loading packages
library(haven)
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'hms'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
library(psych)
## Warning: package 'psych' was built under R version 4.1.2
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
library(ez)
## Registered S3 methods overwritten by 'lme4':
## method from
## cooks.distance.influence.merMod car
## influence.merMod car
## dfbeta.influence.merMod car
## dfbetas.influence.merMod car
library(lavaan)
## Warning: package 'lavaan' was built under R version 4.1.2
## This is lavaan 0.6-10
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
##
## cor2cov
library(ggpubr)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble 3.1.2 ✓ purrr 0.3.4
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.1.2 ✓ forcats 0.5.1
## Warning: package 'readr' was built under R version 4.1.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x ggplot2::%+%() masks psych::%+%()
## x ggplot2::alpha() masks psych::alpha()
## x rstatix::filter() masks dplyr::filter(), stats::filter()
## x dplyr::lag() masks stats::lag()
library(lme4, lmerTest)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(nlme)
##
## Attaching package: 'nlme'
## The following object is masked from 'package:lme4':
##
## lmList
## The following object is masked from 'package:dplyr':
##
## collapse
library(pequod)
## Loading required package: car
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
## some
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:psych':
##
## logit
loading data file
library(haven)
StudioWalking_Clean280422 <- read_sav("StudioWalking_Clean280422.sav")
walk<- StudioWalking_Clean280422
descriptives
describe(walk$ETA)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 278 25.32 7.74 24 23.72 2.97 16 63 47 3.03 9.6 0.46
#278 total pps
#av age = 25, sd=7.74
male<- dplyr::filter(walk, SESSO == 1)
describe(male$SESSO)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 65 1 0 1 1 0 1 1 0 NaN NaN 0
#65 men
female<- dplyr::filter(walk, SESSO == 2)
describe(female$SESSO)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 207 2 0 2 2 0 2 2 0 NaN NaN 0
#207 women
Removing incomplete data
pps<- aggregate(walk$'Q', by=list(walk$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
walk_comp <- merge(pps, walk, by="RecipientEmail")
walk_comp<- dplyr::filter(walk_comp, complete == "12")
describe(walk_comp$ETA)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 238 25.28 7.58 24 23.73 2.97 18 63 45 3.21 10.79 0.49
#238 complete data
one<- filter(walk_comp, C == "1")
describe(one$ETA)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 118 25.79 8.44 24 23.94 2.97 18 63 45 2.84 7.83 0.78
describe(one$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1180 6079.34 4915.08 5006 5430.54 4341.79 0 36154 36154 1.32
## kurtosis se
## X1 2.36 143.08
#118 pps in condition 1 (control)
#average steps = 6079, sd=4915
two<- filter(walk_comp, C == "2")
describe(two$ETA)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 120 24.78 6.62 23.5 23.57 2.22 18 61 43 3.62 15.03 0.6
describe(two$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1200 5478.76 4618.69 4454.5 4839.76 4129.04 0 30725 30725 1.5
## kurtosis se
## X1 3.2 133.33
#120 pps in condition 2 (experimental)
#average steps 5479, sd=4619
Removing Outliers
#visualize data
ggplot(data = walk_comp, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 476 rows containing non-finite values (stat_smooth).
## Warning: Removed 476 rows containing missing values (geom_point).
#removing outliers, condition 1
walk_one<- filter(walk_comp, C == 1)
walk_one<- filter(walk_one, Q > 1)
walk_one<- filter(walk_one, Q < 12)
SD(walk_one$PASSI_SELF)
## [1] 4915.078
describe(walk_one$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1180 6079.34 4915.08 5006 5430.54 4341.79 0 36154 36154 1.32
## kurtosis se
## X1 2.36 143.08
(4915.08*3)+6079.34
## [1] 20824.58
walk_one_out<- filter(walk_one, PASSI_SELF < 20824.58)
ggplot(data = walk_one_out, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)
## `geom_smooth()` using formula 'y ~ x'
describe(walk_one_out$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1166 5863.18 4506.14 4953.5 5329.42 4278.04 0 20534 20534 0.97
## kurtosis se
## X1 0.52 131.96
#mean = 5863.18, sd=4506.14
dplyr::select(walk_one_out, PASSI_SELF, Q) %>% pairs.panels(lm= TRUE)
#removing outliers, condition 2
walk_two<- filter(walk_comp, C == 2)
walk_one<- filter(walk_two, Q > 1)
walk_one<- filter(walk_two, Q < 12)
SD(walk_two$PASSI_SELF)
## [1] 4618.688
describe(walk_two$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1200 5478.76 4618.69 4454.5 4839.76 4129.04 0 30725 30725 1.5
## kurtosis se
## X1 3.2 133.33
(4618.69*3)+5478.76
## [1] 19334.83
walk_two_out<- filter(walk_two, PASSI_SELF < 19334.83)
ggplot(data = walk_two_out, mapping = aes(x = Q, y = PASSI_SELF, color = C)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)
## `geom_smooth()` using formula 'y ~ x'
describe(walk_two_out$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1181 5197.45 4056.05 4352 4715.97 4038.6 0 18930 18930 0.98
## kurtosis se
## X1 0.54 118.03
#mean=5197.45, sd=4056.05
dplyr::select(walk_two_out, PASSI_SELF, Q) %>% pairs.panels(lm= TRUE)
#new data set
walk_final<- rbind(walk_one_out, walk_two_out)
ANOVA Difference in condition for mean number of steps
walk_final$Q <- as.factor(walk_final$Q)
within<- select(walk_final, PASSI_SELF, Q, C, RecipientEmail)
within<- na.omit(within)
pps<- aggregate(within$'PASSI_SELF', by=list(within$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'
within <- merge(pps, within, by="RecipientEmail")
within<- dplyr::filter(within, comp == 10)
fit<- ezANOVA(data = within,
dv = PASSI_SELF,
wid = RecipientEmail,
between = C,
detailed = TRUE
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 C 1 213 24828962 1368304023 3.865054 0.0506008 0.01782239
##
## $`Levene's Test for Homogeneity of Variance`
## DFn DFd SSn SSd F p p<.05
## 1 1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within,
dv = PASSI_SELF,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = within,
dv = PASSI_SELF,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C N Mean SD FLSD lo hi
## 1 1 109 5626.438 2807.680 681.4516 5285.712 5967.164
## 2 2 106 4946.714 2218.822 681.4516 4605.988 5287.440
ANOVA steps-7000
within_ach <- mutate(within,
ach = PASSI_SELF - 7000)
fit<- ezANOVA(data = within_ach,
dv = ach,
wid = RecipientEmail,
between = C,
detailed = TRUE
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 C 1 213 24828962 1368304023 3.865054 0.0506008 0.01782239
##
## $`Levene's Test for Homogeneity of Variance`
## DFn DFd SSn SSd F p p<.05
## 1 1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within_ach,
dv = ach,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = within_ach,
dv = ach,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C N Mean SD FLSD lo hi
## 1 1 109 -1373.562 2807.680 681.4516 -1714.288 -1032.836
## 2 2 106 -2053.286 2218.822 681.4516 -2394.012 -1712.560
Deviation from the MEAN ANOVA for steps
oneC<- dplyr::filter(within, C ==1)
describe(oneC$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1090 5626.44 4344.22 4770.5 5112.56 4089.01 0 19914 19914 0.99
## kurtosis se
## X1 0.61 131.58
twoC<- dplyr::filter(within, C == 2)
describe(twoC$PASSI_SELF)
## vars n mean sd median trimmed mad min max range skew
## X1 1 1060 4946.71 3841.51 4250 4501.86 3982.26 0 18743 18743 0.99
## kurtosis se
## X1 0.7 117.99
within$MEAN[within$C == 1]<- 5626.44
within$MEAN[within$C == 2]<- 4946.71
within<- mutate(within,
diff =
PASSI_SELF - MEAN)
fit<- ezANOVA(data = within,
dv = diff,
wid = RecipientEmail,
between = C,
detailed = TRUE
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 C 1 213 0.002217293 1368304023 3.451597e-10 0.9999852
## ges
## 1 1.620468e-12
##
## $`Levene's Test for Homogeneity of Variance`
## DFn DFd SSn SSd F p p<.05
## 1 1 213 6013628 565899094 2.263482 0.1339373
ezPlot(data = within,
dv = diff,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = within,
dv = diff,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: Converting "RecipientEmail" to factor for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means. *IF* the requested effects are a subset
