## Load packages
pacman::p_load(DT, estimatr, kableExtra, readr, reshape2, tidyverse, xtable, dataMaid, ggcorrplot, ggmap, rpart, rpart.plot, pollster, wordcloud, tm, RColorBrewer, hrbrthemes, janitor, purrr, gridExtra, cowplot, rcompanion, nnet, texreg, compareGroups, factoextra, cluster, fastDummies, simputation, sentimentr, politeness, textir, here, ggtext)
set.seed(94305)
# discrete colorblind palette
cb_colors <- brewer.pal(n = 8, name = "Dark2")
# custom ggplot2 theme
custom_theme <- theme_minimal() +
theme(strip.text = element_text(size = 16),
axis.text=element_text(size=16),
axis.title=element_text(size=16,face="bold"),
panel.spacing = unit(1, "lines"),
legend.title = element_text(size=16,face="bold"),
legend.text = element_text(size=16),
plot.title = element_text(size = 20, face = "bold"),
plot.title.position = "plot",
plot.subtitle = element_markdown(size = 16),
plot.caption = element_text(size = 16))
df <- read.csv(here::here("pilot_analysis", "cleaned_data", "clean_complete_v7.csv"))
df_full <- read.csv(here("pilot_analysis","cleaned_data", "clean_full_v7.csv"))
ads <- read.csv(here("pilot_analysis","cleaned_data", "clean_ads_v7.csv"))
df <- df %>%
left_join(ads, by = "original_ref")
best_treatment_heuristics <- read.csv(here("pilot_analysis", "heuristics", "free_text_v7_categories - best_treatment_explain.csv"))
belief_main_heuristics <- read.csv(here("pilot_analysis", "heuristics", "free_text_vaxstatus_v7.xlsx - belief_main_other.csv"))
motive_main_heuristics <- read.csv(here("pilot_analysis","heuristics", "free_text_vaxstatus_v7.xlsx - motive_main_other.csv"))
risk_main_heuristics <- read.csv(here("pilot_analysis","heuristics", "free_text_vaxstatus_v7.xlsx - risk_main_other.csv"))
benefit_main_heuristics <- read.csv(here("pilot_analysis","heuristics", "free_text_vaxstatus_v7.xlsx - benefit_main_other.csv"))
clean_text <- function(column){
str_squish(gsub("[[:punct:]]", " ", tolower(column)))
}
# bring in heuristic levels
df <- df %>%
mutate(across(c(best_treatment_explain,
belief_main_other,
benefit_main_other,
motive_main_other,
risk_main_other), clean_text)) %>%
merge(best_treatment_heuristics,
by.x = c("best_treatment", "best_treatment_explain"),
by.y = c("best_treatment.selected","best_treatment_explain"), all.x = T) %>%
mutate(best_treatment_gl = gsub(" ", "_", clean_text(General.Level)))%>%
select(!General.Level) %>%
merge(belief_main_heuristics, by = c("vax_status", "belief_main_other"), all.x = T) %>%
mutate(belief_gl = gsub(" ", "_", clean_text(General.Level))) %>%
select(!General.Level) %>%
merge(motive_main_heuristics, by = c("vax_status", "motive_main_other"), all.x = T) %>%
mutate(motive_gl = gsub(" ", "_", clean_text(General.Level))) %>%
select(!General.Level)%>%
merge(risk_main_heuristics[, c("vax_status", "risk_main_other", "General.Level")],
by.x = c("vax_status", "risk_main_other"),
by.y = c("vax_status", "risk_main_other"), all.x = T) %>%
mutate(risk_gl = gsub(" ", "_", clean_text(General.Level))) %>%
select(!General.Level)%>%
merge(benefit_main_heuristics[, c("vax_status", "benefit_main_other", "General.Level")],
by.x = c("vax_status", "benefit_main_other"),
by.y = c("vax_status", "benefit_main_other"), all.x = T) %>%
mutate(benefit_gl = gsub(" ", "_", clean_text(General.Level))) %>%
select(!General.Level)
Introduction
Script Overview
What’s new: In this version, we include free text categories of motive impediments as predictors of best treatment.
Motivation: We want to predict what types of treatments will work for users, without explicitly asking them. Predicting these proxy treatments helps us understand:
If our chatbot is capturing enough information to predict treatments without explicitly asking.
Which features hold more predictive power. We will emphasize capturing those features through the chatbot in a future wave.
