<- ezANOVA(data = dat_ATT5_D,
        dv = ATT5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT5_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 17571.721519 762.8329 5413.1835748 2.994208e-164     *
## 2           C   1 235     0.445575 762.8329    0.1372648  7.113491e-01      
## 3           Q   1 235     4.084388 563.5987    1.7030401  1.931673e-01      
## 4         C:Q   1 235    13.316894 563.5987    5.5526565  1.927458e-02     *
##            ges
## 1 0.9298115740
## 2 0.0003358073
## 3 0.0030697776
## 4 0.0099398459
#sig interaction effect 
#day one no diff
#day 12, cond1 higher than cond 2
#con 2 decreased
#con 1 inc

ezPlot(data = dat_ATT5_D,
        dv = ATT5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT5_D,
        dv = ATT5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 6.042735 1.807042 0.3963669 5.844552 6.240918
## 2 1 12 117 6.196581 1.532630 0.3963669 5.998398 6.394765
## 3 2  1 120 6.316667 1.384083 0.3963669 6.118483 6.514850
## 4 2 12 120 5.800000 1.938552 0.3963669 5.601817 5.998183

Att6

 #ATT6_D

dat_ATT6_D<- select(sub, ATT6_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT6_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT6_D", add = "point")

dat_ATT6_D$RecipientEmail<- as.factor(dat_ATT6_D$RecipientEmail)
dat_ATT6_D$Q<- as.factor(dat_ATT6_D$Q)
dat_ATT6_D$ATT6_D<- as.numeric(dat_ATT6_D$ATT6_D)
dat_ATT6_D<- na.omit(dat_ATT6_D)
pps<- aggregate(dat_ATT6_D$'ATT6_D', by=list(dat_ATT6_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT6_D <- merge(pps, dat_ATT6_D, by="RecipientEmail")
dat_ATT6_D<- dplyr::filter(dat_ATT6_D, complete == 2)


fit<- ezANOVA(data = dat_ATT6_D,
        dv = ATT6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT6_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.741377e+04 645.6329 6.338334e+03 5.425455e-172     *
## 2           C   1 235 9.283241e-02 645.6329 3.378951e-02  8.543138e-01      
## 3           Q   1 235 4.272152e+00 315.4291 3.182826e+00  7.570617e-02      
## 4         C:Q   1 235 3.798788e+00 315.4291 2.830162e+00  9.383725e-02      
##            ges
## 1 9.476968e-01
## 2 9.658425e-05
## 3 4.425568e-03
## 4 3.937136e-03
#no sig effects

ezPlot(data = dat_ATT6_D,
        dv = ATT6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT6_D,
        dv = ATT6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 6.051282 1.473011 0.2965263 5.903019 6.199545
## 2 1 12 117 6.042735 1.348007 0.2965263 5.894472 6.190998
## 3 2  1 120 6.258333 1.293135 0.2965263 6.110070 6.406596
## 4 2 12 120 5.891667 1.586687 0.2965263 5.743404 6.039930

Att total

dat_ATT_D<- select(sub,ATT1_D, ATT2_D, ATT3_D, ATT4_D, ATT5_D, ATT6_D, Q, C, RecipientEmail)

dat_ATT_D<- na.omit(dat_ATT_D)

pps<- aggregate(dat_ATT_D$'ATT1_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

pps<- aggregate(dat_ATT_D$'ATT2_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp2'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

pps<- aggregate(dat_ATT_D$'ATT3_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp3'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

pps<- aggregate(dat_ATT_D$'ATT4_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp4'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

pps<- aggregate(dat_ATT_D$'ATT5_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp5'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

pps<- aggregate(dat_ATT_D$'ATT6_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp6'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")

dat_ATT_D<- dplyr::filter(dat_ATT_D, comp == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp2 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp3 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp4 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp5 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp6 == 2)
 
dat_ATT_D<- mutate(dat_ATT_D, 
                   av = ((ATT1_D + ATT2_D + ATT3_D + ATT4_D + ATT5_D + ATT6_D)/6))

dat_ATT_D$RecipientEmail<- as.factor(dat_ATT_D$RecipientEmail)
dat_ATT_D$Q<- as.factor(dat_ATT_D$Q)
dat_ATT_D$av<- as.numeric(dat_ATT_D$av)

fit<- ezANOVA(data = dat_ATT_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(ATT1_D, ATT2_D, ATT3_D, ATT4_D, ATT5_D, ATT6_D, Q, av)
        )
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.600690e+04 362.1654 1.038647e+04 1.755979e-196     *
## 2           C   1 235 1.393708e+00 362.1654 9.043420e-01  3.425971e-01      
## 3           Q   1 235 4.037154e-01 135.6621 6.993342e-01  4.038570e-01      
## 4         C:Q   1 235 2.114776e+00 135.6621 3.663312e+00  5.683771e-02      
##            ges
## 1 0.9698372813
## 2 0.0027917646
## 3 0.0008102974
## 4 0.0042300417
#no sig effects
ezPlot(data = dat_ATT_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT_D,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean        SD      FLSD       lo       hi
## 1 1  1 117 5.827635 1.0499798 0.1944651 5.730403 5.924868
## 2 1 12 117 5.904558 1.0376800 0.1944651 5.807326 6.001791
## 3 2  1 120 5.852778 0.9291381 0.1944651 5.755545 5.950010
## 4 2 12 120 5.662500 1.0935390 0.1944651 5.565267 5.759733

EM1_D

 #EM1_D

dat_EM1_D<- select(sub, EM1_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM1_D", add = "point")

dat_EM1_D$RecipientEmail<- as.factor(dat_EM1_D$RecipientEmail)
dat_EM1_D$Q<- as.factor(dat_EM1_D$Q)
dat_EM1_D$EM1_D<- as.numeric(dat_EM1_D$EM1_D)
dat_EM1_D<- na.omit(dat_EM1_D)
pps<- aggregate(dat_EM1_D$'EM1_D', by=list(dat_EM1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM1_D <- merge(pps, dat_EM1_D, by="RecipientEmail")
dat_EM1_D<- dplyr::filter(dat_EM1_D, complete == 2)


fit<- ezANOVA(data = dat_EM1_D,
        dv = EM1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM1_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.617409e+04 454.7024 8.323547e+03 6.858466e-185     *
## 2           C   1 234 1.710773e+00 454.7024 8.804018e-01  3.490591e-01      
## 3           Q   1 234 2.118644e-03 183.7323 2.698288e-03  9.586168e-01      
## 4         C:Q   1 234 7.655679e-01 183.7323 9.750212e-01  3.244510e-01      
##            ges
## 1 9.620262e-01
## 2 2.672475e-03
## 3 3.318487e-06
## 4 1.197697e-03
#no sig effects
ezPlot(data = dat_EM1_D,
        dv = EM1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM1_D,
        dv = EM1_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.957265 1.184622 0.2272788 5.843626 6.070904
## 2 1 12 117 5.871795 1.192928 0.2272788 5.758155 5.985434
## 3 2  1 119 5.756303 1.207086 0.2272788 5.642663 5.869942
## 4 2 12 119 5.831933 1.083930 0.2272788 5.718293 5.945572