## of the full design, you must use the "within_full" argument, else results may be
## inaccurate.
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C N Mean SD FLSD lo hi
## 1 1 109 -0.002272477 2807.680 681.4516 -340.7281 340.7235
## 2 2 106 0.004150943 2218.822 681.4516 -340.7216 340.7299
EMGB Constructs, Mixed ANOVA INT1_D
sub<- dplyr::filter(walk_comp, Q == 1 | Q == 12)
##INT1_D
dat_INT1_D<- dplyr::select(sub, INT1_D, Q, C, RecipientEmail)
#ggqqplot(sub, "INT1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT1_D", add = "point")
dat_INT1_D$RecipientEmail<- as.factor(dat_INT1_D$RecipientEmail)
dat_INT1_D$Q<- as.factor(dat_INT1_D$Q)
dat_INT1_D<- na.omit(dat_INT1_D)
pps<- aggregate(dat_INT1_D$'INT1_D', by=list(dat_INT1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT1_D <- merge(pps, dat_INT1_D, by="RecipientEmail")
dat_INT1_D<- dplyr::filter(dat_INT1_D, complete == 2)
fit<- ezANOVA(data = dat_INT1_D,
dv = INT1_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, INT1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 13096.512766 707.8934 4310.6598092 2.743567e-152 *
## 2 C 1 233 1.093870 707.8934 0.3600425 5.490658e-01
## 3 Q 1 233 3.576596 186.7459 4.4624644 3.571190e-02 *
## 4 C:Q 1 233 1.177533 186.7459 1.4691907 2.267011e-01
## ges
## 1 0.936056785
## 2 0.001221201
## 3 0.003981889
## 4 0.001314480
#effect of Q, or time, is significant
ezPlot(data = dat_INT1_D,
dv = INT1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_INT1_D,
dv = INT1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 5.465517 1.347662 0.2301195 5.350457 5.580577
## 2 1 12 116 5.189655 1.376282 0.2301195 5.074595 5.304715
## 3 2 1 119 5.268908 1.406387 0.2301195 5.153848 5.383967
## 4 2 12 119 5.193277 1.409876 0.2301195 5.078218 5.308337
INT2_D
#INT2_D
dat_INT2_D<- select(sub, INT2_D, Q, C, RecipientEmail)
dat_INT2_D<- na.omit(dat_INT2_D)
#ggqqplot(sub, "INT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_D", add = "point")
dat_INT2_D$RecipientEmail<- as.factor(dat_INT2_D$RecipientEmail)
dat_INT2_D$Q<- as.factor(dat_INT2_D$Q)
pps<- aggregate(dat_INT2_D$'INT2_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")
dat_INT2_D<- filter(dat_INT2_D, complete == 2)
fit<- ezANOVA(data = dat_INT2_D,
dv = INT2_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, INT2_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 9526.502128 827.8709 2681.184925 8.249975e-130 *
## 2 C 1 233 17.626965 827.8709 4.961019 2.688101e-02 *
## 3 Q 1 233 3.404255 252.4857 3.141531 7.762883e-02
## 4 C:Q 1 233 2.110088 252.4857 1.947242 1.642129e-01
## ges
## 1 0.898145474
## 2 0.016053943
## 3 0.003141150
## 4 0.001949333
#effect of Condition is sig
ezPlot(data = dat_INT2_D,
dv = INT2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_INT2_D,
dv = INT2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 4.715517 1.467361 0.2675754 4.581730 4.849305
## 2 1 12 116 4.681034 1.512839 0.2675754 4.547247 4.814822
## 3 2 1 119 4.462185 1.494566 0.2675754 4.328397 4.595973
## 4 2 12 119 4.159664 1.610259 0.2675754 4.025876 4.293452
Intention average
#INT1_D + INT2_D
dat_INT2_D<- select(sub, INT1_D, INT2_D, Q, C, RecipientEmail)
dat_INT2_D<- na.omit(dat_INT2_D)
#ggqqplot(sub, "INT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_D", add = "point")
dat_INT2_D$RecipientEmail<- as.factor(dat_INT2_D$RecipientEmail)
dat_INT2_D$Q<- as.factor(dat_INT2_D$Q)
pps<- aggregate(dat_INT2_D$'INT2_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")
pps<- aggregate(dat_INT2_D$'INT1_D', by=list(dat_INT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT2_D <- merge(pps, dat_INT2_D, by="RecipientEmail")
dat_INT2_D<- filter(dat_INT2_D, complete.x == 2)
dat_INT2_D<- filter(dat_INT2_D, complete.y == 2)
dat_INT2_D<- mutate(dat_INT2_D,
av = (INT1_D + INT2_D)/2)
fit<- ezANOVA(data = dat_INT2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, av)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 1.124064e+04 647.1062 4.047357e+03 2.879961e-149 *
## 2 C 1 233 6.875750e+00 647.1062 2.475714e+00 1.169738e-01
## 3 Q 1 233 3.489894e+00 164.6013 4.940088e+00 2.720133e-02 *
## 4 C:Q 1 233 3.375895e-02 164.6013 4.778718e-02 8.271508e-01
## ges
## 1 9.326515e-01
## 2 8.399573e-03
## 3 4.281041e-03
## 4 4.158831e-05
#effect of time is sig
#for both conditions, intention decreases over time
#for condition 2 intention is overall lower
ezPlot(data = dat_INT2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_INT2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 5.090517 1.260778 0.2160452 4.982495 5.198540
## 2 1 12 116 4.935345 1.316336 0.2160452 4.827322 5.043367
## 3 2 1 119 4.865546 1.328784 0.2160452 4.757524 4.973569
## 4 2 12 119 4.676471 1.369443 0.2160452 4.568448 4.784493
GOAL1_D
#GOAL1_D
dat_GOAL1_D<- select(sub, GOAL1_D, Q, C, RecipientEmail)
#ggqqplot(sub, "GOAL1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GOAL1_D", add = "point")
dat_GOAL1_D$RecipientEmail<- as.factor(dat_GOAL1_D$RecipientEmail)
dat_GOAL1_D$Q<- as.factor(dat_GOAL1_D$Q)
dat_GOAL1_D$GOAL1_D<- as.numeric(dat_GOAL1_D$GOAL1_D)
dat_GOAL1_D<- na.omit(dat_GOAL1_D)
pps<- aggregate(dat_GOAL1_D$'GOAL1_D', by=list(dat_GOAL1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GOAL1_D <- merge(pps, dat_GOAL1_D, by="RecipientEmail")
dat_GOAL1_D<- dplyr::filter(dat_GOAL1_D, complete == 2)
fit<- ezANOVA(data = dat_GOAL1_D,
dv = GOAL1_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, GOAL1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 176 1.152999e+04 343.9393 5.900105e+03 2.697521e-137 *
## 2 C 1 176 7.195702e-02 343.9393 3.682172e-02 8.480497e-01
## 3 Q 1 176 7.191011e-01 124.0726 1.020062e+00 3.138907e-01
## 4 C:Q 1 176 1.208287e+00 124.0726 1.713984e+00 1.921760e-01
## ges
## 1 0.9609925099
## 2 0.0001537268
## 3 0.0015341446
## 4 0.0025750952
#no sig effects
ezPlot(data = dat_GOAL1_D,
dv = GOAL1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_GOAL1_D,
dv = GOAL1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 93 5.666667 1.154701 0.248397 5.542468 5.790865
## 2 1 12 93 5.688172 1.206671 0.248397 5.563974 5.812371
## 3 2 1 85 5.811765 1.139069 0.248397 5.687566 5.935963
## 4 2 12 85 5.600000 1.104105 0.248397 5.475802 5.724198
GD2_D
#GD2_D
dat_GD2_D<- select(sub, GD2_D, Q, C, RecipientEmail)
#ggqqplot(sub, "GD2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_D", add = "point")
dat_GD2_D$RecipientEmail<- as.factor(dat_GD2_D$RecipientEmail)
dat_GD2_D$Q<- as.factor(dat_GD2_D$Q)
dat_GD2_D$GOAL1_D<- as.numeric(dat_GD2_D$GD2_D)
dat_GD2_D<- na.omit(dat_GD2_D)
pps<- aggregate(dat_GD2_D$'GD2_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete == 2)
fit<- ezANOVA(data = dat_GD2_D,
dv = GD2_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, GOAL1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.520934e+04 464.1351 7700.7609366 1.322001e-181 *
## 2 C 1 235 2.029407e+00 464.1351 1.0275256 3.117831e-01
## 3 Q 1 235 9.303797e-01 168.4582 1.2978840 2.557600e-01
## 4 C:Q 1 235 1.113938e-01 168.4582 0.1553948 6.937898e-01
## ges
## 1 0.9600684119
## 2 0.0031978168
## 3 0.0014685791
## 4 0.0001760596
#no sig effects
ezPlot(data = dat_GD2_D,
dv = GD2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_GD2_D,
dv = GD2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.538462 1.185679 0.2166998 5.430112 5.646811
## 2 1 12 117 5.658120 1.138377 0.2166998 5.549770 5.766470
## 3 2 1 120 5.700000 1.213371 0.2166998 5.591650 5.808350
## 4 2 12 120 5.758333 1.100006 0.2166998 5.649983 5.866683
Goal Desire Average
#GOAL1_D + GD2_D
dat_GD2_D<- select(sub,GOAL1_D, GD2_D, Q, C, RecipientEmail)
#ggqqplot(sub, "GD2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_D", add = "point")
dat_GD2_D$RecipientEmail<- as.factor(dat_GD2_D$RecipientEmail)
dat_GD2_D$Q<- as.factor(dat_GD2_D$Q)
dat_GD2_D$GOAL1_D<- as.numeric(dat_GD2_D$GD2_D)
dat_GD2_D<- na.omit(dat_GD2_D)
pps<- aggregate(dat_GD2_D$'GD2_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete == 2)
pps<- aggregate(dat_GD2_D$'GOAL1_D', by=list(dat_GD2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GD2_D <- merge(pps, dat_GD2_D, by="RecipientEmail")
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete.y == 2)
dat_GD2_D<- dplyr::filter(dat_GD2_D, complete.x == 2)
dat_GD2_D<- mutate(dat_GD2_D,
av = ((GOAL1_D + GD2_D)/2))
fit<- ezANOVA(data = dat_GD2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, av)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.520934e+04 464.1351 7700.7609366 1.322001e-181 *
## 2 C 1 235 2.029407e+00 464.1351 1.0275256 3.117831e-01
## 3 Q 1 235 9.303797e-01 168.4582 1.2978840 2.557600e-01
## 4 C:Q 1 235 1.113938e-01 168.4582 0.1553948 6.937898e-01
## ges
## 1 0.9600684119
## 2 0.0031978168
## 3 0.0014685791
## 4 0.0001760596
#no sig effects
ezPlot(data = dat_GD2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_GD2_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.538462 1.185679 0.2166998 5.430112 5.646811
## 2 1 12 117 5.658120 1.138377 0.2166998 5.549770 5.766470
## 3 2 1 120 5.700000 1.213371 0.2166998 5.591650 5.808350
## 4 2 12 120 5.758333 1.100006 0.2166998 5.649983 5.866683
BD_D
#BD_D
dat_BD_D<- select(sub, BD_D, Q, C, RecipientEmail)
#ggqqplot(sub, "BD_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="BD_D", add = "point")
dat_BD_D$RecipientEmail<- as.factor(dat_BD_D$RecipientEmail)
dat_BD_D$Q<- as.factor(dat_BD_D$Q)
dat_BD_D$GOAL1_D<- as.numeric(dat_BD_D$BD_D)
dat_BD_D<- na.omit(dat_BD_D)
pps<- aggregate(dat_BD_D$'BD_D', by=list(dat_BD_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_BD_D <- merge(pps, dat_BD_D, by="RecipientEmail")
dat_BD_D<- dplyr::filter(dat_BD_D, complete == 2)
fit<- ezANOVA(data = dat_BD_D,
dv = BD_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, GOAL1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 1.360817e+04 632.0833 5.016275e+03 1.358184e-159 *