Implementation: We use supervised machine learning models (MLM and Random Forest) to see if we can predict the best treatment from features collected in the chatbot.
Sample: This script analyzes data collected in pilot 7 (2362 respondents with complete information).
Important Links: This script expands on Saurabh’s user segmentation script. The related GitHub issue is here.
Project Overview
Background
COVID-19 vaccine hesitancy has been recognized as a problem across nations. A resistance to getting vaccinated is emerging as a major hurdle, especially in the developing world, where vaccine access issues are still being gradually resolved. Persistent pools of unvaccinated people around the world could present a greater risk for the emergence of new variants of concern. Addressing people’s vaccine hesitancy is hence crucial to curb the spread of COVID-19, and to consequently avert hospitalizations and death.
Objectives
We intend to understand why people are hesitant about getting the COVID-19 vaccine. Hesitancy could not only occur within the unvaccinated population but also in a subset of people who already got vaccinated. Therefore, the first phase of our project has the following objectives:
- Understand why people are hesitant to get the COVID-19 vaccines
- Understand ways to best elicit vaccine impediments from respondents
- Pinpoint what treatments will help people get vaccinated
Approach
We intend to use chatbot as a medium (on Facebook) to conduct conversations with people and understand how we can best achieve the above three objectives. We have run six pilots as of March 2022 – 2 in the United States using Lucid, and 5 in South Africa on Facebook. Our eventual goal will be running this using an interactive, personalized chatbot that enables the conversation to flow more naturally than in a survey format. We are running the pilots in order to – 1) achieve technical proofs of concept, 2) reduce participant recruitment & completion costs (survey completion of unvaccinated participants open to treatment ) before experiment launch, 3) improve chatbot script/forking/engagement before experiment launch, and 4) gather exploratory ideas for impactful covariates and treatments. Our insights from these pilots are detailed ahead.
Feature cleaning for models
We start by cleaning and filtering our data frames to features we expect to be useful for modeling. We consider the following 4 sets of features:
- Feature set 1 (Impediments):
- Motivation impediments:
against_beliefs (vaccine is against my beliefs), no_benefits (vaccine has no benefits), risky (vaccine is risky). These are coded as binary (0/1).
- Ability impediments:
no_time (no time to get vaxxed), no_money (no money to get vaxxed), no_availability (vaccine not easily available). These are coded as binary (0/1).
- Feature set 2 (Ads):
- Ad theme:
ad_theme_risky (vaccine is risky) and ad_theme_unnecessary (vaccine is not necessary). These are coded as binary (0/1).
- Ad text:
ad_text_airtime is a binary (0/1) indicating whether the ad text explicitly mentions that respondents will receive mobile airtime.
- Feature set 3 (Free text):
elaboration: The average number of characters typed by a respondent across all free text questions faced. We normalize this variable before clustering.
politeness: Politeness score calculated across all free text typed by a respondent. This ranges from 0 to 104 in our sample (based on number of politeness attributes touched) and is constructed using Mike Yeomans’ politeness package. We normalize this variable before running the clustering algorithm. Higher score means more polite text.
receptivity: Receptivity score is a continuous score calculated across all free text typed by a respondent. This is also constructed using Mike Yeomans’ politeness package. We normalize it before running the clustering algorithm. Higher score means more receptive text.
sentiment: Sentiment polarity (range -1 to 1) for all free text typed by a respondent.
- Feature set 4 (Demographics):
age: Participant age in years
female: 1 if female, 0 if male
income: 0 if the participant is unemployed, 1 if household income < R5,000, 2 if household income in R5,000 – R9,999, …, 6 if household income > R100,000
education: 1 if the participant’s education < high school, 2 if education is high school, …, 6 if education is a graduate degree
religiosity: 1 if the participant is not very religious, 2 if somewhat religious, 3 if very religious
politics: 1 if the participant is conservative, 2 if moderate, 3 if liberal
location: 1 if the participant lives in rural, 2 if suburban, 3 if urban,
white: 1 if the participant is a white or caucasian, 0 if not
- Feature set 5 (Free text Categories):
motive_gl: the hand classified general level category for users who chose “other” in the motive_main_other variable and provided a free text response
benefit_gl: the hand classified general level category for users who chose “other” in the benefit_main variable and provided a free text response
belief_gl: the hand classified general level category for users who chose “other” in the belief_main variable and provided a free text response
risk_gl: the hand classified general level category for users who chose “other” in the risk_main variable and provided a free text response
All continuous variables are normalized before clustering.