EM2_D

 #EM2_D

dat_EM2_D<- select(sub, EM2_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM2_D", add = "point")

dat_EM2_D$RecipientEmail<- as.factor(dat_EM2_D$RecipientEmail)
dat_EM2_D$Q<- as.factor(dat_EM2_D$Q)
dat_EM2_D$EM2_D<- as.numeric(dat_EM2_D$EM2_D)
dat_EM2_D<- na.omit(dat_EM2_D)
pps<- aggregate(dat_EM2_D$'EM2_D', by=list(dat_EM2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM2_D <- merge(pps, dat_EM2_D, by="RecipientEmail")
dat_EM2_D<- dplyr::filter(dat_EM2_D, complete == 2)


fit<- ezANOVA(data = dat_EM2_D,
        dv = EM2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM2_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.647992e+04 473.4893 8.144430e+03 8.150664e-184     *
## 2           C   1 234 9.329292e-02 473.4893 4.610567e-02  8.301708e-01      
## 3           Q   1 234 1.544492e+00 167.9523 2.151867e+00  1.437393e-01      
## 4         C:Q   1 234 3.199346e-03 167.9523 4.457497e-03  9.468262e-01      
##            ges
## 1 9.625356e-01
## 2 1.454214e-04
## 3 2.402060e-03
## 4 4.987718e-06
#no sig effects
ezPlot(data = dat_EM2_D,
        dv = EM2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM2_D,
        dv = EM2_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.982906 1.196135 0.2172997 5.874256 6.091556
## 2 1 12 117 5.863248 1.245031 0.2172997 5.754598 5.971898
## 3 2  1 119 5.949580 1.088061 0.2172997 5.840930 6.058230
## 4 2 12 119 5.840336 1.149673 0.2172997 5.731686 5.948986

EM3_D

 #EM3_D

dat_EM3_D<- select(sub, EM3_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM3_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM3_D", add = "point")

dat_EM3_D$RecipientEmail<- as.factor(dat_EM3_D$RecipientEmail)
dat_EM3_D$Q<- as.factor(dat_EM3_D$Q)
dat_EM3_D$EM3_D<- as.numeric(dat_EM3_D$EM3_D)
dat_EM3_D<- na.omit(dat_EM3_D)
pps<- aggregate(dat_EM3_D$'EM3_D', by=list(dat_EM3_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM3_D <- merge(pps, dat_EM3_D, by="RecipientEmail")
dat_EM3_D<- dplyr::filter(dat_EM3_D, complete == 2)


fit<- ezANOVA(data = dat_EM3_D,
        dv = EM3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM3_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.725703e+04 402.9438 1.002161e+04 4.341234e-194     *
## 2           C   1 234 3.081415e-02 402.9438 1.789458e-02  8.936989e-01      
## 3           Q   1 234 2.449153e+00 145.5217 3.938257e+00  4.836783e-02     *
## 4         C:Q   1 234 2.919264e-02 145.5217 4.694200e-02  8.286613e-01      
##            ges
## 1 9.691968e-01
## 2 5.617933e-05
## 3 4.445612e-03
## 4 5.322321e-05
#marginally sig effect of time
#decreased for both for second measurement
ezPlot(data = dat_EM3_D,
        dv = EM3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM3_D,
        dv = EM3_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 6.102564 1.093749 0.2022693 6.001429 6.203699
## 2 1 12 117 5.974359 1.155657 0.2022693 5.873224 6.075494
## 3 2  1 119 6.134454 1.040896 0.2022693 6.033319 6.235588
## 4 2 12 119 5.974790 1.037126 0.2022693 5.873655 6.075925

PAE

dat_PAE<- select(sub, EM1_D, EM2_D, EM3_D, Q, C, RecipientEmail)

dat_PAE<- na.omit(dat_PAE)

pps<- aggregate(dat_PAE$'EM1_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")

pps<- aggregate(dat_PAE$'EM2_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp2'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")

pps<- aggregate(dat_PAE$'EM3_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp3'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")

dat_PAE<- dplyr::filter(dat_PAE, comp == 2)
dat_PAE<- dplyr::filter(dat_PAE, comp2 == 2)
dat_PAE<- dplyr::filter(dat_PAE, comp3 == 2)
 
dat_PAE<- mutate(dat_PAE, 
                   av = ((EM1_D + EM2_D + EM3_D)/3))

dat_PAE$RecipientEmail<- as.factor(dat_PAE$RecipientEmail)
dat_PAE$Q<- as.factor(dat_PAE$Q)
dat_PAE$av<- as.numeric(dat_PAE$av)

fit<- ezANOVA(data = dat_PAE,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c( EM1_D, EM2_D, EM3_D, Q, av)
        )
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 1.663391e+04 395.3079 9846.3342548 3.262967e-193     *
## 2           C   1 234 2.297171e-01 395.3079    0.1359796  7.126445e-01      
## 3           Q   1 234 9.048964e-01 123.8086    1.7102671  1.922341e-01      
## 4         C:Q   1 234 6.429125e-02 123.8086    0.1215114  7.277144e-01      
##            ges
## 1 0.9697361492
## 2 0.0004423197
## 3 0.0017401137
## 4 0.0001238321
#no sig effects
ezPlot(data = dat_PAE,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PAE,
        dv = av, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean        SD      FLSD       lo       hi
## 1 1  1 117 6.014245 1.0875410 0.1865699 5.920960 6.107530
## 2 1 12 117 5.903134 1.1193695 0.1865699 5.809849 5.996419
## 3 2  1 119 5.946779 0.9990421 0.1865699 5.853494 6.040064
## 4 2 12 119 5.882353 1.0033731 0.1865699 5.789068 5.975638

EM4

 #EM4_D

dat_EM4_D<- select(sub, EM4_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM4_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM4_D", add = "point")

dat_EM4_D$RecipientEmail<- as.factor(dat_EM4_D$RecipientEmail)
dat_EM4_D$Q<- as.factor(dat_EM4_D$Q)
dat_EM4_D$EM4_D<- as.numeric(dat_EM4_D$EM4_D)
dat_EM4_D<- na.omit(dat_EM4_D)
pps<- aggregate(dat_EM4_D$'EM4_D', by=list(dat_EM4_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM4_D <- merge(pps, dat_EM4_D, by="RecipientEmail")
dat_EM4_D<- dplyr::filter(dat_EM4_D, complete == 2)


fit<- ezANOVA(data = dat_EM4_D,
        dv = EM4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM4_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn      SSd           F             p p<.05
## 1 (Intercept)   1 233 6711.012766 836.8093 1868.604851 2.903012e-113     *
## 2           C   1 233    5.177903 836.8093    1.441728  2.310792e-01      
## 3           Q   1 233    0.000000 337.3316    0.000000  1.000000e+00      
## 4         C:Q   1 233    1.668357 337.3316    1.152359  2.841663e-01      
##           ges
## 1 0.851094727
## 2 0.004390588
## 3 0.000000000
## 4 0.001418901
#no sig effects
ezPlot(data = dat_EM4_D,
        dv = EM4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM4_D,
        dv = EM4_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.612069 1.656458 0.3092833 3.457427 3.766711
## 2 1 12 116 3.732759 1.488260 0.3092833 3.578117 3.887400
## 3 2  1 119 3.941176 1.693928 0.3092833 3.786535 4.095818
## 4 2 12 119 3.823529 1.499418 0.3092833 3.668888 3.978171

EM5

 #EM5_D

dat_EM5_D<- select(sub, EM5_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM5_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM5_D", add = "point")

dat_EM5_D$RecipientEmail<- as.factor(dat_EM5_D$RecipientEmail)
dat_EM5_D$Q<- as.factor(dat_EM5_D$Q)
dat_EM5_D$EM5_D<- as.numeric(dat_EM5_D$EM5_D)
dat_EM5_D<- na.omit(dat_EM5_D)
pps<- aggregate(dat_EM5_D$'EM5_D', by=list(dat_EM5_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM5_D <- merge(pps, dat_EM5_D, by="RecipientEmail")
dat_EM5_D<- dplyr::filter(dat_EM5_D, complete == 2)


fit<- ezANOVA(data = dat_EM5_D,
        dv = EM5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM5_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 6.863013e+03 844.0393 1.894559e+03 6.942576e-114     *
## 2           C   1 233 3.947934e+00 844.0393 1.089841e+00  2.975883e-01      
## 3           Q   1 233 4.170213e-01 322.5829 3.012124e-01  5.836489e-01      
## 4         C:Q   1 233 6.797290e-05 322.5829 4.909648e-05  9.944154e-01      
##            ges
## 1 8.547104e-01
## 2 3.372659e-03
## 3 3.573327e-04
## 4 5.826470e-08
#no sig effects

 ezPlot(data = dat_EM5_D,
        dv = EM5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM5_D,
        dv = EM5_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.758621 1.650405 0.3024465 3.607397 3.909844
## 2 1 12 116 3.698276 1.539169 0.3024465 3.547053 3.849499
## 3 2  1 119 3.941176 1.563862 0.3024465 3.789953 4.092400
## 4 2 12 119 3.882353 1.574029 0.3024465 3.731130 4.033576