## 2 C 1 233 2.443142e-01 632.0833 9.005964e-02 7.643689e-01
## 3 Q 1 233 7.680851e-01 155.1343 1.153605e+00 2.839067e-01
## 4 C:Q 1 233 5.975698e-01 155.1343 8.975044e-01 3.444332e-01
## ges
## 1 0.9453145980
## 2 0.0003102552
## 3 0.0009747449
## 4 0.0007585151
#no sig effects
ezPlot(data = dat_BD_D,
dv = BD_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_BD_D,
dv = BD_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 5.353448 1.340047 0.2097403 5.248578 5.458318
## 2 1 12 116 5.362069 1.294783 0.2097403 5.257199 5.466939
## 3 2 1 119 5.327731 1.353647 0.2097403 5.222861 5.432601
## 4 2 12 119 5.478992 1.206260 0.2097403 5.374121 5.583862
ATT1_D
#ATT1_D
dat_ATT1_D<- select(sub, ATT1_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT1_D", add = "point")
dat_ATT1_D$RecipientEmail<- as.factor(dat_ATT1_D$RecipientEmail)
dat_ATT1_D$Q<- as.factor(dat_ATT1_D$Q)
dat_ATT1_D$GOAL1_D<- as.numeric(dat_ATT1_D$ATT1_D)
dat_ATT1_D<- na.omit(dat_ATT1_D)
pps<- aggregate(dat_ATT1_D$'ATT1_D', by=list(dat_ATT1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT1_D <- merge(pps, dat_ATT1_D, by="RecipientEmail")
dat_ATT1_D<- dplyr::filter(dat_ATT1_D, complete == 2)
fit<- ezANOVA(data = dat_ATT1_D,
dv = ATT1_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.936899e+04 306.8893 1.483177e+04 2.525986e-214 *
## 2 C 1 235 1.233420e-01 306.8893 9.444893e-02 7.588678e-01
## 3 Q 1 235 5.400844e-01 127.4295 9.960005e-01 3.193067e-01
## 4 C:Q 1 235 3.042843e-02 127.4295 5.611481e-02 8.129519e-01
## ges
## 1 9.780684e-01
## 2 2.839089e-04
## 3 1.241976e-03
## 4 7.005522e-05
#no sig effects
ezPlot(data = dat_ATT1_D,
dv = ATT1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT1_D,
dv = ATT1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.350427 0.9314083 0.1884722 6.256191 6.444663
## 2 1 12 117 6.401709 1.0090951 0.1884722 6.307473 6.495946
## 3 2 1 120 6.366667 1.0365856 0.1884722 6.272431 6.460903
## 4 2 12 120 6.450000 0.8584724 0.1884722 6.355764 6.544236
ATT2_D
#ATT2_D
dat_ATT2_D<- select(sub, ATT2_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_D", add = "point")
dat_ATT2_D$RecipientEmail<- as.factor(dat_ATT2_D$RecipientEmail)
dat_ATT2_D$Q<- as.factor(dat_ATT2_D$Q)
dat_ATT2_D$ATT2_D<- as.numeric(dat_ATT2_D$ATT2_D)
dat_ATT2_D<- na.omit(dat_ATT2_D)
pps<- aggregate(dat_ATT2_D$'ATT2_D', by=list(dat_ATT2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT2_D <- merge(pps, dat_ATT2_D, by="RecipientEmail")
dat_ATT2_D<- dplyr::filter(dat_ATT2_D, complete == 2)
fit<- ezANOVA(data = dat_ATT2_D,
dv = ATT2_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT2_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.500609e+04 616.6239 5718.9352039 6.103865e-167 *
## 2 C 1 235 7.811317e-01 616.6239 0.2976951 5.858485e-01
## 3 Q 1 235 2.027426e+00 224.8906 2.1185641 1.468575e-01
## 4 C:Q 1 235 5.819755e-01 224.8906 0.6081368 4.362749e-01
## ges
## 1 0.9468995919
## 2 0.0009273842
## 3 0.0024034681
## 4 0.0006911032
#no sig effects
ezPlot(data = dat_ATT2_D,
dv = ATT2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT2_D,
dv = ATT2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.615385 1.325129 0.2503791 5.490195 5.740574
## 2 1 12 117 5.555556 1.348335 0.2503791 5.430366 5.680745
## 3 2 1 120 5.766667 1.345602 0.2503791 5.641477 5.891856
## 4 2 12 120 5.566667 1.333053 0.2503791 5.441477 5.691856
ATT3_D
#ATT3_D
dat_ATT3_D<- select(sub, ATT3_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT3_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT3_D", add = "point")
dat_ATT3_D$RecipientEmail<- as.factor(dat_ATT3_D$RecipientEmail)
dat_ATT3_D$Q<- as.factor(dat_ATT3_D$Q)
dat_ATT3_D$ATT3_D<- as.numeric(dat_ATT3_D$ATT3_D)
dat_ATT3_D<- na.omit(dat_ATT3_D)
pps<- aggregate(dat_ATT3_D$'ATT3_D', by=list(dat_ATT3_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT3_D <- merge(pps, dat_ATT3_D, by="RecipientEmail")
dat_ATT3_D<- dplyr::filter(dat_ATT3_D, complete == 2)
fit<- ezANOVA(data = dat_ATT3_D,
dv = ATT3_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT3_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.368609e+04 779.7779 4.124549e+03 4.942643e-151 *
## 2 C 1 235 2.162718e+01 779.7779 6.517737e+00 1.131376e-02 *
## 3 Q 1 235 5.274262e-02 300.3249 4.127035e-02 8.391928e-01
## 4 C:Q 1 235 1.122364e+00 300.3249 8.782342e-01 3.496479e-01
## ges
## 1 9.268530e-01
## 2 1.963020e-02
## 3 4.882872e-05
## 4 1.038049e-03
#sig effect of condition
ezPlot(data = dat_ATT3_D,
dv = ATT3_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT3_D,
dv = ATT3_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.529915 1.528875 0.2893397 5.385245 5.674584
## 2 1 12 117 5.649573 1.434286 0.2893397 5.504903 5.794243
## 3 2 1 120 5.200000 1.504056 0.2893397 5.055330 5.344670
## 4 2 12 120 5.125000 1.590743 0.2893397 4.980330 5.269670
ATT4
#ATT4_D
dat_ATT4_D<- select(sub, ATT4_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT4_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT4_D", add = "point")
dat_ATT4_D$RecipientEmail<- as.factor(dat_ATT4_D$RecipientEmail)
dat_ATT4_D$Q<- as.factor(dat_ATT4_D$Q)
dat_ATT4_D$ATT4_D<- as.numeric(dat_ATT4_D$ATT4_D)
dat_ATT4_D<- na.omit(dat_ATT4_D)
pps<- aggregate(dat_ATT4_D$'ATT4_D', by=list(dat_ATT4_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT4_D <- merge(pps, dat_ATT4_D, by="RecipientEmail")
dat_ATT4_D<- dplyr::filter(dat_ATT4_D, complete == 2)
fit<- ezANOVA(data = dat_ATT4_D,
dv = ATT4_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT4_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.344003e+04 847.0432 3728.7449716 3.565774e-146 *
## 2 C 1 235 1.092308e+01 847.0432 3.0304528 8.302403e-02
## 3 Q 1 235 5.400844e-01 351.2718 0.3613152 5.483561e-01
## 4 C:Q 1 235 2.188121e+00 351.2718 1.4638476 2.275346e-01
## ges
## 1 0.9181386521
## 2 0.0090330290
## 3 0.0004505002
## 4 0.0018226698
#no sig main effects
ezPlot(data = dat_ATT4_D,
dv = ATT4_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT4_D,
dv = ATT4_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.376068 1.685263 0.3129205 5.219608 5.532529
## 2 1 12 117 5.581197 1.515661 0.3129205 5.424736 5.737657
## 3 2 1 120 5.208333 1.466121 0.3129205 5.051873 5.364794
## 4 2 12 120 5.141667 1.706615 0.3129205 4.985206 5.298127
Att5
#ATT5_D
dat_ATT5_D<- select(sub, ATT5_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT5_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT5_D", add = "point")
dat_ATT5_D$RecipientEmail<- as.factor(dat_ATT5_D$RecipientEmail)
dat_ATT5_D$Q<- as.factor(dat_ATT5_D$Q)
dat_ATT5_D$ATT5_D<- as.numeric(dat_ATT5_D$ATT5_D)
dat_ATT5_D<- na.omit(dat_ATT5_D)
pps<- aggregate(dat_ATT5_D$'ATT5_D', by=list(dat_ATT5_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT5_D <- merge(pps, dat_ATT5_D, by="RecipientEmail")
dat_ATT5_D<- dplyr::filter(dat_ATT5_D, complete == 2)
fit<- ezANOVA(data = dat_ATT5_D,
dv = ATT5_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT5_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 17571.721519 762.8329 5413.1835748 2.994208e-164 *
## 2 C 1 235 0.445575 762.8329 0.1372648 7.113491e-01
## 3 Q 1 235 4.084388 563.5987 1.7030401 1.931673e-01
## 4 C:Q 1 235 13.316894 563.5987 5.5526565 1.927458e-02 *
## ges
## 1 0.9298115740
## 2 0.0003358073
## 3 0.0030697776
## 4 0.0099398459
#sig interaction effect
#day one no diff
#day 12, cond1 higher than cond 2
#con 2 decreased
#con 1 inc
ezPlot(data = dat_ATT5_D,
dv = ATT5_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT5_D,
dv = ATT5_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.042735 1.807042 0.3963669 5.844552 6.240918
## 2 1 12 117 6.196581 1.532630 0.3963669 5.998398 6.394765
## 3 2 1 120 6.316667 1.384083 0.3963669 6.118483 6.514850
## 4 2 12 120 5.800000 1.938552 0.3963669 5.601817 5.998183
Att6
#ATT6_D
dat_ATT6_D<- select(sub, ATT6_D, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT6_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT6_D", add = "point")
dat_ATT6_D$RecipientEmail<- as.factor(dat_ATT6_D$RecipientEmail)
dat_ATT6_D$Q<- as.factor(dat_ATT6_D$Q)
dat_ATT6_D$ATT6_D<- as.numeric(dat_ATT6_D$ATT6_D)
dat_ATT6_D<- na.omit(dat_ATT6_D)
pps<- aggregate(dat_ATT6_D$'ATT6_D', by=list(dat_ATT6_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT6_D <- merge(pps, dat_ATT6_D, by="RecipientEmail")
dat_ATT6_D<- dplyr::filter(dat_ATT6_D, complete == 2)
fit<- ezANOVA(data = dat_ATT6_D,
dv = ATT6_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT6_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.741377e+04 645.6329 6.338334e+03 5.425455e-172 *
## 2 C 1 235 9.283241e-02 645.6329 3.378951e-02 8.543138e-01
## 3 Q 1 235 4.272152e+00 315.4291 3.182826e+00 7.570617e-02
## 4 C:Q 1 235 3.798788e+00 315.4291 2.830162e+00 9.383725e-02
## ges
## 1 9.476968e-01
## 2 9.658425e-05
## 3 4.425568e-03
## 4 3.937136e-03
#no sig effects
ezPlot(data = dat_ATT6_D,
dv = ATT6_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT6_D,
dv = ATT6_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.051282 1.473011 0.2965263 5.903019 6.199545
## 2 1 12 117 6.042735 1.348007 0.2965263 5.894472 6.190998
## 3 2 1 120 6.258333 1.293135 0.2965263 6.110070 6.406596
## 4 2 12 120 5.891667 1.586687 0.2965263 5.743404 6.039930
Att total
dat_ATT_D<- select(sub,ATT1_D, ATT2_D, ATT3_D, ATT4_D, ATT5_D, ATT6_D, Q, C, RecipientEmail)
dat_ATT_D<- na.omit(dat_ATT_D)
pps<- aggregate(dat_ATT_D$'ATT1_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
pps<- aggregate(dat_ATT_D$'ATT2_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp2'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
pps<- aggregate(dat_ATT_D$'ATT3_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp3'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
pps<- aggregate(dat_ATT_D$'ATT4_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp4'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