Since we can’t feed missing values to a clustering algorithm, we impute any missingness in demographic variables using a linear imputation model building on values from female, white, and age.
df_sentiment <-
df %>%
select(contains(c("_other", "_explain"))) %>%
unite("text", 1:50, na.rm = T, remove = T, sep = ". ") %>%
pull(text) %>%
get_sentences() %>%
sentiment_by() %>%
bind_cols(df %>% select(chatfuel_user_id)) %>%
transmute(chatfuel_user_id, sentiment = ave_sentiment)
# politeness and receptivity
df_politeness <-
df %>%
select(contains(c("_other", "_explain"))) %>%
unite("text", 1:50, na.rm = T, remove = T, sep = ". ") %>%
select(text) %>%
mutate(politeness = rowSums(politeness::politeness(text, parser = "spacy")),
receptivity = politeness::receptiveness(text))%>%
select(!text) %>%
bind_cols(df %>% select(chatfuel_user_id))
df_elaboration <-
df %>%
filter(age <= 120) %>%
select(ends_with(c("_other", "_explain"))) %>%
mutate_all(~ nchar(.)) %>%
transmute(
elaboration =
pmap_dbl(
.,
~ mean(c(...), na.rm = TRUE)
)
)
df_ad_features <-
df %>%
filter( age <= 120) %>%
transmute(
chatfuel_user_id,
# ad_image = `Analysis 2 - image`,
ad_theme = Analysis.3...impediment.theme,
belief_gl,
motive_gl,
best_treatment_gl,
risk_gl,
benefit_gl
#ad_text = `Analysis 4 - body text`
) %>%
fastDummies::dummy_cols(
select_columns = c("ad_theme", "belief_gl",
"risk_gl", "motive_gl", "benefit_gl"),
remove_first_dummy = TRUE,
remove_selected_columns = TRUE, ignore_na = TRUE
) %>%
fastDummies::dummy_cols(
select_columns = c("best_treatment_gl"), remove_first_dummy = TRUE,
remove_selected_columns = FALSE, ignore_na = TRUE
) %>%
#mutate(ad_text_airtime = if_else(ad_text == "airtime", 1L, 0L) %>% replace_na(0)) %>%
select(chatfuel_user_id, starts_with(c("ad_text_", "ad_theme_")), contains(c("_gl"))) %>%
mutate_at(vars(starts_with("ad_theme"), contains("gl"), -"best_treatment_gl"), ~ replace_na(., 0)) %>%
bind_cols(df_elaboration) %>%
left_join(df_politeness, by = "chatfuel_user_id") %>%
left_join(df_sentiment, by = "chatfuel_user_id") %>%
distinct(chatfuel_user_id, .keep_all = T)
df_features_raw <-
df %>%
transmute(
# best_treatment,
chatfuel_user_id,
age,
vax_status = ifelse(vax_status == "vax", 1, 0),
female = case_when(
gender == "female" ~ 1,
gender == "male" ~ 0,
),
income = case_when(
income == "Unemployed" ~ 0,
income == "< R5,000" ~ 1,
income == "R5,000 – R9,999" ~ 2,
income == "R10,000 – R29,999" ~ 3,
income == "R30,000 – R49,999" ~ 4,
income == "R50,000 – R99,999" ~ 5,
income == "> R100,000" ~ 6,
),
education = case_when(
education == "< high school" ~ 1,
education == "high school" ~ 2,
education == "some college" ~ 3,
education == "2-year degree" ~ 4,
education == "4-year degree" ~ 5,
education == "graduate degree" ~ 6,
),
religiosity = case_when(
religiosity == "not very religious" ~ 1,
religiosity == "somewhat religious" ~ 2,
religiosity == "very religious" ~ 3,
),
politics = case_when(
politics == "conservative" ~ 1,
politics == "moderate" ~ 2,
politics == "liberal" ~ 3,
),
location = case_when(
location == "rural" ~ 1,
location == "suburban" ~ 2,
location == "urban" ~ 3,
),
white = case_when(
ethnicity == "white or caucasian" ~ 1,
ethnicity != "white or caucasian" ~ 0
),
against_beliefs = if_else(motive_main == "belief", 1L, 0L) %>% replace_na(0),
no_benefits = if_else(motive_main == "benefit", 1L, 0L) %>% replace_na(0),
risky = if_else(motive_main == "risk", 1L, 0L) %>% replace_na(0),
no_time = if_else(ability_main == "time", 1L, 0L) %>% replace_na(0),
no_money = if_else(ability_main == "money", 1L, 0L) %>% replace_na(0),
no_availability = if_else(ability_main == "availability", 1L, 0L) %>% replace_na(0),
) %>%
distinct(chatfuel_user_id, .keep_all = T) %>%