EM6

 #EM5_D

dat_EM6_D<- select(sub, EM6_D, Q, C, RecipientEmail)
 
#ggqqplot(sub, "EM6_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM6_D", add = "point")

dat_EM6_D$RecipientEmail<- as.factor(dat_EM6_D$RecipientEmail)
dat_EM6_D$Q<- as.factor(dat_EM6_D$Q)
dat_EM6_D$EM6_D<- as.numeric(dat_EM6_D$EM6_D)
dat_EM6_D<- na.omit(dat_EM6_D)
pps<- aggregate(dat_EM6_D$'EM6_D', by=list(dat_EM6_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_EM6_D <- merge(pps, dat_EM6_D, by="RecipientEmail")
dat_EM6_D<- dplyr::filter(dat_EM6_D, complete == 2)


fit<- ezANOVA(data = dat_EM6_D,
        dv = EM6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, EM6_D)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn      SSd            F            p p<.05
## 1 (Intercept)   1 233 3524.189362 785.1449 1045.8402473 4.110808e-88     *
## 2           C   1 233    3.165753 785.1449    0.9394704 3.334191e-01      
## 3           Q   1 233    1.329787 315.8803    0.9808792 3.230092e-01      
## 4         C:Q   1 233    3.289888 315.8803    2.4266910 1.206417e-01      
##           ges
## 1 0.761951539
## 2 0.002867034
## 3 0.001206315
## 4 0.002979121
#no sig effects
ezPlot(data = dat_EM6_D,
        dv = EM6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_EM6_D,
        dv = EM6_D, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.517241 1.534999 0.2992879 2.367597 2.666885
## 2 1 12 116 2.793103 1.512368 0.2992879 2.643459 2.942747
## 3 2  1 119 2.848739 1.624175 0.2992879 2.699096 2.998383
## 4 2 12 119 2.789916 1.472194 0.2992879 2.640272 2.939560

NORMS_D_In

 #NORMS_D_In

dat_NORMS_D_In<- select(sub, NORMS_D_In, Q, C, RecipientEmail)
 
#ggqqplot(sub, "NORMS_D_In", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="NORMS_D_In", add = "point")

dat_NORMS_D_In$RecipientEmail<- as.factor(dat_NORMS_D_In$RecipientEmail)
dat_NORMS_D_In$Q<- as.factor(dat_NORMS_D_In$Q)
dat_NORMS_D_In$NORMS_D_In<- as.numeric(dat_NORMS_D_In$NORMS_D_In)
dat_NORMS_D_In<- na.omit(dat_NORMS_D_In)
pps<- aggregate(dat_NORMS_D_In$'NORMS_D_In', by=list(dat_NORMS_D_In$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_NORMS_D_In <- merge(pps, dat_NORMS_D_In, by="RecipientEmail")
dat_NORMS_D_In<- dplyr::filter(dat_NORMS_D_In, complete == 2)


fit<- ezANOVA(data = dat_NORMS_D_In,
        dv = NORMS_D_In, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, NORMS_D_In)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.788976e+04 474.4531 8.860923e+03 1.437328e-188     *
## 2           C   1 235 1.791627e+00 474.4531 8.874058e-01  3.471487e-01      
## 3           Q   1 235 0.000000e+00 111.9916 0.000000e+00  1.000000e+00      
## 4         C:Q   1 235 8.440171e-03 111.9916 1.771062e-02  8.942430e-01      
##            ges
## 1 9.682595e-01
## 2 3.045762e-03
## 3 0.000000e+00
## 4 1.439189e-05
#no sig effects
ezPlot(data = dat_NORMS_D_In,
        dv = NORMS_D_In, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_NORMS_D_In,
        dv = NORMS_D_In, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 6.076923 1.197367 0.1766872 5.988579 6.165267
## 2 1 12 117 6.085470 1.110861 0.1766872 5.997126 6.173814
## 3 2  1 120 6.208333 1.129407 0.1766872 6.119990 6.296677
## 4 2 12 120 6.200000 1.025720 0.1766872 6.111656 6.288344

NORM_D_Des

 #NORM_D_Des

dat_NORM_D_Des<- select(sub, NORM_D_Des, Q, C, RecipientEmail)
 
#ggqqplot(sub, "NORM_D_Des", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="NORM_D_Des", add = "point")

dat_NORM_D_Des$RecipientEmail<- as.factor(dat_NORM_D_Des$RecipientEmail)
dat_NORM_D_Des$Q<- as.factor(dat_NORM_D_Des$Q)
dat_NORM_D_Des$NORM_D_Des<- as.numeric(dat_NORM_D_Des$NORM_D_Des)
dat_NORM_D_Des<- na.omit(dat_NORM_D_Des)
pps<- aggregate(dat_NORM_D_Des$'NORM_D_Des', by=list(dat_NORM_D_Des$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_NORM_D_Des <- merge(pps, dat_NORM_D_Des, by="RecipientEmail")
dat_NORM_D_Des<- dplyr::filter(dat_NORM_D_Des, complete == 2)


fit<- ezANOVA(data = dat_NORM_D_Des,
        dv = NORM_D_Des, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, NORM_D_Des)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 235 1.209122e+04 647.9240 4385.4455167 5.337060e-154     *
## 2           C   1 235 1.860772e+00 647.9240    0.6748960  4.121825e-01      
## 3           Q   1 235 6.835443e-01 219.6163    0.7314251  3.932927e-01      
## 4         C:Q   1 235 2.700110e+00 219.6163    2.8892464  9.049576e-02      
##            ges
## 1 0.9330537273
## 2 0.0021402912
## 3 0.0007872903
## 4 0.0031027165
#no sig effects
ezPlot(data = dat_NORM_D_Des,
        dv = NORM_D_Des, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_NORM_D_Des,
        dv = NORM_D_Des, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.025641 1.476608 0.2474256 4.901928 5.149354
## 2 1 12 117 4.948718 1.244617 0.2474256 4.825005 5.072431
## 3 2  1 120 5.000000 1.365850 0.2474256 4.876287 5.123713
## 4 2 12 120 5.225000 1.337642 0.2474256 5.101287 5.348713

PB_Doing_1

 #PB_Doing_1

dat_PB_Doing_1<- select(sub, PB_Doing_1, Q, C, RecipientEmail)
 
#ggqqplot(sub, "PB_Doing_1", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PB_Doing_1", add = "point")

dat_PB_Doing_1$RecipientEmail<- as.factor(dat_PB_Doing_1$RecipientEmail)
dat_PB_Doing_1$Q<- as.factor(dat_PB_Doing_1$Q)
dat_PB_Doing_1$C<- as.factor(dat_PB_Doing_1$C)
dat_PB_Doing_1$PB_Doing_1<- as.numeric(dat_PB_Doing_1$PB_Doing_1)
dat_PB_Doing_1<- na.omit(dat_PB_Doing_1)

fit<- ezANOVA(data = dat_PB_Doing_1,
        dv = PB_Doing_1, 
        wid = RecipientEmail,
        between = C,
        detailed = TRUE)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
fit
## $ANOVA
##   Effect DFn DFd      SSn      SSd        F         p p<.05        ges
## 1      C   1 229 6.036498 581.2968 2.378059 0.1244311       0.01027781
## 
## $`Levene's Test for Homogeneity of Variance`
##   DFn DFd        SSn      SSd         F         p p<.05
## 1   1 229 0.09050976 231.0523 0.0897058 0.7648232
#no sig effects
ezPlot(data = dat_PB_Doing_1,
        dv = PB_Doing_1, 
        wid = RecipientEmail,
        between = C,
        x = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.

## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PB_Doing_1,
        dv = PB_Doing_1, 
        wid = RecipientEmail,
        between = C,
        x = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.

## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C   N     Mean       SD      FLSD       lo       hi
## 1 1 113 4.831858 1.580589 0.4130995 4.625309 5.038408
## 2 2 118 4.508475 1.605257 0.4130995 4.301925 4.715024

PBC_D_Cap

 #PBC_D_Cap

dat_PBC_D_Cap<- select(sub, PBC_D_Cap, Q, C, RecipientEmail)
 
#ggqqplot(sub, "PBC_D_Cap", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_D_Cap", add = "point")

dat_PBC_D_Cap$RecipientEmail<- as.factor(dat_PBC_D_Cap$RecipientEmail)
dat_PBC_D_Cap$Q<- as.factor(dat_PBC_D_Cap$Q)
dat_PBC_D_Cap$PBC_D_Cap<- as.numeric(dat_PBC_D_Cap$PBC_D_Cap)
dat_PBC_D_Cap<- na.omit(dat_PBC_D_Cap)
pps<- aggregate(dat_PBC_D_Cap$'PBC_D_Cap', by=list(dat_PBC_D_Cap$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_PBC_D_Cap <- merge(pps, dat_PBC_D_Cap, by="RecipientEmail")
dat_PBC_D_Cap<- dplyr::filter(dat_PBC_D_Cap, complete == 2)


fit<- ezANOVA(data = dat_PBC_D_Cap,
        dv = PBC_D_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, PBC_D_Cap)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 234 11275.951271 828.5920 3184.4049471 2.971909e-138     *
## 2           C   1 234     9.956687 828.5920    2.8118358  9.490658e-02      
## 3           Q   1 234     6.883475 293.0385    5.4966602  1.989002e-02     *
## 4         C:Q   1 234     0.578028 293.0385    0.4615726  4.975614e-01      
##            ges
## 1 0.9095282809
## 2 0.0087988682
## 3 0.0060995916
## 4 0.0005150807
#sig effect of time
#for both cond, second measurement is less than the first
ezPlot(data = dat_PBC_D_Cap,
        dv = PBC_D_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PBC_D_Cap,
        dv = PBC_D_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 5.119658 1.509524 0.2870308 4.976143 5.263174
## 2 1 12 117 4.948718 1.547223 0.2870308 4.805203 5.092233
## 3 2  1 119 4.899160 1.520454 0.2870308 4.755644 5.042675
## 4 2 12 119 4.588235 1.612513 0.2870308 4.444720 4.731751

PBS_D_Aut

 #PBS_D_Aut

dat_PBS_D_Aut<- select(sub, PBS_D_Aut, Q, C, RecipientEmail)
 
#ggqqplot(sub, "PBS_D_Aut", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBS_D_Aut", add = "point")

dat_PBS_D_Aut$RecipientEmail<- as.factor(dat_PBS_D_Aut$RecipientEmail)
dat_PBS_D_Aut$Q<- as.factor(dat_PBS_D_Aut$Q)
dat_PBS_D_Aut$PBS_D_Aut<- as.numeric(dat_PBS_D_Aut$PBS_D_Aut)
dat_PBS_D_Aut<- na.omit(dat_PBS_D_Aut)
pps<- aggregate(dat_PBS_D_Aut$'PBS_D_Aut', by=list(dat_PBS_D_Aut$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_PBS_D_Aut <- merge(pps, dat_PBS_D_Aut, by="RecipientEmail")
dat_PBS_D_Aut<- dplyr::filter(dat_PBS_D_Aut, complete == 2)


fit<- ezANOVA(data = dat_PBS_D_Aut,
        dv = PBS_D_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, PBS_D_Aut)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd           F             p p<.05
## 1 (Intercept)   1 234 10096.375000 713.8597 3309.546197 4.421511e-140     *
## 2           C   1 234    28.265271 713.8597    9.265229  2.602394e-03     *
## 3           Q   1 234     2.036017 253.3686    1.880375  1.716051e-01      
## 4         C:Q   1 234     1.095384 253.3686    1.011648  3.155472e-01      
##           ges
## 1 0.912575650
## 2 0.028393223
## 3 0.002100580
## 4 0.001131217
#sig effect of condition
#condition 1, overall higher
ezPlot(data = dat_PBS_D_Aut,
        dv = PBS_D_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PBS_D_Aut,
        dv = PBS_D_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 117 4.888889 1.375762 0.2668963 4.755441 5.022337
## 2 1 12 117 4.854701 1.409726 0.2668963 4.721253 4.988149
## 3 2  1 119 4.495798 1.437240 0.2668963 4.362350 4.629246
## 4 2 12 119 4.268908 1.522139 0.2668963 4.135459 4.402356

Goal Not Doing

 #GD1_ND

dat_GD1_ND<- select(sub, GD1_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "GD1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD1_ND", add = "point")

dat_GD1_ND$RecipientEmail<- as.factor(dat_GD1_ND$RecipientEmail)
dat_GD1_ND$Q<- as.factor(dat_GD1_ND$Q)
dat_GD1_ND$GD1_ND<- as.numeric(dat_GD1_ND$GD1_ND)
dat_GD1_ND<- na.omit(dat_GD1_ND)
pps<- aggregate(dat_GD1_ND$'GD1_ND', by=list(dat_GD1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GD1_ND <- merge(pps, dat_GD1_ND, by="RecipientEmail")
dat_GD1_ND<- dplyr::filter(dat_GD1_ND, complete == 2)


fit<- ezANOVA(data = dat_GD1_ND,
        dv = GD1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, GD1_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn       SSd            F             p p<.05
## 1 (Intercept)   1 233 7608.2574468 1137.7724 1558.0655255 3.607955e-105     *
## 2           C   1 233    6.4701322 1137.7724    1.3249933  2.508777e-01      
## 3           Q   1 233    0.6148936  621.4201    0.2305529  6.315646e-01      
## 4         C:Q   1 233    0.4650470  621.4201    0.1743683  6.766429e-01      
##            ges
## 1 0.8122015603
## 2 0.0036644216
## 3 0.0003494096
## 4 0.0002642827
#no sig effects

 ezPlot(data = dat_GD1_ND,
        dv = GD1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_GD1_ND,
        dv = GD1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 4.137931 1.986461 0.4197788 3.928042 4.347820
## 2 1 12 116 4.146552 1.884741 0.4197788 3.936662 4.356441
## 3 2  1 119 3.840336 1.886541 0.4197788 3.630447 4.050226
## 4 2 12 119 3.974790 2.010406 0.4197788 3.764901 4.184679