pps<- aggregate(dat_ATT_D$'ATT5_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp5'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
pps<- aggregate(dat_ATT_D$'ATT6_D', by=list(dat_ATT_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp6'
dat_ATT_D <- merge(pps, dat_ATT_D, by="RecipientEmail")
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp2 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp3 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp4 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp5 == 2)
dat_ATT_D<- dplyr::filter(dat_ATT_D, comp6 == 2)
dat_ATT_D<- mutate(dat_ATT_D,
av = ((ATT1_D + ATT2_D + ATT3_D + ATT4_D + ATT5_D + ATT6_D)/6))
dat_ATT_D$RecipientEmail<- as.factor(dat_ATT_D$RecipientEmail)
dat_ATT_D$Q<- as.factor(dat_ATT_D$Q)
dat_ATT_D$av<- as.numeric(dat_ATT_D$av)
fit<- ezANOVA(data = dat_ATT_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(ATT1_D, ATT2_D, ATT3_D, ATT4_D, ATT5_D, ATT6_D, Q, av)
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.600690e+04 362.1654 1.038647e+04 1.755979e-196 *
## 2 C 1 235 1.393708e+00 362.1654 9.043420e-01 3.425971e-01
## 3 Q 1 235 4.037154e-01 135.6621 6.993342e-01 4.038570e-01
## 4 C:Q 1 235 2.114776e+00 135.6621 3.663312e+00 5.683771e-02
## ges
## 1 0.9698372813
## 2 0.0027917646
## 3 0.0008102974
## 4 0.0042300417
#no sig effects
ezPlot(data = dat_ATT_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT_D,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.827635 1.0499798 0.1944651 5.730403 5.924868
## 2 1 12 117 5.904558 1.0376800 0.1944651 5.807326 6.001791
## 3 2 1 120 5.852778 0.9291381 0.1944651 5.755545 5.950010
## 4 2 12 120 5.662500 1.0935390 0.1944651 5.565267 5.759733
EM1_D
#EM1_D
dat_EM1_D<- select(sub, EM1_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM1_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM1_D", add = "point")
dat_EM1_D$RecipientEmail<- as.factor(dat_EM1_D$RecipientEmail)
dat_EM1_D$Q<- as.factor(dat_EM1_D$Q)
dat_EM1_D$EM1_D<- as.numeric(dat_EM1_D$EM1_D)
dat_EM1_D<- na.omit(dat_EM1_D)
pps<- aggregate(dat_EM1_D$'EM1_D', by=list(dat_EM1_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM1_D <- merge(pps, dat_EM1_D, by="RecipientEmail")
dat_EM1_D<- dplyr::filter(dat_EM1_D, complete == 2)
fit<- ezANOVA(data = dat_EM1_D,
dv = EM1_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM1_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 1.617409e+04 454.7024 8.323547e+03 6.858466e-185 *
## 2 C 1 234 1.710773e+00 454.7024 8.804018e-01 3.490591e-01
## 3 Q 1 234 2.118644e-03 183.7323 2.698288e-03 9.586168e-01
## 4 C:Q 1 234 7.655679e-01 183.7323 9.750212e-01 3.244510e-01
## ges
## 1 9.620262e-01
## 2 2.672475e-03
## 3 3.318487e-06
## 4 1.197697e-03
#no sig effects
ezPlot(data = dat_EM1_D,
dv = EM1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM1_D,
dv = EM1_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.957265 1.184622 0.2272788 5.843626 6.070904
## 2 1 12 117 5.871795 1.192928 0.2272788 5.758155 5.985434
## 3 2 1 119 5.756303 1.207086 0.2272788 5.642663 5.869942
## 4 2 12 119 5.831933 1.083930 0.2272788 5.718293 5.945572
EM2_D
#EM2_D
dat_EM2_D<- select(sub, EM2_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM2_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM2_D", add = "point")
dat_EM2_D$RecipientEmail<- as.factor(dat_EM2_D$RecipientEmail)
dat_EM2_D$Q<- as.factor(dat_EM2_D$Q)
dat_EM2_D$EM2_D<- as.numeric(dat_EM2_D$EM2_D)
dat_EM2_D<- na.omit(dat_EM2_D)
pps<- aggregate(dat_EM2_D$'EM2_D', by=list(dat_EM2_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM2_D <- merge(pps, dat_EM2_D, by="RecipientEmail")
dat_EM2_D<- dplyr::filter(dat_EM2_D, complete == 2)
fit<- ezANOVA(data = dat_EM2_D,
dv = EM2_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM2_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 1.647992e+04 473.4893 8.144430e+03 8.150664e-184 *
## 2 C 1 234 9.329292e-02 473.4893 4.610567e-02 8.301708e-01
## 3 Q 1 234 1.544492e+00 167.9523 2.151867e+00 1.437393e-01
## 4 C:Q 1 234 3.199346e-03 167.9523 4.457497e-03 9.468262e-01
## ges
## 1 9.625356e-01
## 2 1.454214e-04
## 3 2.402060e-03
## 4 4.987718e-06
#no sig effects
ezPlot(data = dat_EM2_D,
dv = EM2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM2_D,
dv = EM2_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.982906 1.196135 0.2172997 5.874256 6.091556
## 2 1 12 117 5.863248 1.245031 0.2172997 5.754598 5.971898
## 3 2 1 119 5.949580 1.088061 0.2172997 5.840930 6.058230
## 4 2 12 119 5.840336 1.149673 0.2172997 5.731686 5.948986
EM3_D
#EM3_D
dat_EM3_D<- select(sub, EM3_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM3_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM3_D", add = "point")
dat_EM3_D$RecipientEmail<- as.factor(dat_EM3_D$RecipientEmail)
dat_EM3_D$Q<- as.factor(dat_EM3_D$Q)
dat_EM3_D$EM3_D<- as.numeric(dat_EM3_D$EM3_D)
dat_EM3_D<- na.omit(dat_EM3_D)
pps<- aggregate(dat_EM3_D$'EM3_D', by=list(dat_EM3_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM3_D <- merge(pps, dat_EM3_D, by="RecipientEmail")
dat_EM3_D<- dplyr::filter(dat_EM3_D, complete == 2)
fit<- ezANOVA(data = dat_EM3_D,
dv = EM3_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM3_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 1.725703e+04 402.9438 1.002161e+04 4.341234e-194 *
## 2 C 1 234 3.081415e-02 402.9438 1.789458e-02 8.936989e-01
## 3 Q 1 234 2.449153e+00 145.5217 3.938257e+00 4.836783e-02 *
## 4 C:Q 1 234 2.919264e-02 145.5217 4.694200e-02 8.286613e-01
## ges
## 1 9.691968e-01
## 2 5.617933e-05
## 3 4.445612e-03
## 4 5.322321e-05
#marginally sig effect of time
#decreased for both for second measurement
ezPlot(data = dat_EM3_D,
dv = EM3_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM3_D,
dv = EM3_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.102564 1.093749 0.2022693 6.001429 6.203699
## 2 1 12 117 5.974359 1.155657 0.2022693 5.873224 6.075494
## 3 2 1 119 6.134454 1.040896 0.2022693 6.033319 6.235588
## 4 2 12 119 5.974790 1.037126 0.2022693 5.873655 6.075925
PAE
dat_PAE<- select(sub, EM1_D, EM2_D, EM3_D, Q, C, RecipientEmail)
dat_PAE<- na.omit(dat_PAE)
pps<- aggregate(dat_PAE$'EM1_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")
pps<- aggregate(dat_PAE$'EM2_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp2'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")
pps<- aggregate(dat_PAE$'EM3_D', by=list(dat_PAE$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'comp3'
dat_PAE <- merge(pps, dat_PAE, by="RecipientEmail")
dat_PAE<- dplyr::filter(dat_PAE, comp == 2)
dat_PAE<- dplyr::filter(dat_PAE, comp2 == 2)
dat_PAE<- dplyr::filter(dat_PAE, comp3 == 2)
dat_PAE<- mutate(dat_PAE,
av = ((EM1_D + EM2_D + EM3_D)/3))
dat_PAE$RecipientEmail<- as.factor(dat_PAE$RecipientEmail)
dat_PAE$Q<- as.factor(dat_PAE$Q)
dat_PAE$av<- as.numeric(dat_PAE$av)
fit<- ezANOVA(data = dat_PAE,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c( EM1_D, EM2_D, EM3_D, Q, av)
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 1.663391e+04 395.3079 9846.3342548 3.262967e-193 *
## 2 C 1 234 2.297171e-01 395.3079 0.1359796 7.126445e-01
## 3 Q 1 234 9.048964e-01 123.8086 1.7102671 1.922341e-01
## 4 C:Q 1 234 6.429125e-02 123.8086 0.1215114 7.277144e-01
## ges
## 1 0.9697361492
## 2 0.0004423197
## 3 0.0017401137
## 4 0.0001238321
#no sig effects
ezPlot(data = dat_PAE,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PAE,
dv = av,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.014245 1.0875410 0.1865699 5.920960 6.107530
## 2 1 12 117 5.903134 1.1193695 0.1865699 5.809849 5.996419
## 3 2 1 119 5.946779 0.9990421 0.1865699 5.853494 6.040064
## 4 2 12 119 5.882353 1.0033731 0.1865699 5.789068 5.975638
EM4
#EM4_D
dat_EM4_D<- select(sub, EM4_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM4_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM4_D", add = "point")
dat_EM4_D$RecipientEmail<- as.factor(dat_EM4_D$RecipientEmail)
dat_EM4_D$Q<- as.factor(dat_EM4_D$Q)
dat_EM4_D$EM4_D<- as.numeric(dat_EM4_D$EM4_D)
dat_EM4_D<- na.omit(dat_EM4_D)
pps<- aggregate(dat_EM4_D$'EM4_D', by=list(dat_EM4_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM4_D <- merge(pps, dat_EM4_D, by="RecipientEmail")
dat_EM4_D<- dplyr::filter(dat_EM4_D, complete == 2)
fit<- ezANOVA(data = dat_EM4_D,
dv = EM4_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM4_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 6711.012766 836.8093 1868.604851 2.903012e-113 *
## 2 C 1 233 5.177903 836.8093 1.441728 2.310792e-01
## 3 Q 1 233 0.000000 337.3316 0.000000 1.000000e+00
## 4 C:Q 1 233 1.668357 337.3316 1.152359 2.841663e-01
## ges
## 1 0.851094727
## 2 0.004390588
## 3 0.000000000
## 4 0.001418901
#no sig effects
ezPlot(data = dat_EM4_D,
dv = EM4_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM4_D,
dv = EM4_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 3.612069 1.656458 0.3092833 3.457427 3.766711
## 2 1 12 116 3.732759 1.488260 0.3092833 3.578117 3.887400
## 3 2 1 119 3.941176 1.693928 0.3092833 3.786535 4.095818
## 4 2 12 119 3.823529 1.499418 0.3092833 3.668888 3.978171
EM5
#EM5_D
dat_EM5_D<- select(sub, EM5_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM5_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM5_D", add = "point")
dat_EM5_D$RecipientEmail<- as.factor(dat_EM5_D$RecipientEmail)
dat_EM5_D$Q<- as.factor(dat_EM5_D$Q)
dat_EM5_D$EM5_D<- as.numeric(dat_EM5_D$EM5_D)
dat_EM5_D<- na.omit(dat_EM5_D)
pps<- aggregate(dat_EM5_D$'EM5_D', by=list(dat_EM5_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM5_D <- merge(pps, dat_EM5_D, by="RecipientEmail")
dat_EM5_D<- dplyr::filter(dat_EM5_D, complete == 2)
fit<- ezANOVA(data = dat_EM5_D,
dv = EM5_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM5_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 6.863013e+03 844.0393 1.894559e+03 6.942576e-114 *
