library (DMwR2)
## Warning: package 'DMwR2' was built under R version 4.2.1
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library (dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data (algae)
head(algae, n=20)
## # A tibble: 20 × 18
## season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1
## <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 winter small medium 8 9.8 60.8 6.24 578 105 170 50 0
## 2 spring small medium 8.35 8 57.8 1.29 370 429. 559. 1.3 1.4
## 3 autumn small medium 8.1 11.4 40.0 5.33 347. 126. 187. 15.6 3.3
## 4 spring small medium 8.07 4.8 77.4 2.30 98.2 61.2 139. 1.4 3.1
## 5 autumn small medium 8.06 9 55.4 10.4 234. 58.2 97.6 10.5 9.2
## 6 winter small high 8.25 13.1 65.8 9.25 430 18.2 56.7 28.4 15.1
## 7 summer small high 8.15 10.3 73.2 1.54 110 61.2 112. 3.2 2.4
## 8 autumn small high 8.05 10.6 59.1 4.99 206. 44.7 77.4 6.9 18.2
## 9 winter small medium 8.7 3.4 22.0 0.886 103. 36.3 71 5.54 25.4
## 10 winter small high 7.93 9.9 8 1.39 5.8 27.2 46.6 0.8 17
## 11 spring small high 7.7 10.2 8 1.53 21.6 12.8 20.8 0.8 16.6
## 12 summer small high 7.45 11.7 8.69 1.59 18.4 10.7 19 0.6 32.1
## 13 winter small high 7.74 9.6 5 1.22 27.3 12 17 41 43.5
## 14 summer small high 7.72 11.8 6.3 1.47 8 16 15 0.5 31.1
## 15 winter small high 7.9 9.6 3 1.45 46.2 13 61.6 0.3 52.2
## 16 autumn small high 7.55 11.5 4.7 1.32 14.8 4.25 98.2 1.1 69.9
## 17 winter small high 7.78 12 7 1.42 34.3 18.7 50 1.1 46.2
## 18 spring small high 7.61 9.8 7 1.44 31.3 20 57.8 0.4 31.8
## 19 summer small high 7.35 10.4 7 1.72 49 41.5 61.5 0.8 50.6
## 20 spring small medium 7.79 3.2 64 2.82 8778. 565. 772. 4.5 0
## # … with 6 more variables: a2 <dbl>, a3 <dbl>, a4 <dbl>, a5 <dbl>, a6 <dbl>,
## # a7 <dbl>
data (iris)
head(iris, n=40)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
summary (algae)
## season size speed mxPH mnO2
## autumn:40 large :45 high :84 Min. :5.600 Min. : 1.500
## spring:53 medium:84 low :33 1st Qu.:7.700 1st Qu.: 7.725
## summer:45 small :71 medium:83 Median :8.060 Median : 9.800
## winter:62 Mean :8.012 Mean : 9.118
## 3rd Qu.:8.400 3rd Qu.:10.800
## Max. :9.700 Max. :13.400
## NA's :1 NA's :2
## Cl NO3 NH4 oPO4
## Min. : 0.222 Min. : 0.050 Min. : 5.00 Min. : 1.00
## 1st Qu.: 10.981 1st Qu.: 1.296 1st Qu.: 38.33 1st Qu.: 15.70
## Median : 32.730 Median : 2.675 Median : 103.17 Median : 40.15
## Mean : 43.636 Mean : 3.282 Mean : 501.30 Mean : 73.59
## 3rd Qu.: 57.824 3rd Qu.: 4.446 3rd Qu.: 226.95 3rd Qu.: 99.33
## Max. :391.500 Max. :45.650 Max. :24064.00 Max. :564.60
## NA's :10 NA's :2 NA's :2 NA's :2
## PO4 Chla a1 a2
## Min. : 1.00 Min. : 0.200 Min. : 0.00 Min. : 0.000
## 1st Qu.: 41.38 1st Qu.: 2.000 1st Qu.: 1.50 1st Qu.: 0.000
## Median :103.29 Median : 5.475 Median : 6.95 Median : 3.000
## Mean :137.88 Mean : 13.971 Mean :16.92 Mean : 7.458
## 3rd Qu.:213.75 3rd Qu.: 18.308 3rd Qu.:24.80 3rd Qu.:11.375
## Max. :771.60 Max. :110.456 Max. :89.80 Max. :72.600
## NA's :2 NA's :12
## a3 a4 a5 a6
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000
## Median : 1.550 Median : 0.000 Median : 1.900 Median : 0.000
## Mean : 4.309 Mean : 1.992 Mean : 5.064 Mean : 5.964
## 3rd Qu.: 4.925 3rd Qu.: 2.400 3rd Qu.: 7.500 3rd Qu.: 6.925
## Max. :42.800 Max. :44.600 Max. :44.400 Max. :77.600
##
## a7
## Min. : 0.000
## 1st Qu.: 0.000
## Median : 1.000
## Mean : 2.495
## 3rd Qu.: 2.400
## Max. :31.600
##
summary (iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
library(corrplot)
## corrplot 0.92 loaded
#Calculate correlations
correlations<-cor(iris[, 1:4])
correlations
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
## Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
## Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
## Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
Mode<-function(x, na.rm=FALSE){
if(na.rm) x<-x[!is.na(x)]
ux<-unique(x)
return(ux[which.max(tabulate(match(x,ux)))])
}
Mode(iris$Sepal.Length)
## [1] 5
Mode(iris$Petal.Length)
## [1] 1.4
aggregate(iris$Sepal.Length,list(Species=iris$Species), quantile)
## Species x.0% x.25% x.50% x.75% x.100%
## 1 setosa 4.300 4.800 5.000 5.200 5.800
## 2 versicolor 4.900 5.600 5.900 6.300 7.000
## 3 virginica 4.900 6.225 6.500 6.900 7.900
aggregate(iris$Sepal.Length,list(Species=iris$Species), Mode)
## Species x
## 1 setosa 5.1
## 2 versicolor 5.5
## 3 virginica 6.3
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.