Goal 2 Not Doing

 #GD2_ND

dat_GD2_ND<- select(sub, GD2_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "GD2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_ND", add = "point")

dat_GD2_ND$RecipientEmail<- as.factor(dat_GD2_ND$RecipientEmail)
dat_GD2_ND$Q<- as.factor(dat_GD2_ND$Q)
dat_GD2_ND$GD2_ND<- as.numeric(dat_GD2_ND$GD2_ND)
dat_GD2_ND<- na.omit(dat_GD2_ND)
pps<- aggregate(dat_GD2_ND$'GD2_ND', by=list(dat_GD2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_GD2_ND <- merge(pps, dat_GD2_ND, by="RecipientEmail")
dat_GD2_ND<- dplyr::filter(dat_GD2_ND, complete == 2)


fit<- ezANOVA(data = dat_GD2_ND,
        dv = GD2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, GD2_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn       SSd            F            p p<.05
## 1 (Intercept)   1 233 6.855372e+03 1178.7258 1.355109e+03 4.429399e-99     *
## 2           C   1 233 2.040189e+01 1178.7258 4.032864e+00 4.577645e-02     *
## 3           Q   1 233 3.595745e-01  598.1233 1.400729e-01 7.085490e-01      
## 4         C:Q   1 233 1.709172e-02  598.1233 6.658108e-03 9.350371e-01      
##            ges
## 1 7.941609e-01
## 2 1.135172e-02
## 3 2.023254e-04
## 4 9.619022e-06
#main effect of condition 
#overall condition 1 higher
 ezPlot(data = dat_GD2_ND,
        dv = GD2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_GD2_ND,
        dv = GD2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD     FLSD       lo       hi
## 1 1  1 116 4.008621 2.002154 0.411835 3.802703 4.214538
## 2 1 12 116 4.051724 1.932985 0.411835 3.845807 4.257642
## 3 2  1 119 3.579832 1.893324 0.411835 3.373914 3.785749
## 4 2 12 119 3.647059 1.981218 0.411835 3.441141 3.852976

Atttitude Not Doing

 #ATT1_ND

dat_ATT1_ND<- select(sub, ATT1_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT1_ND", add = "point")

dat_ATT1_ND$RecipientEmail<- as.factor(dat_ATT1_ND$RecipientEmail)
dat_ATT1_ND$Q<- as.factor(dat_ATT1_ND$Q)
dat_ATT1_ND$ATT1_ND<- as.numeric(dat_ATT1_ND$ATT1_ND)
dat_ATT1_ND<- na.omit(dat_ATT1_ND)
pps<- aggregate(dat_ATT1_ND$'ATT1_ND', by=list(dat_ATT1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT1_ND <- merge(pps, dat_ATT1_ND, by="RecipientEmail")
dat_ATT1_ND<- dplyr::filter(dat_ATT1_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT1_ND,
        dv = ATT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT1_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F            p p<.05
## 1 (Intercept)   1 233 2.731253e+03 463.2030 1.373873e+03 1.126220e-99     *
## 2           C   1 233 4.378765e-02 463.2030 2.202603e-02 8.821462e-01      
## 3           Q   1 233 6.148936e-01 243.6377 5.880462e-01 4.439519e-01      
## 4         C:Q   1 233 2.474289e-01 243.6377 2.366257e-01 6.271111e-01      
##            ges
## 1 7.944091e-01
## 2 6.194456e-05
## 3 8.691621e-04
## 4 3.499265e-04
#no sig effects 
ezPlot(data = dat_ATT1_ND,
        dv = ATT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT1_ND,
        dv = ATT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.413793 1.127282 0.2628452 2.282370 2.545216
## 2 1 12 116 2.387931 1.192524 0.2628452 2.256508 2.519354
## 3 2  1 119 2.478992 1.227156 0.2628452 2.347569 2.610414
## 4 2 12 119 2.361345 1.363763 0.2628452 2.229922 2.492767
 #ATT2_ND

dat_ATT2_ND<- select(sub, ATT2_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_ND", add = "point")

dat_ATT2_ND$RecipientEmail<- as.factor(dat_ATT2_ND$RecipientEmail)
dat_ATT2_ND$Q<- as.factor(dat_ATT2_ND$Q)
dat_ATT2_ND$ATT1_ND<- as.numeric(dat_ATT2_ND$ATT2_ND)
dat_ATT2_ND<- na.omit(dat_ATT2_ND)
pps<- aggregate(dat_ATT2_ND$'ATT2_ND', by=list(dat_ATT2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT2_ND <- merge(pps, dat_ATT2_ND, by="RecipientEmail")
dat_ATT2_ND<- dplyr::filter(dat_ATT2_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT2_ND,
        dv = ATT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT2_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 5052.512766 644.3980 1826.8762585 3.006766e-112     *
## 2           C   1 233    1.589197 644.3980    0.5746184  4.491955e-01      
## 3           Q   1 233    2.606383 433.0877    1.4022270  2.375576e-01      
## 4         C:Q   1 233    6.805925 433.0877    3.6615692  5.690667e-02      
##           ges
## 1 0.824227407
## 2 0.001472740
## 3 0.002413112
## 4 0.006276840
#no sig effects 
#interaction effect nearly sig, condition 2 showed inc for T1, whereas cond 1  no diff
ezPlot(data = dat_ATT2_ND,
        dv = ATT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT2_ND,
        dv = ATT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.267241 1.494091 0.3504417 3.092021 3.442462
## 2 1 12 116 3.172414 1.452290 0.3504417 2.997193 3.347635
## 3 2  1 119 3.142857 1.519845 0.3504417 2.967636 3.318078
## 4 2 12 119 3.529412 1.609419 0.3504417 3.354191 3.704633
 #ATT3_ND

dat_ATT3_ND<- select(sub, ATT3_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT3_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT3_ND", add = "point")

dat_ATT3_ND$RecipientEmail<- as.factor(dat_ATT3_ND$RecipientEmail)
dat_ATT3_ND$Q<- as.factor(dat_ATT3_ND$Q)
dat_ATT3_ND$ATT1_ND<- as.numeric(dat_ATT3_ND$ATT3_ND)
dat_ATT3_ND<- na.omit(dat_ATT3_ND)
pps<- aggregate(dat_ATT3_ND$'ATT3_ND', by=list(dat_ATT3_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT3_ND <- merge(pps, dat_ATT3_ND, by="RecipientEmail")
dat_ATT3_ND<- dplyr::filter(dat_ATT3_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT3_ND,
        dv = ATT3_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT3_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 3673.6085106 525.2436 1629.6263319 3.748586e-107     *
## 2           C   1 233    1.1479005 525.2436    0.5092129  4.761939e-01      
## 3           Q   1 233    1.6680851 317.3352    1.2247739  2.695671e-01      
## 4         C:Q   1 233    0.9967584 317.3352    0.7318594  3.931600e-01      
##           ges
## 1 0.813431397
## 2 0.001360512
## 3 0.001975826
## 4 0.001181588
#no sig effects 
ezPlot(data = dat_ATT3_ND,
        dv = ATT3_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT3_ND,
        dv = ATT3_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.758621 1.269171 0.2999763 2.608633 2.908609
## 2 1 12 116 2.732759 1.281017 0.2999763 2.582770 2.882747
## 3 2  1 119 2.949580 1.489220 0.2999763 2.799592 3.099568
## 4 2 12 119 2.739496 1.324234 0.2999763 2.589508 2.889484
 #ATT4_ND

dat_ATT4_ND<- select(sub, ATT4_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT4_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT4_ND", add = "point")

dat_ATT4_ND$RecipientEmail<- as.factor(dat_ATT4_ND$RecipientEmail)
dat_ATT4_ND$Q<- as.factor(dat_ATT4_ND$Q)
dat_ATT4_ND$ATT4_ND<- as.numeric(dat_ATT4_ND$ATT4_ND)
dat_ATT4_ND<- na.omit(dat_ATT4_ND)
pps<- aggregate(dat_ATT4_ND$'ATT4_ND', by=list(dat_ATT4_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT4_ND <- merge(pps, dat_ATT4_ND, by="RecipientEmail")
dat_ATT4_ND<- dplyr::filter(dat_ATT4_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT4_ND,
        dv = ATT4_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT4_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 4075.4382979 606.0535 1566.8207209 2.043545e-105     *
## 2           C   1 233    2.5082394 606.0535    0.9643040  3.271234e-01      
## 3           Q   1 233    1.6680851 210.0435    1.8503971  1.750518e-01      
## 4         C:Q   1 233    0.2884492 210.0435    0.3199751  5.721670e-01      
##            ges
## 1 0.8331613919
## 2 0.0030640405
## 3 0.0020398098
## 4 0.0003533248
#no sig effects 
ezPlot(data = dat_ATT4_ND,
        dv = ATT4_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT4_ND,
        dv = ATT4_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.905172 1.243966 0.2440521 2.783146 3.027198
## 2 1 12 116 2.836207 1.215437 0.2440521 2.714181 2.958233
## 3 2  1 119 3.100840 1.428493 0.2440521 2.978814 3.222866
## 4 2 12 119 2.932773 1.388397 0.2440521 2.810747 3.054799
 #ATT5_ND