## 2 C 1 233 3.947934e+00 844.0393 1.089841e+00 2.975883e-01
## 3 Q 1 233 4.170213e-01 322.5829 3.012124e-01 5.836489e-01
## 4 C:Q 1 233 6.797290e-05 322.5829 4.909648e-05 9.944154e-01
## ges
## 1 8.547104e-01
## 2 3.372659e-03
## 3 3.573327e-04
## 4 5.826470e-08
#no sig effects
ezPlot(data = dat_EM5_D,
dv = EM5_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM5_D,
dv = EM5_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 3.758621 1.650405 0.3024465 3.607397 3.909844
## 2 1 12 116 3.698276 1.539169 0.3024465 3.547053 3.849499
## 3 2 1 119 3.941176 1.563862 0.3024465 3.789953 4.092400
## 4 2 12 119 3.882353 1.574029 0.3024465 3.731130 4.033576
EM6
#EM5_D
dat_EM6_D<- select(sub, EM6_D, Q, C, RecipientEmail)
#ggqqplot(sub, "EM6_D", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="EM6_D", add = "point")
dat_EM6_D$RecipientEmail<- as.factor(dat_EM6_D$RecipientEmail)
dat_EM6_D$Q<- as.factor(dat_EM6_D$Q)
dat_EM6_D$EM6_D<- as.numeric(dat_EM6_D$EM6_D)
dat_EM6_D<- na.omit(dat_EM6_D)
pps<- aggregate(dat_EM6_D$'EM6_D', by=list(dat_EM6_D$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_EM6_D <- merge(pps, dat_EM6_D, by="RecipientEmail")
dat_EM6_D<- dplyr::filter(dat_EM6_D, complete == 2)
fit<- ezANOVA(data = dat_EM6_D,
dv = EM6_D,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, EM6_D)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 3524.189362 785.1449 1045.8402473 4.110808e-88 *
## 2 C 1 233 3.165753 785.1449 0.9394704 3.334191e-01
## 3 Q 1 233 1.329787 315.8803 0.9808792 3.230092e-01
## 4 C:Q 1 233 3.289888 315.8803 2.4266910 1.206417e-01
## ges
## 1 0.761951539
## 2 0.002867034
## 3 0.001206315
## 4 0.002979121
#no sig effects
ezPlot(data = dat_EM6_D,
dv = EM6_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_EM6_D,
dv = EM6_D,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.517241 1.534999 0.2992879 2.367597 2.666885
## 2 1 12 116 2.793103 1.512368 0.2992879 2.643459 2.942747
## 3 2 1 119 2.848739 1.624175 0.2992879 2.699096 2.998383
## 4 2 12 119 2.789916 1.472194 0.2992879 2.640272 2.939560
NORMS_D_In
#NORMS_D_In
dat_NORMS_D_In<- select(sub, NORMS_D_In, Q, C, RecipientEmail)
#ggqqplot(sub, "NORMS_D_In", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="NORMS_D_In", add = "point")
dat_NORMS_D_In$RecipientEmail<- as.factor(dat_NORMS_D_In$RecipientEmail)
dat_NORMS_D_In$Q<- as.factor(dat_NORMS_D_In$Q)
dat_NORMS_D_In$NORMS_D_In<- as.numeric(dat_NORMS_D_In$NORMS_D_In)
dat_NORMS_D_In<- na.omit(dat_NORMS_D_In)
pps<- aggregate(dat_NORMS_D_In$'NORMS_D_In', by=list(dat_NORMS_D_In$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_NORMS_D_In <- merge(pps, dat_NORMS_D_In, by="RecipientEmail")
dat_NORMS_D_In<- dplyr::filter(dat_NORMS_D_In, complete == 2)
fit<- ezANOVA(data = dat_NORMS_D_In,
dv = NORMS_D_In,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, NORMS_D_In)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.788976e+04 474.4531 8.860923e+03 1.437328e-188 *
## 2 C 1 235 1.791627e+00 474.4531 8.874058e-01 3.471487e-01
## 3 Q 1 235 0.000000e+00 111.9916 0.000000e+00 1.000000e+00
## 4 C:Q 1 235 8.440171e-03 111.9916 1.771062e-02 8.942430e-01
## ges
## 1 9.682595e-01
## 2 3.045762e-03
## 3 0.000000e+00
## 4 1.439189e-05
#no sig effects
ezPlot(data = dat_NORMS_D_In,
dv = NORMS_D_In,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_NORMS_D_In,
dv = NORMS_D_In,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 6.076923 1.197367 0.1766872 5.988579 6.165267
## 2 1 12 117 6.085470 1.110861 0.1766872 5.997126 6.173814
## 3 2 1 120 6.208333 1.129407 0.1766872 6.119990 6.296677
## 4 2 12 120 6.200000 1.025720 0.1766872 6.111656 6.288344
NORM_D_Des
#NORM_D_Des
dat_NORM_D_Des<- select(sub, NORM_D_Des, Q, C, RecipientEmail)
#ggqqplot(sub, "NORM_D_Des", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="NORM_D_Des", add = "point")
dat_NORM_D_Des$RecipientEmail<- as.factor(dat_NORM_D_Des$RecipientEmail)
dat_NORM_D_Des$Q<- as.factor(dat_NORM_D_Des$Q)
dat_NORM_D_Des$NORM_D_Des<- as.numeric(dat_NORM_D_Des$NORM_D_Des)
dat_NORM_D_Des<- na.omit(dat_NORM_D_Des)
pps<- aggregate(dat_NORM_D_Des$'NORM_D_Des', by=list(dat_NORM_D_Des$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_NORM_D_Des <- merge(pps, dat_NORM_D_Des, by="RecipientEmail")
dat_NORM_D_Des<- dplyr::filter(dat_NORM_D_Des, complete == 2)
fit<- ezANOVA(data = dat_NORM_D_Des,
dv = NORM_D_Des,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, NORM_D_Des)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 235 1.209122e+04 647.9240 4385.4455167 5.337060e-154 *
## 2 C 1 235 1.860772e+00 647.9240 0.6748960 4.121825e-01
## 3 Q 1 235 6.835443e-01 219.6163 0.7314251 3.932927e-01
## 4 C:Q 1 235 2.700110e+00 219.6163 2.8892464 9.049576e-02
## ges
## 1 0.9330537273
## 2 0.0021402912
## 3 0.0007872903
## 4 0.0031027165
#no sig effects
ezPlot(data = dat_NORM_D_Des,
dv = NORM_D_Des,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_NORM_D_Des,
dv = NORM_D_Des,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.025641 1.476608 0.2474256 4.901928 5.149354
## 2 1 12 117 4.948718 1.244617 0.2474256 4.825005 5.072431
## 3 2 1 120 5.000000 1.365850 0.2474256 4.876287 5.123713
## 4 2 12 120 5.225000 1.337642 0.2474256 5.101287 5.348713
PB_Doing_1
#PB_Doing_1
dat_PB_Doing_1<- select(sub, PB_Doing_1, Q, C, RecipientEmail)
#ggqqplot(sub, "PB_Doing_1", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PB_Doing_1", add = "point")
dat_PB_Doing_1$RecipientEmail<- as.factor(dat_PB_Doing_1$RecipientEmail)
dat_PB_Doing_1$Q<- as.factor(dat_PB_Doing_1$Q)
dat_PB_Doing_1$C<- as.factor(dat_PB_Doing_1$C)
dat_PB_Doing_1$PB_Doing_1<- as.numeric(dat_PB_Doing_1$PB_Doing_1)
dat_PB_Doing_1<- na.omit(dat_PB_Doing_1)
fit<- ezANOVA(data = dat_PB_Doing_1,
dv = PB_Doing_1,
wid = RecipientEmail,
between = C,
detailed = TRUE)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05 ges
## 1 C 1 229 6.036498 581.2968 2.378059 0.1244311 0.01027781
##
## $`Levene's Test for Homogeneity of Variance`
## DFn DFd SSn SSd F p p<.05
## 1 1 229 0.09050976 231.0523 0.0897058 0.7648232
#no sig effects
ezPlot(data = dat_PB_Doing_1,
dv = PB_Doing_1,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PB_Doing_1,
dv = PB_Doing_1,
wid = RecipientEmail,
between = C,
x = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Coefficient covariances computed by hccm()
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C N Mean SD FLSD lo hi
## 1 1 113 4.831858 1.580589 0.4130995 4.625309 5.038408
## 2 2 118 4.508475 1.605257 0.4130995 4.301925 4.715024
PBC_D_Cap
#PBC_D_Cap
dat_PBC_D_Cap<- select(sub, PBC_D_Cap, Q, C, RecipientEmail)
#ggqqplot(sub, "PBC_D_Cap", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_D_Cap", add = "point")
dat_PBC_D_Cap$RecipientEmail<- as.factor(dat_PBC_D_Cap$RecipientEmail)
dat_PBC_D_Cap$Q<- as.factor(dat_PBC_D_Cap$Q)
dat_PBC_D_Cap$PBC_D_Cap<- as.numeric(dat_PBC_D_Cap$PBC_D_Cap)
dat_PBC_D_Cap<- na.omit(dat_PBC_D_Cap)
pps<- aggregate(dat_PBC_D_Cap$'PBC_D_Cap', by=list(dat_PBC_D_Cap$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_PBC_D_Cap <- merge(pps, dat_PBC_D_Cap, by="RecipientEmail")
dat_PBC_D_Cap<- dplyr::filter(dat_PBC_D_Cap, complete == 2)
fit<- ezANOVA(data = dat_PBC_D_Cap,
dv = PBC_D_Cap,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, PBC_D_Cap)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 11275.951271 828.5920 3184.4049471 2.971909e-138 *
## 2 C 1 234 9.956687 828.5920 2.8118358 9.490658e-02
## 3 Q 1 234 6.883475 293.0385 5.4966602 1.989002e-02 *
## 4 C:Q 1 234 0.578028 293.0385 0.4615726 4.975614e-01
## ges
## 1 0.9095282809
## 2 0.0087988682
## 3 0.0060995916
## 4 0.0005150807
#sig effect of time
#for both cond, second measurement is less than the first
ezPlot(data = dat_PBC_D_Cap,
dv = PBC_D_Cap,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PBC_D_Cap,
dv = PBC_D_Cap,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 5.119658 1.509524 0.2870308 4.976143 5.263174
## 2 1 12 117 4.948718 1.547223 0.2870308 4.805203 5.092233
## 3 2 1 119 4.899160 1.520454 0.2870308 4.755644 5.042675
## 4 2 12 119 4.588235 1.612513 0.2870308 4.444720 4.731751
PBS_D_Aut
#PBS_D_Aut
dat_PBS_D_Aut<- select(sub, PBS_D_Aut, Q, C, RecipientEmail)
#ggqqplot(sub, "PBS_D_Aut", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBS_D_Aut", add = "point")
dat_PBS_D_Aut$RecipientEmail<- as.factor(dat_PBS_D_Aut$RecipientEmail)
dat_PBS_D_Aut$Q<- as.factor(dat_PBS_D_Aut$Q)
dat_PBS_D_Aut$PBS_D_Aut<- as.numeric(dat_PBS_D_Aut$PBS_D_Aut)
dat_PBS_D_Aut<- na.omit(dat_PBS_D_Aut)
pps<- aggregate(dat_PBS_D_Aut$'PBS_D_Aut', by=list(dat_PBS_D_Aut$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_PBS_D_Aut <- merge(pps, dat_PBS_D_Aut, by="RecipientEmail")
dat_PBS_D_Aut<- dplyr::filter(dat_PBS_D_Aut, complete == 2)
fit<- ezANOVA(data = dat_PBS_D_Aut,
dv = PBS_D_Aut,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, PBS_D_Aut)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 234 10096.375000 713.8597 3309.546197 4.421511e-140 *
## 2 C 1 234 28.265271 713.8597 9.265229 2.602394e-03 *
## 3 Q 1 234 2.036017 253.3686 1.880375 1.716051e-01
## 4 C:Q 1 234 1.095384 253.3686 1.011648 3.155472e-01
## ges
## 1 0.912575650
## 2 0.028393223
## 3 0.002100580
## 4 0.001131217
#sig effect of condition
#condition 1, overall higher
ezPlot(data = dat_PBS_D_Aut,
dv = PBS_D_Aut,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PBS_D_Aut,
dv = PBS_D_Aut,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 117 4.888889 1.375762 0.2668963 4.755441 5.022337
## 2 1 12 117 4.854701 1.409726 0.2668963 4.721253 4.988149
## 3 2 1 119 4.495798 1.437240 0.2668963 4.362350 4.629246
## 4 2 12 119 4.268908 1.522139 0.2668963 4.135459 4.402356
Goal Not Doing
#GD1_ND
dat_GD1_ND<- select(sub, GD1_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "GD1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD1_ND", add = "point")
dat_GD1_ND$RecipientEmail<- as.factor(dat_GD1_ND$RecipientEmail)
dat_GD1_ND$Q<- as.factor(dat_GD1_ND$Q)