left_join(df_ad_features, by = "chatfuel_user_id") %>%
impute_lm(politics + income + religiosity + location + education ~ female + white + age) %>%
#drop_na() %>%
mutate_at(vars(age, elaboration, sentiment, politeness, receptivity
), ~ scale(.) %>% as.vector()) %>%
relocate(chatfuel_user_id)
df_features <- df_features_raw %>% select(-chatfuel_user_id)
Here are summary statistics for the features fed into the algorithm:
df_features %>%
select(against_beliefs, no_benefits, risky, no_time, no_money, no_availability, #ad_theme_risky,
ad_theme_unnecessary, #ad_theme_inaccessible,
ad_theme_neutral, ad_theme_innocence = `ad_theme_innocence/curiosity`, ad_theme_fear, ad_theme_familyvalues, elaboration, politeness, receptivity,
contains(c("gl")),
sentiment, age, female, income, education, religiosity, politics, location, white, vax_status, everything()) %>%
clean_names(case = "title") %>%
papeR::summarize_numeric() %>%
datatable(options = list(pageLength = 10, columnDefs = list(list(orderable = TRUE, targets = 0))))
Best Treatment Summary
Below, we show the percent of participants selecting each best treatment category.
df %>%
select(best_treatment) %>%
group_by(best_treatment) %>%
count() %>%
ungroup() %>%
mutate(percent_of_total_obs = round(n/sum(n)*100, 2),
n_nonmissing = sum(n[!is.na(best_treatment)]),
percent_of_nonmissing_obs = ifelse(!is.na(best_treatment), round(n/n_nonmissing*100, 2), NA)) %>%
select(best_treatment, n, percent_of_nonmissing_obs, percent_of_total_obs) %>%
arrange(desc(percent_of_nonmissing_obs)) %>%
datatable(options = list(pageLength = 20, columnDefs = list(list(orderable = TRUE, targets = 0))))
Free Text Summaries
We hand categorize the free text responses from the following variables: motive_main_other, benefit_main_other, belief_main_other, and risk_main_other. These categories are implemented in our model as binary variables, where a 1 indicates that the participant included a free text response in the category, and 0 indicates that the participant did not include a free text response in the category, either because i) their free text response is included in a different category or ii) the respondent never saw the free text question.
For an example of the latter, say a participant chose “belief” as their main motive impediment. Then, they would never see risk_main_other. Also, if they chose a multiple choice answer for their more specific belief impediment, such as “religious reasons”, they would never see belief_main_other.
Below, we show the frequencies of these free text categories.
Motive Main Other
df %>%
select(motive_gl) %>%
group_by(motive_gl) %>%
count() %>%
ungroup() %>%
mutate(percent_of_total_obs = round(n/sum(n)*100, 2),
n_nonmissing = sum(n[!is.na(motive_gl)]),
percent_of_nonmissing_obs = ifelse(!is.na(motive_gl), round(n/n_nonmissing*100, 2), NA)) %>%
select(motive_gl, n, percent_of_nonmissing_obs, percent_of_total_obs) %>%
arrange(desc(percent_of_nonmissing_obs)) %>%
datatable(options = list(pageLength = 20, columnDefs = list(list(orderable = TRUE, targets = 0))))
Benefit Main Other
df %>%
select(benefit_gl) %>%
group_by(benefit_gl) %>%
count() %>%
ungroup() %>%
mutate(percent_of_total_obs = round(n/sum(n)*100, 2),
n_nonmissing = sum(n[!is.na(benefit_gl)]),
percent_of_nonmissing_obs = ifelse(!is.na(benefit_gl), round(n/n_nonmissing*100, 2), NA)) %>%
select(benefit_gl, n, percent_of_nonmissing_obs, percent_of_total_obs) %>%
arrange(desc(percent_of_nonmissing_obs)) %>%
datatable(options = list(pageLength = 20, columnDefs = list(list(orderable = TRUE, targets = 0))))
Belief Main Other
df %>%
select(belief_gl) %>%
group_by(belief_gl) %>%
count() %>%
ungroup() %>%
mutate(percent_of_total_obs = round(n/sum(n)*100, 2),