dat_ATT5_ND<- select(sub, ATT5_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_ND", add = "point")

dat_ATT5_ND$RecipientEmail<- as.factor(dat_ATT5_ND$RecipientEmail)
dat_ATT5_ND$Q<- as.factor(dat_ATT5_ND$Q)
dat_ATT5_ND$ATT1_ND<- as.numeric(dat_ATT5_ND$ATT5_ND)
dat_ATT5_ND<- na.omit(dat_ATT5_ND)
pps<- aggregate(dat_ATT5_ND$'ATT5_ND', by=list(dat_ATT5_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT5_ND <- merge(pps, dat_ATT5_ND, by="RecipientEmail")
dat_ATT5_ND<- dplyr::filter(dat_ATT5_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT5_ND,
        dv = ATT5_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT5_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F            p p<.05
## 1 (Intercept)   1 233 3345.7787234 601.8047 1295.3811260 3.866848e-97     *
## 2           C   1 233    0.4165823 601.8047    0.1612877 6.883419e-01      
## 3           Q   1 233    2.7574468 270.4300    2.3757906 1.245862e-01      
## 4         C:Q   1 233    0.8125329 270.4300    0.7000708 4.036172e-01      
##            ges
## 1 0.7932119640
## 2 0.0004773754
## 3 0.0031513960
## 4 0.0009306861
#no sig effects
ezPlot(data = dat_ATT5_ND,
        dv = ATT5_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT5_ND,
        dv = ATT5_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.672414 1.297327 0.2769206 2.533953 2.810874
## 2 1 12 116 2.603448 1.376064 0.2769206 2.464988 2.741909
## 3 2  1 119 2.815126 1.437785 0.2769206 2.676666 2.953586
## 4 2 12 119 2.579832 1.356065 0.2769206 2.441372 2.718292
 #ATT6_ND

dat_ATT6_ND<- select(sub, ATT6_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "ATT6_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT6_ND", add = "point")

dat_ATT6_ND$RecipientEmail<- as.factor(dat_ATT6_ND$RecipientEmail)
dat_ATT6_ND$Q<- as.factor(dat_ATT6_ND$Q)
dat_ATT6_ND$ATT6_ND<- as.numeric(dat_ATT6_ND$ATT6_ND)
dat_ATT6_ND<- na.omit(dat_ATT6_ND)
pps<- aggregate(dat_ATT6_ND$'ATT6_ND', by=list(dat_ATT6_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_ATT6_ND <- merge(pps, dat_ATT6_ND, by="RecipientEmail")
dat_ATT6_ND<- dplyr::filter(dat_ATT6_ND, complete == 2)


fit<- ezANOVA(data = dat_ATT6_ND,
        dv = ATT6_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, ATT6_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd            F             p p<.05
## 1 (Intercept)   1 233 3.917977e+03 572.4548 1.594691e+03 3.407473e-106     *
## 2           C   1 233 6.857232e-02 572.4548 2.791024e-02  8.674649e-01      
## 3           Q   1 233 2.574468e-01 285.4629 2.101327e-01  6.470907e-01      
## 4         C:Q   1 233 7.796077e-01 285.4629 6.363298e-01  4.258552e-01      
##            ges
## 1 8.203650e-01
## 2 7.992239e-05
## 3 2.999933e-04
## 4 9.078957e-04
#no sig effects 

ezPlot(data = dat_ATT6_ND,
        dv = ATT6_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_ATT6_ND,
        dv = ATT6_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.810345 1.284786 0.2845134 2.668088 2.952602
## 2 1 12 116 2.939655 1.365977 0.2845134 2.797398 3.081912
## 3 2  1 119 2.915966 1.305658 0.2845134 2.773710 3.058223
## 4 2 12 119 2.882353 1.462390 0.2845134 2.740096 3.024610

Percieved Beh Control

 #PBC_ND_Aut

dat_PBC_ND_Aut<- select(sub, PBC_ND_Aut, Q, C, RecipientEmail)
 
#ggqqplot(sub, "PBC_ND_Aut", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_ND_Aut", add = "point")

dat_PBC_ND_Aut$RecipientEmail<- as.factor(dat_PBC_ND_Aut$RecipientEmail)
dat_PBC_ND_Aut$Q<- as.factor(dat_PBC_ND_Aut$Q)
dat_PBC_ND_Aut$ATT1_ND<- as.numeric(dat_PBC_ND_Aut$PBC_ND_Aut)
dat_PBC_ND_Aut<- na.omit(dat_PBC_ND_Aut)
pps<- aggregate(dat_PBC_ND_Aut$'PBC_ND_Aut', by=list(dat_PBC_ND_Aut$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_PBC_ND_Aut <- merge(pps, dat_PBC_ND_Aut, by="RecipientEmail")
dat_PBC_ND_Aut<- dplyr::filter(dat_PBC_ND_Aut, complete == 2)


fit<- ezANOVA(data = dat_PBC_ND_Aut,
        dv = PBC_ND_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, PBC_ND_Aut)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd           F             p p<.05
## 1 (Intercept)   1 233 8107.0297872 900.3389 2098.029854 1.652347e-118     *
## 2           C   1 233   14.6312893 900.3389    3.786452  5.287155e-02      
## 3           Q   1 233    0.5446809 384.3494    0.330196  5.660981e-01      
## 4         C:Q   1 233    3.1059639 384.3494    1.882895  1.713250e-01      
##            ges
## 1 0.8632105149
## 2 0.0112607319
## 3 0.0004237993
## 4 0.0024118479
#no sig effects 

ezPlot(data = dat_PBC_ND_Aut,
        dv = PBC_ND_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PBC_ND_Aut,
        dv = PBC_ND_Aut, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 4.448276 1.756206 0.3301345 4.283209 4.613343
## 2 1 12 116 4.215517 1.646108 0.3301345 4.050450 4.380585
## 3 2  1 119 3.932773 1.587724 0.3301345 3.767706 4.097840
## 4 2 12 119 4.025210 1.649151 0.3301345 3.860143 4.190277

PBC_ND_Cap

 #PBC_ND_Cap

dat_PBC_ND_Cap<- select(sub, PBC_ND_Cap, Q, C, RecipientEmail)
 
#ggqqplot(sub, "PBC_ND_Cap", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_ND_Cap", add = "point")

dat_PBC_ND_Cap$RecipientEmail<- as.factor(dat_PBC_ND_Cap$RecipientEmail)
dat_PBC_ND_Cap$Q<- as.factor(dat_PBC_ND_Cap$Q)
dat_PBC_ND_Cap$ATT1_ND<- as.numeric(dat_PBC_ND_Cap$PBC_ND_Cap)
dat_PBC_ND_Cap<- na.omit(dat_PBC_ND_Cap)
pps<- aggregate(dat_PBC_ND_Cap$'PBC_ND_Cap', by=list(dat_PBC_ND_Cap$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_PBC_ND_Cap <- merge(pps, dat_PBC_ND_Cap, by="RecipientEmail")
dat_PBC_ND_Cap<- dplyr::filter(dat_PBC_ND_Cap, complete == 2)


fit<- ezANOVA(data = dat_PBC_ND_Cap,
        dv = PBC_ND_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, PBC_ND_Cap)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn       SSd           F             p p<.05
## 1 (Intercept)   1 233 6456.519149 1072.7098 1402.400696 1.447484e-100     *
## 2           C   1 233    9.771057 1072.7098    2.122341  1.465108e-01      
## 3           Q   1 233   11.029787  478.4096    5.371841  2.133167e-02     *
## 4         C:Q   1 233    1.560621  478.4096    0.760070  3.842041e-01      
##           ges
## 1 0.806295030
## 2 0.006259925
## 3 0.007060649
## 4 0.001005115
#sig main effect of time 
#both groups inc for T1
ezPlot(data = dat_PBC_ND_Cap,
        dv = PBC_ND_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_PBC_ND_Cap,
        dv = PBC_ND_Cap, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.465517 1.815063 0.3683221 3.281356 3.649678
## 2 1 12 116 3.655172 1.799050 0.3683221 3.471011 3.839333
## 3 2  1 119 3.638655 1.839911 0.3683221 3.454494 3.822817
## 4 2 12 119 4.058824 1.842503 0.3683221 3.874662 4.242985