dat_GD1_ND$GD1_ND<- as.numeric(dat_GD1_ND$GD1_ND)
dat_GD1_ND<- na.omit(dat_GD1_ND)
pps<- aggregate(dat_GD1_ND$'GD1_ND', by=list(dat_GD1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GD1_ND <- merge(pps, dat_GD1_ND, by="RecipientEmail")
dat_GD1_ND<- dplyr::filter(dat_GD1_ND, complete == 2)
fit<- ezANOVA(data = dat_GD1_ND,
dv = GD1_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, GD1_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 7608.2574468 1137.7724 1558.0655255 3.607955e-105 *
## 2 C 1 233 6.4701322 1137.7724 1.3249933 2.508777e-01
## 3 Q 1 233 0.6148936 621.4201 0.2305529 6.315646e-01
## 4 C:Q 1 233 0.4650470 621.4201 0.1743683 6.766429e-01
## ges
## 1 0.8122015603
## 2 0.0036644216
## 3 0.0003494096
## 4 0.0002642827
#no sig effects
ezPlot(data = dat_GD1_ND,
dv = GD1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_GD1_ND,
dv = GD1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 4.137931 1.986461 0.4197788 3.928042 4.347820
## 2 1 12 116 4.146552 1.884741 0.4197788 3.936662 4.356441
## 3 2 1 119 3.840336 1.886541 0.4197788 3.630447 4.050226
## 4 2 12 119 3.974790 2.010406 0.4197788 3.764901 4.184679
Goal 2 Not Doing
#GD2_ND
dat_GD2_ND<- select(sub, GD2_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "GD2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="GD2_ND", add = "point")
dat_GD2_ND$RecipientEmail<- as.factor(dat_GD2_ND$RecipientEmail)
dat_GD2_ND$Q<- as.factor(dat_GD2_ND$Q)
dat_GD2_ND$GD2_ND<- as.numeric(dat_GD2_ND$GD2_ND)
dat_GD2_ND<- na.omit(dat_GD2_ND)
pps<- aggregate(dat_GD2_ND$'GD2_ND', by=list(dat_GD2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_GD2_ND <- merge(pps, dat_GD2_ND, by="RecipientEmail")
dat_GD2_ND<- dplyr::filter(dat_GD2_ND, complete == 2)
fit<- ezANOVA(data = dat_GD2_ND,
dv = GD2_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, GD2_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 6.855372e+03 1178.7258 1.355109e+03 4.429399e-99 *
## 2 C 1 233 2.040189e+01 1178.7258 4.032864e+00 4.577645e-02 *
## 3 Q 1 233 3.595745e-01 598.1233 1.400729e-01 7.085490e-01
## 4 C:Q 1 233 1.709172e-02 598.1233 6.658108e-03 9.350371e-01
## ges
## 1 7.941609e-01
## 2 1.135172e-02
## 3 2.023254e-04
## 4 9.619022e-06
#main effect of condition
#overall condition 1 higher
ezPlot(data = dat_GD2_ND,
dv = GD2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_GD2_ND,
dv = GD2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 4.008621 2.002154 0.411835 3.802703 4.214538
## 2 1 12 116 4.051724 1.932985 0.411835 3.845807 4.257642
## 3 2 1 119 3.579832 1.893324 0.411835 3.373914 3.785749
## 4 2 12 119 3.647059 1.981218 0.411835 3.441141 3.852976
Atttitude Not Doing
#ATT1_ND
dat_ATT1_ND<- select(sub, ATT1_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT1_ND", add = "point")
dat_ATT1_ND$RecipientEmail<- as.factor(dat_ATT1_ND$RecipientEmail)
dat_ATT1_ND$Q<- as.factor(dat_ATT1_ND$Q)
dat_ATT1_ND$ATT1_ND<- as.numeric(dat_ATT1_ND$ATT1_ND)
dat_ATT1_ND<- na.omit(dat_ATT1_ND)
pps<- aggregate(dat_ATT1_ND$'ATT1_ND', by=list(dat_ATT1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT1_ND <- merge(pps, dat_ATT1_ND, by="RecipientEmail")
dat_ATT1_ND<- dplyr::filter(dat_ATT1_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT1_ND,
dv = ATT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT1_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 2.731253e+03 463.2030 1.373873e+03 1.126220e-99 *
## 2 C 1 233 4.378765e-02 463.2030 2.202603e-02 8.821462e-01
## 3 Q 1 233 6.148936e-01 243.6377 5.880462e-01 4.439519e-01
## 4 C:Q 1 233 2.474289e-01 243.6377 2.366257e-01 6.271111e-01
## ges
## 1 7.944091e-01
## 2 6.194456e-05
## 3 8.691621e-04
## 4 3.499265e-04
#no sig effects
ezPlot(data = dat_ATT1_ND,
dv = ATT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT1_ND,
dv = ATT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.413793 1.127282 0.2628452 2.282370 2.545216
## 2 1 12 116 2.387931 1.192524 0.2628452 2.256508 2.519354
## 3 2 1 119 2.478992 1.227156 0.2628452 2.347569 2.610414
## 4 2 12 119 2.361345 1.363763 0.2628452 2.229922 2.492767
#ATT2_ND
dat_ATT2_ND<- select(sub, ATT2_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_ND", add = "point")
dat_ATT2_ND$RecipientEmail<- as.factor(dat_ATT2_ND$RecipientEmail)
dat_ATT2_ND$Q<- as.factor(dat_ATT2_ND$Q)
dat_ATT2_ND$ATT1_ND<- as.numeric(dat_ATT2_ND$ATT2_ND)
dat_ATT2_ND<- na.omit(dat_ATT2_ND)
pps<- aggregate(dat_ATT2_ND$'ATT2_ND', by=list(dat_ATT2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT2_ND <- merge(pps, dat_ATT2_ND, by="RecipientEmail")
dat_ATT2_ND<- dplyr::filter(dat_ATT2_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT2_ND,
dv = ATT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT2_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 5052.512766 644.3980 1826.8762585 3.006766e-112 *
## 2 C 1 233 1.589197 644.3980 0.5746184 4.491955e-01
## 3 Q 1 233 2.606383 433.0877 1.4022270 2.375576e-01
## 4 C:Q 1 233 6.805925 433.0877 3.6615692 5.690667e-02
## ges
## 1 0.824227407
## 2 0.001472740
## 3 0.002413112
## 4 0.006276840
#no sig effects
#interaction effect nearly sig, condition 2 showed inc for T1, whereas cond 1 no diff
ezPlot(data = dat_ATT2_ND,
dv = ATT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT2_ND,
dv = ATT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 3.267241 1.494091 0.3504417 3.092021 3.442462
## 2 1 12 116 3.172414 1.452290 0.3504417 2.997193 3.347635
## 3 2 1 119 3.142857 1.519845 0.3504417 2.967636 3.318078
## 4 2 12 119 3.529412 1.609419 0.3504417 3.354191 3.704633
#ATT3_ND
dat_ATT3_ND<- select(sub, ATT3_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT3_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT3_ND", add = "point")
dat_ATT3_ND$RecipientEmail<- as.factor(dat_ATT3_ND$RecipientEmail)
dat_ATT3_ND$Q<- as.factor(dat_ATT3_ND$Q)
dat_ATT3_ND$ATT1_ND<- as.numeric(dat_ATT3_ND$ATT3_ND)
dat_ATT3_ND<- na.omit(dat_ATT3_ND)
pps<- aggregate(dat_ATT3_ND$'ATT3_ND', by=list(dat_ATT3_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT3_ND <- merge(pps, dat_ATT3_ND, by="RecipientEmail")
dat_ATT3_ND<- dplyr::filter(dat_ATT3_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT3_ND,
dv = ATT3_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT3_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 3673.6085106 525.2436 1629.6263319 3.748586e-107 *
## 2 C 1 233 1.1479005 525.2436 0.5092129 4.761939e-01
## 3 Q 1 233 1.6680851 317.3352 1.2247739 2.695671e-01
## 4 C:Q 1 233 0.9967584 317.3352 0.7318594 3.931600e-01
## ges
## 1 0.813431397
## 2 0.001360512
## 3 0.001975826
## 4 0.001181588
#no sig effects
ezPlot(data = dat_ATT3_ND,
dv = ATT3_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT3_ND,
dv = ATT3_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.758621 1.269171 0.2999763 2.608633 2.908609
## 2 1 12 116 2.732759 1.281017 0.2999763 2.582770 2.882747
## 3 2 1 119 2.949580 1.489220 0.2999763 2.799592 3.099568
## 4 2 12 119 2.739496 1.324234 0.2999763 2.589508 2.889484
#ATT4_ND
dat_ATT4_ND<- select(sub, ATT4_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT4_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT4_ND", add = "point")
dat_ATT4_ND$RecipientEmail<- as.factor(dat_ATT4_ND$RecipientEmail)
dat_ATT4_ND$Q<- as.factor(dat_ATT4_ND$Q)
dat_ATT4_ND$ATT4_ND<- as.numeric(dat_ATT4_ND$ATT4_ND)
dat_ATT4_ND<- na.omit(dat_ATT4_ND)
pps<- aggregate(dat_ATT4_ND$'ATT4_ND', by=list(dat_ATT4_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT4_ND <- merge(pps, dat_ATT4_ND, by="RecipientEmail")
dat_ATT4_ND<- dplyr::filter(dat_ATT4_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT4_ND,
dv = ATT4_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT4_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 4075.4382979 606.0535 1566.8207209 2.043545e-105 *
## 2 C 1 233 2.5082394 606.0535 0.9643040 3.271234e-01
## 3 Q 1 233 1.6680851 210.0435 1.8503971 1.750518e-01
## 4 C:Q 1 233 0.2884492 210.0435 0.3199751 5.721670e-01
## ges
## 1 0.8331613919
## 2 0.0030640405
## 3 0.0020398098
## 4 0.0003533248
#no sig effects
ezPlot(data = dat_ATT4_ND,
dv = ATT4_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT4_ND,
dv = ATT4_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.905172 1.243966 0.2440521 2.783146 3.027198
## 2 1 12 116 2.836207 1.215437 0.2440521 2.714181 2.958233
## 3 2 1 119 3.100840 1.428493 0.2440521 2.978814 3.222866
## 4 2 12 119 2.932773 1.388397 0.2440521 2.810747 3.054799
#ATT5_ND
dat_ATT5_ND<- select(sub, ATT5_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT2_ND", add = "point")
dat_ATT5_ND$RecipientEmail<- as.factor(dat_ATT5_ND$RecipientEmail)
dat_ATT5_ND$Q<- as.factor(dat_ATT5_ND$Q)
dat_ATT5_ND$ATT1_ND<- as.numeric(dat_ATT5_ND$ATT5_ND)
dat_ATT5_ND<- na.omit(dat_ATT5_ND)
pps<- aggregate(dat_ATT5_ND$'ATT5_ND', by=list(dat_ATT5_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT5_ND <- merge(pps, dat_ATT5_ND, by="RecipientEmail")
dat_ATT5_ND<- dplyr::filter(dat_ATT5_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT5_ND,
dv = ATT5_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT5_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 3345.7787234 601.8047 1295.3811260 3.866848e-97 *
## 2 C 1 233 0.4165823 601.8047 0.1612877 6.883419e-01
## 3 Q 1 233 2.7574468 270.4300 2.3757906 1.245862e-01
## 4 C:Q 1 233 0.8125329 270.4300 0.7000708 4.036172e-01
## ges
## 1 0.7932119640
## 2 0.0004773754
## 3 0.0031513960
## 4 0.0009306861
#no sig effects
ezPlot(data = dat_ATT5_ND,
dv = ATT5_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT5_ND,
dv = ATT5_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.672414 1.297327 0.2769206 2.533953 2.810874
## 2 1 12 116 2.603448 1.376064 0.2769206 2.464988 2.741909
## 3 2 1 119 2.815126 1.437785 0.2769206 2.676666 2.953586
## 4 2 12 119 2.579832 1.356065 0.2769206 2.441372 2.718292
#ATT6_ND