Behavior Desire

 #BD_ND

dat_BD_ND<- select(sub, BD_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "BD_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="BD_ND", add = "point")

dat_BD_ND$RecipientEmail<- as.factor(dat_BD_ND$RecipientEmail)
dat_BD_ND$Q<- as.factor(dat_BD_ND$Q)
dat_BD_ND$ATT1_ND<- as.numeric(dat_BD_ND$BD_ND)
dat_BD_ND<- na.omit(dat_BD_ND)
pps<- aggregate(dat_BD_ND$'BD_ND', by=list(dat_BD_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_BD_ND <- merge(pps, dat_BD_ND, by="RecipientEmail")
dat_BD_ND<- dplyr::filter(dat_BD_ND, complete == 2)


fit<- ezANOVA(data = dat_BD_ND,
        dv = BD_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, BD_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn     SSd            F            p p<.05
## 1 (Intercept)   1 233 2.261619e+03 570.844 923.11956819 5.288682e-83     *
## 2           C   1 233 3.685657e-02 570.844   0.01504366 9.024879e-01      
## 3           Q   1 233 1.551064e+00 256.041   1.41148417 2.360198e-01      
## 4         C:Q   1 233 9.078973e-01 256.041   0.82619599 3.643140e-01      
##            ges
## 1 0.7322700620
## 2 0.0000445708
## 3 0.0018722794
## 4 0.0010967687
#no sig effects 
ezPlot(data = dat_BD_ND,
        dv = BD_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_BD_ND,
        dv = BD_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.189655 1.382586 0.2694528 2.054929 2.324382
## 2 1 12 116 2.215517 1.317481 0.2694528 2.080791 2.350244
## 3 2  1 119 2.084034 1.337718 0.2694528 1.949307 2.218760
## 4 2 12 119 2.285714 1.289743 0.2694528 2.150988 2.420441

Intentions

 #INT1_ND

dat_INT1_ND<- select(sub, INT1_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "INT1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT1_ND", add = "point")

dat_INT1_ND$RecipientEmail<- as.factor(dat_INT1_ND$RecipientEmail)
dat_INT1_ND$Q<- as.factor(dat_INT1_ND$Q)
dat_INT1_ND$ATT1_ND<- as.numeric(dat_INT1_ND$INT1_ND)
dat_INT1_ND<- na.omit(dat_INT1_ND)
pps<- aggregate(dat_INT1_ND$'INT1_ND', by=list(dat_INT1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_INT1_ND <- merge(pps, dat_INT1_ND, by="RecipientEmail")
dat_INT1_ND<- dplyr::filter(dat_INT1_ND, complete == 2)


fit<- ezANOVA(data = dat_INT1_ND,
        dv = INT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, INT1_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn      SSd           F            p p<.05
## 1 (Intercept)   1 233 2140.4446809 599.3508 832.1064014 7.526068e-79     *
## 2           C   1 233    0.7045513 599.3508   0.2738971 6.012268e-01      
## 3           Q   1 233    2.3170213 237.5981   2.2721814 1.330690e-01      
## 4         C:Q   1 233    0.5848912 237.5981   0.5735722 4.496081e-01      
##            ges
## 1 0.7188988136
## 2 0.0008411012
## 3 0.0027607715
## 4 0.0006983494
#no sig effects 
ezPlot(data = dat_INT1_ND,
        dv = INT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_INT1_ND,
        dv = INT1_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 2.060345 1.320664 0.2595669 1.930561 2.190128
## 2 1 12 116 2.129310 1.322252 0.2595669 1.999527 2.259094
## 3 2  1 119 2.067227 1.293603 0.2595669 1.937443 2.197010
## 4 2 12 119 2.277311 1.419742 0.2595669 2.147527 2.407094
 #INT2_ND

dat_INT2_ND<- select(sub, INT2_ND, Q, C, RecipientEmail)
 
#ggqqplot(sub, "INT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_ND", add = "point")

dat_INT2_ND$RecipientEmail<- as.factor(dat_INT2_ND$RecipientEmail)
dat_INT2_ND$Q<- as.factor(dat_INT2_ND$Q)
dat_INT2_ND$INT2_ND<- as.numeric(dat_INT2_ND$INT2_ND)
dat_INT2_ND<- na.omit(dat_INT2_ND)
pps<- aggregate(dat_INT2_ND$'INT2_ND', by=list(dat_INT2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_INT2_ND <- merge(pps, dat_INT2_ND, by="RecipientEmail")
dat_INT2_ND<- dplyr::filter(dat_INT2_ND, complete == 2)


fit<- ezANOVA(data = dat_INT2_ND,
        dv = INT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, INT2_ND)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd         SSn       SSd           F             p p<.05
## 1 (Intercept)   1 233 6802.008511 1032.8088 1534.522225 1.687204e-104     *
## 2           C   1 233   10.182738 1032.8088    2.297209  1.309621e-01      
## 3           Q   1 233    9.268085  405.0633    5.331176  2.182324e-02     *
## 4         C:Q   1 233   12.668600  405.0633    7.287216  7.453726e-03     *
##           ges
## 1 0.825498434
## 2 0.007032012
## 3 0.006404414
## 4 0.008733709
#sif effect of time, sig time/cond interaction 
#for T0 same value, only for condition 2 large inc 
ezPlot(data = dat_INT2_ND,
        dv = INT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_INT2_ND,
        dv = INT2_ND, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD      FLSD       lo       hi
## 1 1  1 116 3.681034 1.752509 0.3389139 3.511578 3.850491
## 2 1 12 116 3.629310 1.771907 0.3389139 3.459853 3.798767
## 3 2  1 119 3.647059 1.649798 0.3389139 3.477602 3.816516
## 4 2 12 119 4.252101 1.846749 0.3389139 4.082644 4.421558

Habit

dat_SRHI<- select(sub, SRHI_1:SRHI_12, Q, C, RecipientEmail)
dat_SRHI<- dplyr::mutate(dat_SRHI, 
                  total = (SRHI_1+ SRHI_2 + SRHI_3 + SRHI_4 + SRHI_5 + SRHI_6 + SRHI_7 + SRHI_8 + SRHI_9 + SRHI_10 + SRHI_11 + SRHI_12))

dat_SRHI$RecipientEmail<- as.factor(dat_SRHI$RecipientEmail)
dat_SRHI$Q<- as.factor(dat_SRHI$Q)
dat_SRHI$total<- as.numeric(dat_SRHI$total)
dat_SRHI<- na.omit(dat_SRHI)
pps<- aggregate(dat_SRHI$'total', by=list(dat_SRHI$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'

dat_SRHI <- merge(pps, dat_SRHI, by="RecipientEmail")
dat_SRHI<- dplyr::filter(dat_SRHI, complete == 2)


fit<- ezANOVA(data = dat_SRHI,
        dv = total, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        detailed = TRUE,
        within_full = c(Q, total)
        )
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
##        Effect DFn DFd          SSn       SSd            F             p p<.05
## 1 (Intercept)   1 233 976752.07660 136239.63 1670.4627937 2.991821e-108     *
## 2           C   1 233    647.29286 136239.63    1.1070144  2.938218e-01      
## 3           Q   1 233     46.60426  20782.13    0.5225063  4.704995e-01      
## 4         C:Q   1 233     14.27013  20782.13    0.1599904  6.895318e-01      
##            ges
## 1 8.615052e-01
## 2 4.105390e-03
## 3 2.967132e-04
## 4 9.087169e-05
#no sig effects 

ezPlot(data = dat_SRHI,
        dv = total, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD

 means<- ezPlot(data = dat_SRHI,
        dv = total, 
        wid = RecipientEmail,
        within = Q, 
        between = C,
        x= Q,
        split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
 means$data
##   C  Q   N     Mean       SD     FLSD       lo       hi
## 1 1  1 116 46.28448 19.09464 2.427576 45.07069 47.49827
## 2 1 12 116 47.26724 18.40102 2.427576 46.05345 48.48103
## 3 2  1 119 44.28571 18.49147 2.427576 43.07193 45.49950
## 4 2 12 119 44.57143 17.41934 2.427576 43.35764 45.78522