dat_ATT6_ND<- select(sub, ATT6_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "ATT6_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="ATT6_ND", add = "point")
dat_ATT6_ND$RecipientEmail<- as.factor(dat_ATT6_ND$RecipientEmail)
dat_ATT6_ND$Q<- as.factor(dat_ATT6_ND$Q)
dat_ATT6_ND$ATT6_ND<- as.numeric(dat_ATT6_ND$ATT6_ND)
dat_ATT6_ND<- na.omit(dat_ATT6_ND)
pps<- aggregate(dat_ATT6_ND$'ATT6_ND', by=list(dat_ATT6_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_ATT6_ND <- merge(pps, dat_ATT6_ND, by="RecipientEmail")
dat_ATT6_ND<- dplyr::filter(dat_ATT6_ND, complete == 2)
fit<- ezANOVA(data = dat_ATT6_ND,
dv = ATT6_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, ATT6_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 3.917977e+03 572.4548 1.594691e+03 3.407473e-106 *
## 2 C 1 233 6.857232e-02 572.4548 2.791024e-02 8.674649e-01
## 3 Q 1 233 2.574468e-01 285.4629 2.101327e-01 6.470907e-01
## 4 C:Q 1 233 7.796077e-01 285.4629 6.363298e-01 4.258552e-01
## ges
## 1 8.203650e-01
## 2 7.992239e-05
## 3 2.999933e-04
## 4 9.078957e-04
#no sig effects
ezPlot(data = dat_ATT6_ND,
dv = ATT6_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_ATT6_ND,
dv = ATT6_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.810345 1.284786 0.2845134 2.668088 2.952602
## 2 1 12 116 2.939655 1.365977 0.2845134 2.797398 3.081912
## 3 2 1 119 2.915966 1.305658 0.2845134 2.773710 3.058223
## 4 2 12 119 2.882353 1.462390 0.2845134 2.740096 3.024610
Percieved Beh Control
#PBC_ND_Aut
dat_PBC_ND_Aut<- select(sub, PBC_ND_Aut, Q, C, RecipientEmail)
#ggqqplot(sub, "PBC_ND_Aut", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_ND_Aut", add = "point")
dat_PBC_ND_Aut$RecipientEmail<- as.factor(dat_PBC_ND_Aut$RecipientEmail)
dat_PBC_ND_Aut$Q<- as.factor(dat_PBC_ND_Aut$Q)
dat_PBC_ND_Aut$ATT1_ND<- as.numeric(dat_PBC_ND_Aut$PBC_ND_Aut)
dat_PBC_ND_Aut<- na.omit(dat_PBC_ND_Aut)
pps<- aggregate(dat_PBC_ND_Aut$'PBC_ND_Aut', by=list(dat_PBC_ND_Aut$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_PBC_ND_Aut <- merge(pps, dat_PBC_ND_Aut, by="RecipientEmail")
dat_PBC_ND_Aut<- dplyr::filter(dat_PBC_ND_Aut, complete == 2)
fit<- ezANOVA(data = dat_PBC_ND_Aut,
dv = PBC_ND_Aut,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, PBC_ND_Aut)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 8107.0297872 900.3389 2098.029854 1.652347e-118 *
## 2 C 1 233 14.6312893 900.3389 3.786452 5.287155e-02
## 3 Q 1 233 0.5446809 384.3494 0.330196 5.660981e-01
## 4 C:Q 1 233 3.1059639 384.3494 1.882895 1.713250e-01
## ges
## 1 0.8632105149
## 2 0.0112607319
## 3 0.0004237993
## 4 0.0024118479
#no sig effects
ezPlot(data = dat_PBC_ND_Aut,
dv = PBC_ND_Aut,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PBC_ND_Aut,
dv = PBC_ND_Aut,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 4.448276 1.756206 0.3301345 4.283209 4.613343
## 2 1 12 116 4.215517 1.646108 0.3301345 4.050450 4.380585
## 3 2 1 119 3.932773 1.587724 0.3301345 3.767706 4.097840
## 4 2 12 119 4.025210 1.649151 0.3301345 3.860143 4.190277
PBC_ND_Cap
#PBC_ND_Cap
dat_PBC_ND_Cap<- select(sub, PBC_ND_Cap, Q, C, RecipientEmail)
#ggqqplot(sub, "PBC_ND_Cap", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="PBC_ND_Cap", add = "point")
dat_PBC_ND_Cap$RecipientEmail<- as.factor(dat_PBC_ND_Cap$RecipientEmail)
dat_PBC_ND_Cap$Q<- as.factor(dat_PBC_ND_Cap$Q)
dat_PBC_ND_Cap$ATT1_ND<- as.numeric(dat_PBC_ND_Cap$PBC_ND_Cap)
dat_PBC_ND_Cap<- na.omit(dat_PBC_ND_Cap)
pps<- aggregate(dat_PBC_ND_Cap$'PBC_ND_Cap', by=list(dat_PBC_ND_Cap$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_PBC_ND_Cap <- merge(pps, dat_PBC_ND_Cap, by="RecipientEmail")
dat_PBC_ND_Cap<- dplyr::filter(dat_PBC_ND_Cap, complete == 2)
fit<- ezANOVA(data = dat_PBC_ND_Cap,
dv = PBC_ND_Cap,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, PBC_ND_Cap)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 6456.519149 1072.7098 1402.400696 1.447484e-100 *
## 2 C 1 233 9.771057 1072.7098 2.122341 1.465108e-01
## 3 Q 1 233 11.029787 478.4096 5.371841 2.133167e-02 *
## 4 C:Q 1 233 1.560621 478.4096 0.760070 3.842041e-01
## ges
## 1 0.806295030
## 2 0.006259925
## 3 0.007060649
## 4 0.001005115
#sig main effect of time
#both groups inc for T1
ezPlot(data = dat_PBC_ND_Cap,
dv = PBC_ND_Cap,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_PBC_ND_Cap,
dv = PBC_ND_Cap,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 3.465517 1.815063 0.3683221 3.281356 3.649678
## 2 1 12 116 3.655172 1.799050 0.3683221 3.471011 3.839333
## 3 2 1 119 3.638655 1.839911 0.3683221 3.454494 3.822817
## 4 2 12 119 4.058824 1.842503 0.3683221 3.874662 4.242985
Behavior Desire
#BD_ND
dat_BD_ND<- select(sub, BD_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "BD_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="BD_ND", add = "point")
dat_BD_ND$RecipientEmail<- as.factor(dat_BD_ND$RecipientEmail)
dat_BD_ND$Q<- as.factor(dat_BD_ND$Q)
dat_BD_ND$ATT1_ND<- as.numeric(dat_BD_ND$BD_ND)
dat_BD_ND<- na.omit(dat_BD_ND)
pps<- aggregate(dat_BD_ND$'BD_ND', by=list(dat_BD_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_BD_ND <- merge(pps, dat_BD_ND, by="RecipientEmail")
dat_BD_ND<- dplyr::filter(dat_BD_ND, complete == 2)
fit<- ezANOVA(data = dat_BD_ND,
dv = BD_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, BD_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 2.261619e+03 570.844 923.11956819 5.288682e-83 *
## 2 C 1 233 3.685657e-02 570.844 0.01504366 9.024879e-01
## 3 Q 1 233 1.551064e+00 256.041 1.41148417 2.360198e-01
## 4 C:Q 1 233 9.078973e-01 256.041 0.82619599 3.643140e-01
## ges
## 1 0.7322700620
## 2 0.0000445708
## 3 0.0018722794
## 4 0.0010967687
#no sig effects
ezPlot(data = dat_BD_ND,
dv = BD_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_BD_ND,
dv = BD_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.189655 1.382586 0.2694528 2.054929 2.324382
## 2 1 12 116 2.215517 1.317481 0.2694528 2.080791 2.350244
## 3 2 1 119 2.084034 1.337718 0.2694528 1.949307 2.218760
## 4 2 12 119 2.285714 1.289743 0.2694528 2.150988 2.420441
Intentions
#INT1_ND
dat_INT1_ND<- select(sub, INT1_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "INT1_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT1_ND", add = "point")
dat_INT1_ND$RecipientEmail<- as.factor(dat_INT1_ND$RecipientEmail)
dat_INT1_ND$Q<- as.factor(dat_INT1_ND$Q)
dat_INT1_ND$ATT1_ND<- as.numeric(dat_INT1_ND$INT1_ND)
dat_INT1_ND<- na.omit(dat_INT1_ND)
pps<- aggregate(dat_INT1_ND$'INT1_ND', by=list(dat_INT1_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT1_ND <- merge(pps, dat_INT1_ND, by="RecipientEmail")
dat_INT1_ND<- dplyr::filter(dat_INT1_ND, complete == 2)
fit<- ezANOVA(data = dat_INT1_ND,
dv = INT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, INT1_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 2140.4446809 599.3508 832.1064014 7.526068e-79 *
## 2 C 1 233 0.7045513 599.3508 0.2738971 6.012268e-01
## 3 Q 1 233 2.3170213 237.5981 2.2721814 1.330690e-01
## 4 C:Q 1 233 0.5848912 237.5981 0.5735722 4.496081e-01
## ges
## 1 0.7188988136
## 2 0.0008411012
## 3 0.0027607715
## 4 0.0006983494
#no sig effects
ezPlot(data = dat_INT1_ND,
dv = INT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_INT1_ND,
dv = INT1_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 2.060345 1.320664 0.2595669 1.930561 2.190128
## 2 1 12 116 2.129310 1.322252 0.2595669 1.999527 2.259094
## 3 2 1 119 2.067227 1.293603 0.2595669 1.937443 2.197010
## 4 2 12 119 2.277311 1.419742 0.2595669 2.147527 2.407094
#INT2_ND
dat_INT2_ND<- select(sub, INT2_ND, Q, C, RecipientEmail)
#ggqqplot(sub, "INT2_ND", facet.by= "Q")
#ggboxplot(sub, x = "Q", y="INT2_ND", add = "point")
dat_INT2_ND$RecipientEmail<- as.factor(dat_INT2_ND$RecipientEmail)
dat_INT2_ND$Q<- as.factor(dat_INT2_ND$Q)
dat_INT2_ND$INT2_ND<- as.numeric(dat_INT2_ND$INT2_ND)
dat_INT2_ND<- na.omit(dat_INT2_ND)
pps<- aggregate(dat_INT2_ND$'INT2_ND', by=list(dat_INT2_ND$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_INT2_ND <- merge(pps, dat_INT2_ND, by="RecipientEmail")
dat_INT2_ND<- dplyr::filter(dat_INT2_ND, complete == 2)
fit<- ezANOVA(data = dat_INT2_ND,
dv = INT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, INT2_ND)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 6802.008511 1032.8088 1534.522225 1.687204e-104 *
## 2 C 1 233 10.182738 1032.8088 2.297209 1.309621e-01
## 3 Q 1 233 9.268085 405.0633 5.331176 2.182324e-02 *
## 4 C:Q 1 233 12.668600 405.0633 7.287216 7.453726e-03 *
## ges
## 1 0.825498434
## 2 0.007032012
## 3 0.006404414
## 4 0.008733709
#sif effect of time, sig time/cond interaction
#for T0 same value, only for condition 2 large inc
ezPlot(data = dat_INT2_ND,
dv = INT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_INT2_ND,
dv = INT2_ND,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 3.681034 1.752509 0.3389139 3.511578 3.850491
## 2 1 12 116 3.629310 1.771907 0.3389139 3.459853 3.798767
## 3 2 1 119 3.647059 1.649798 0.3389139 3.477602 3.816516
## 4 2 12 119 4.252101 1.846749 0.3389139 4.082644 4.421558
Habit
dat_SRHI<- select(sub, SRHI_1:SRHI_12, Q, C, RecipientEmail)
dat_SRHI<- dplyr::mutate(dat_SRHI,
total = (SRHI_1+ SRHI_2 + SRHI_3 + SRHI_4 + SRHI_5 + SRHI_6 + SRHI_7 + SRHI_8 + SRHI_9 + SRHI_10 + SRHI_11 + SRHI_12))
dat_SRHI$RecipientEmail<- as.factor(dat_SRHI$RecipientEmail)
dat_SRHI$Q<- as.factor(dat_SRHI$Q)
dat_SRHI$total<- as.numeric(dat_SRHI$total)
dat_SRHI<- na.omit(dat_SRHI)
pps<- aggregate(dat_SRHI$'total', by=list(dat_SRHI$RecipientEmail), length)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'complete'
dat_SRHI <- merge(pps, dat_SRHI, by="RecipientEmail")
dat_SRHI<- dplyr::filter(dat_SRHI, complete == 2)
fit<- ezANOVA(data = dat_SRHI,
dv = total,
wid = RecipientEmail,
within = Q,
between = C,
detailed = TRUE,
within_full = c(Q, total)
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning: Collapsing data to cell means first using variables supplied to