Moderation Analysis

#T0
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")

mod_1<- dplyr::filter(walk_comp, Q == 1)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, INT2_ND)

MOD1<- merge(pps, mod_1, by="RecipientEmail")

MOD1$C <- as.numeric(MOD1$C)
fit<- lmres(steps~C* INT2_ND, data=MOD1)
summary(fit)
## Formula:
## steps ~ C + INT2_ND + C.XX.INT2_ND
## <environment: 0x7fd1af1a8ef0>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.385  0.148     0.136 12.228  3.000  211 2.1e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4914.6 -1740.6  -230.7     0.0  1133.8  9050.4 
## 
## Coefficients
##                Estimate     StdErr    t.value    beta p.value    
## (Intercept)   9564.3727  1187.6211     8.0534         < 2e-16 ***
## C            -1599.9948   774.1294    -2.0668 -0.3142 0.03997 *  
## INT2_ND       -907.5708   293.3730    -3.0936 -0.6076 0.00225 ** 
## C.XX.INT2_ND   264.0469   190.6285     1.3851  0.3370 0.16747    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                  VIF Tolerance
## C             5.7257    0.1747
## INT2_ND       9.5559    0.1046
## C.XX.INT2_ND 14.6633    0.0682
sslope<- simpleSlope(fit, pred="C", mod1="INT2_ND")
sslope
## Simple Slope:
##                      simple slope standard error    t-value    p.value
## Low INT2_ND (-1 SD)    -1078.3835       459.8422 -2.3451164 0.01994961
## High INT2_ND (+1 SD)    -176.2559       458.4291 -0.3844781 0.70101132
PlotSlope(sslope)

#T1
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")

mod_1<- dplyr::filter(walk_comp, Q == 12)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, INT2_ND)

MOD2<- merge(pps, mod_1, by="RecipientEmail")

MOD2$C <- as.numeric(MOD2$C)
fit<- lmres(steps~C* INT2_ND, data=MOD2)
summary(fit)
## Formula:
## steps ~ C + INT2_ND + C.XX.INT2_ND
## <environment: 0x7fd1ba0d8dd8>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value    
## Model  0.590  0.348     0.338 36.974  3.000  208  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residuals
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -6192.29 -1357.66   -66.29     0.00  1252.27  6030.13 
## 
## Coefficients
##                Estimate     StdErr    t.value    beta p.value    
## (Intercept)  10391.8202  1088.9658     9.5428         < 2e-16 ***
## C            -1213.3155   718.3603    -1.6890 -0.2372 0.09272 .  
## INT2_ND      -1189.4876   255.7913    -4.6502 -0.8357   1e-05 ***
## C.XX.INT2_ND   247.7199   161.9348     1.5297  0.3633 0.12760    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                  VIF Tolerance
## C             6.2903    0.1590
## INT2_ND      10.3003    0.0971
## C.XX.INT2_ND 17.9862    0.0556
sslope<- simpleSlope(fit, pred="C", mod1="INT2_ND")
## Warning in sqrt(del): NaNs produced

## Warning in sqrt(del): NaNs produced
sslope
## Simple Slope:
##                      simple slope standard error    t-value   p.value
## Low INT2_ND (-1 SD)     -655.7357       412.4388 -1.5898983 0.1133765
## High INT2_ND (+1 SD)     236.5705       411.5178  0.5748729 0.5659985
PlotSlope(sslope)

#T0
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")

mod_1<- dplyr::filter(walk_comp, Q == 1)
mod_1<- select(mod_1, Q, C, RecipientEmail, ATT5_D)

MOD1<- merge(pps, mod_1, by="RecipientEmail")

MOD1$C <- as.numeric(MOD1$C)
fit<- lmres(steps~C* ATT5_D, data=MOD1)
summary(fit)
## Formula:
## steps ~ C + ATT5_D + C.XX.ATT5_D
## <environment: 0x7fd1addda878>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value
## Model 0.1603 0.0257    0.0118 1.8549 3.0000  211    0.14
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -5072.3 -1668.1  -174.4     0.0  1347.7  8343.3 
## 
## Coefficients
##                Estimate      StdErr     t.value    beta p.value    
## (Intercept)  7846.49820  2025.39981     3.87405         0.00014 ***
## C           -2202.59370  1438.13698    -1.53156 -0.4326 0.12713    
## ATT5_D       -244.35547   319.94557    -0.76374 -0.1565 0.44587    
## C.XX.ATT5_D   241.43988   224.99997     1.07307  0.3831 0.28447    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                VIF Tolerance
## C           17.278    0.0579
## ATT5_D       9.090    0.1100
## C.XX.ATT5_D 27.602    0.0362
sslope<- simpleSlope(fit, pred="C", mod1="ATT5_D")
sslope
## Simple Slope:
##                     simple slope standard error    t-value    p.value
## Low ATT5_D (-1 SD)    -1112.4859       514.7506 -2.1612133 0.03180494
## High ATT5_D (+1 SD)    -323.5524       497.3274 -0.6505823 0.51602395
PlotSlope(sslope)

#T1
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")

mod_1<- dplyr::filter(walk_comp, Q == 12)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, ATT5_D)

MOD2<- merge(pps, mod_1, by="RecipientEmail")

MOD2$C <- as.numeric(MOD2$C)
fit<- lmres(steps~C* ATT5_D, data=MOD2)
summary(fit)
## Formula:
## steps ~ C + ATT5_D + C.XX.ATT5_D
## <environment: 0x7fd1b8f33850>
## 
## Models
##          R     R^2   Adj. R^2    F     df1  df2  p.value
## Model 0.1496 0.0224    0.0084 1.6017 3.0000  210    0.19
## 
## Residuals
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -5103.6 -1790.6  -208.9     0.0  1377.3  8383.2 
## 
## Coefficients
##               Estimate     StdErr    t.value    beta p.value   
## (Intercept) 6844.65932 2138.59731    3.20054         0.00158 **
## C           -702.02553 1260.44553   -0.55697 -0.1378 0.57814   
## ATT5_D       -74.02670  337.78861   -0.21915 -0.0516 0.82675   
## C.XX.ATT5_D   -5.82853  201.37491   -0.02894 -0.0091 0.97694   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Collinearity
##                VIF Tolerance
## C           13.148    0.0761
## ATT5_D      11.930    0.0838
## C.XX.ATT5_D 21.384    0.0468
sslope<- simpleSlope(fit, pred="C", mod1="ATT5_D")
sslope
## Simple Slope:
##                     simple slope standard error   t-value   p.value
## Low ATT5_D (-1 SD)     -726.4511       507.1042 -1.432548 0.1534739
## High ATT5_D (+1 SD)    -747.2155       495.2467 -1.508774 0.1328595
PlotSlope(sslope)