## "within_full", then collapsing the resulting means to means for the cells
## supplied to "within".
fit
## $ANOVA
## Effect DFn DFd SSn SSd F p p<.05
## 1 (Intercept) 1 233 976752.07660 136239.63 1670.4627937 2.991821e-108 *
## 2 C 1 233 647.29286 136239.63 1.1070144 2.938218e-01
## 3 Q 1 233 46.60426 20782.13 0.5225063 4.704995e-01
## 4 C:Q 1 233 14.27013 20782.13 0.1599904 6.895318e-01
## ges
## 1 8.615052e-01
## 2 4.105390e-03
## 3 2.967132e-04
## 4 9.087169e-05
#no sig effects
ezPlot(data = dat_SRHI,
dv = total,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means<- ezPlot(data = dat_SRHI,
dv = total,
wid = RecipientEmail,
within = Q,
between = C,
x= Q,
split = C
)
## Warning: You have removed one or more Ss from the analysis. Refactoring
## "RecipientEmail" for ANOVA.
## Warning: Converting "C" to factor for ANOVA.
## Warning: Data is unbalanced (unequal N per group). Make sure you specified a
## well-considered value for the type argument to ezANOVA().
## Warning in ezStats(data = data, dv = dv, wid = wid, within = within, within_full
## = within_full, : Unbalanced groups. Mean N will be used in computation of FLSD
means$data
## C Q N Mean SD FLSD lo hi
## 1 1 1 116 46.28448 19.09464 2.427576 45.07069 47.49827
## 2 1 12 116 47.26724 18.40102 2.427576 46.05345 48.48103
## 3 2 1 119 44.28571 18.49147 2.427576 43.07193 45.49950
## 4 2 12 119 44.57143 17.41934 2.427576 43.35764 45.78522
Moderation Analysis
#T0
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")
mod_1<- dplyr::filter(walk_comp, Q == 1)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, INT2_ND)
MOD1<- merge(pps, mod_1, by="RecipientEmail")
MOD1$C <- as.numeric(MOD1$C)
fit<- lmres(steps~C* INT2_ND, data=MOD1)
summary(fit)
## Formula:
## steps ~ C + INT2_ND + C.XX.INT2_ND
## <environment: 0x7fd1af1a8ef0>
##
## Models
## R R^2 Adj. R^2 F df1 df2 p.value
## Model 0.385 0.148 0.136 12.228 3.000 211 2.1e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4914.6 -1740.6 -230.7 0.0 1133.8 9050.4
##
## Coefficients
## Estimate StdErr t.value beta p.value
## (Intercept) 9564.3727 1187.6211 8.0534 < 2e-16 ***
## C -1599.9948 774.1294 -2.0668 -0.3142 0.03997 *
## INT2_ND -907.5708 293.3730 -3.0936 -0.6076 0.00225 **
## C.XX.INT2_ND 264.0469 190.6285 1.3851 0.3370 0.16747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Collinearity
## VIF Tolerance
## C 5.7257 0.1747
## INT2_ND 9.5559 0.1046
## C.XX.INT2_ND 14.6633 0.0682
sslope<- simpleSlope(fit, pred="C", mod1="INT2_ND")
sslope
## Simple Slope:
## simple slope standard error t-value p.value
## Low INT2_ND (-1 SD) -1078.3835 459.8422 -2.3451164 0.01994961
## High INT2_ND (+1 SD) -176.2559 458.4291 -0.3844781 0.70101132
PlotSlope(sslope)
#T1
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")
mod_1<- dplyr::filter(walk_comp, Q == 12)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, INT2_ND)
MOD2<- merge(pps, mod_1, by="RecipientEmail")
MOD2$C <- as.numeric(MOD2$C)
fit<- lmres(steps~C* INT2_ND, data=MOD2)
summary(fit)
## Formula:
## steps ~ C + INT2_ND + C.XX.INT2_ND
## <environment: 0x7fd1ba0d8dd8>
##
## Models
## R R^2 Adj. R^2 F df1 df2 p.value
## Model 0.590 0.348 0.338 36.974 3.000 208 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -6192.29 -1357.66 -66.29 0.00 1252.27 6030.13
##
## Coefficients
## Estimate StdErr t.value beta p.value
## (Intercept) 10391.8202 1088.9658 9.5428 < 2e-16 ***
## C -1213.3155 718.3603 -1.6890 -0.2372 0.09272 .
## INT2_ND -1189.4876 255.7913 -4.6502 -0.8357 1e-05 ***
## C.XX.INT2_ND 247.7199 161.9348 1.5297 0.3633 0.12760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Collinearity
## VIF Tolerance
## C 6.2903 0.1590
## INT2_ND 10.3003 0.0971
## C.XX.INT2_ND 17.9862 0.0556
sslope<- simpleSlope(fit, pred="C", mod1="INT2_ND")
## Warning in sqrt(del): NaNs produced
## Warning in sqrt(del): NaNs produced
sslope
## Simple Slope:
## simple slope standard error t-value p.value
## Low INT2_ND (-1 SD) -655.7357 412.4388 -1.5898983 0.1133765
## High INT2_ND (+1 SD) 236.5705 411.5178 0.5748729 0.5659985
PlotSlope(sslope)
#T0
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")
mod_1<- dplyr::filter(walk_comp, Q == 1)
mod_1<- select(mod_1, Q, C, RecipientEmail, ATT5_D)
MOD1<- merge(pps, mod_1, by="RecipientEmail")
MOD1$C <- as.numeric(MOD1$C)
fit<- lmres(steps~C* ATT5_D, data=MOD1)
summary(fit)
## Formula:
## steps ~ C + ATT5_D + C.XX.ATT5_D
## <environment: 0x7fd1addda878>
##
## Models
## R R^2 Adj. R^2 F df1 df2 p.value
## Model 0.1603 0.0257 0.0118 1.8549 3.0000 211 0.14
##
## Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5072.3 -1668.1 -174.4 0.0 1347.7 8343.3
##
## Coefficients
## Estimate StdErr t.value beta p.value
## (Intercept) 7846.49820 2025.39981 3.87405 0.00014 ***
## C -2202.59370 1438.13698 -1.53156 -0.4326 0.12713
## ATT5_D -244.35547 319.94557 -0.76374 -0.1565 0.44587
## C.XX.ATT5_D 241.43988 224.99997 1.07307 0.3831 0.28447
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Collinearity
## VIF Tolerance
## C 17.278 0.0579
## ATT5_D 9.090 0.1100
## C.XX.ATT5_D 27.602 0.0362
sslope<- simpleSlope(fit, pred="C", mod1="ATT5_D")
sslope
## Simple Slope:
## simple slope standard error t-value p.value
## Low ATT5_D (-1 SD) -1112.4859 514.7506 -2.1612133 0.03180494
## High ATT5_D (+1 SD) -323.5524 497.3274 -0.6505823 0.51602395
PlotSlope(sslope)
#T1
mod<- select(within, PASSI_SELF, Q, C, RecipientEmail)
pps<- aggregate(mod$'PASSI_SELF', by=list(mod$RecipientEmail), mean)
names(pps)[1] <- 'RecipientEmail'
names(pps)[2] <- 'steps'
mod <- merge(pps, mod, by="RecipientEmail")
mod_1<- dplyr::filter(walk_comp, Q == 12)
mod_1<- select(mod_1, PASSI_SELF, Q, C, RecipientEmail, ATT5_D)
MOD2<- merge(pps, mod_1, by="RecipientEmail")
MOD2$C <- as.numeric(MOD2$C)
fit<- lmres(steps~C* ATT5_D, data=MOD2)
summary(fit)
## Formula:
## steps ~ C + ATT5_D + C.XX.ATT5_D
## <environment: 0x7fd1b8f33850>
##
## Models
## R R^2 Adj. R^2 F df1 df2 p.value
## Model 0.1496 0.0224 0.0084 1.6017 3.0000 210 0.19
##
## Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5103.6 -1790.6 -208.9 0.0 1377.3 8383.2
##
## Coefficients
## Estimate StdErr t.value beta p.value
## (Intercept) 6844.65932 2138.59731 3.20054 0.00158 **
## C -702.02553 1260.44553 -0.55697 -0.1378 0.57814
## ATT5_D -74.02670 337.78861 -0.21915 -0.0516 0.82675
## C.XX.ATT5_D -5.82853 201.37491 -0.02894 -0.0091 0.97694
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Collinearity
## VIF Tolerance
## C 13.148 0.0761
## ATT5_D 11.930 0.0838
## C.XX.ATT5_D 21.384 0.0468
sslope<- simpleSlope(fit, pred="C", mod1="ATT5_D")
sslope
## Simple Slope:
## simple slope standard error t-value p.value
## Low ATT5_D (-1 SD) -726.4511 507.1042 -1.432548 0.1534739
## High ATT5_D (+1 SD) -747.2155 495.2467 -1.508774 0.1328595
PlotSlope(sslope)