n_nonmissing = sum(n[!is.na(belief_gl)]),
percent_of_nonmissing_obs = ifelse(!is.na(belief_gl), round(n/n_nonmissing*100, 2), NA)) %>%
select(belief_gl, n, percent_of_nonmissing_obs, percent_of_total_obs) %>%
arrange(desc(percent_of_nonmissing_obs)) %>%
datatable(options = list(pageLength = 20, columnDefs = list(list(orderable = TRUE, targets = 0))))
Risk Main Other
df %>%
select(risk_gl) %>%
group_by(risk_gl) %>%
count() %>%
ungroup() %>%
mutate(percent_of_total_obs = round(n/sum(n)*100, 2),
n_nonmissing = sum(n[!is.na(risk_gl)]),
percent_of_nonmissing_obs = ifelse(!is.na(risk_gl), round(n/n_nonmissing*100, 2), NA)) %>%
select(risk_gl, n, percent_of_nonmissing_obs, percent_of_total_obs) %>%
arrange(desc(percent_of_nonmissing_obs)) %>%
datatable(options = list(pageLength = 20, columnDefs = list(list(orderable = TRUE, targets = 0))))
Supervised models
Let’s move ahead and look at two supervised learning approaches to inform user segments – multinomial logit and random forest. The task here is to try and predict – i) motivation impediments, and ii) preferred treatments, using all available chatbot features.
Best Treatment
df_mlm <-
df_features_raw %>%
inner_join(
df %>%
transmute(
chatfuel_user_id,
best_treatment = str_to_sentence(best_treatment),
best_treatment = if_else(best_treatment %in% c("Family supports it", "Trusted info source", "More transparency", "Nothing", "Rewards for vaxxing", "Job/school required", "Other", "Something else"), best_treatment, NA_character_) %>%
as_factor()) %>%
distinct(chatfuel_user_id, .keep_all = T),
by = c("chatfuel_user_id")
) %>%
select(-c(chatfuel_user_id, contains(c("best_treatment_gl"))))
df_mlm$best_treatment <- relevel(df_mlm$best_treatment, ref = "Nothing")
trainingRows <- sample(1:nrow(df_mlm), 0.7 * nrow(df_mlm))
training <- df_mlm[trainingRows, ]
test <- df_mlm[-trainingRows, ]
cols = c("against_beliefs", "no_benefits", "risky", colnames(training)[grepl(colnames(training), pattern= "motive_gl")])
for (c in 1:length(cols)){
model_cols <- cols[1:c]
formula <- as.formula(paste("best_treatment ~ ", paste(model_cols,collapse = " + ")))
mlm1 <-
multinom(formula, data = training, trace = F)
coef(mlm1)%>%
kable(format = "html") %>%
kable_styling() %>%
print()
predicted_class <- predict(mlm1, test)
table(`Predicted class` = predicted_class, `True class` = test$best_treatment) %>%
kable(format = "html") %>%
kable_styling() %>%
add_header_above(c("Predicted\nclass" = 1, "True class" = 7)) %>% print()
print("misclassification error: ")
mean(as.character(predicted_class) != as.character(test$best_treatment), na.rm = T) %>% print()
}
|
|
(Intercept)
|
against_beliefs
|
|
Job/school required
|
0.7723622
|
-0.6922875
|
|
Family supports it
|
0.0145851
|
-1.8064244
|
|
Trusted info source
|
-0.3111326
|
-1.5859374
|
|
Something else
|
-1.2151433
|
-1.7809585
|
|
Rewards for vaxxing
|
-1.4986888
|
-0.8037783
|
|
Other
|
-3.2117725
|
-0.8817773
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
147
|
275
|
133
|
88
|
26
|
31
|
6
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6104816
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
|
Job/school required
|
0.7799824
|
-0.6999490
|
-0.0304213
|
|
Family supports it
|
0.1749285
|
-1.9667589
|
-0.8826384
|
|
Trusted info source
|
-0.1764699
|
-1.7207039
|
-0.6903367
|
|
Something else
|
-1.1592083
|
-1.8362579
|
-0.2417596
|
|
Rewards for vaxxing
|
-1.5337965
|
-0.7688200
|
0.1329300
|
|
Other
|
-3.3721335
|
-0.7217837
|
0.5231936
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
147
|
275
|
133
|
88
|
26
|
31
|
6
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6104816
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
|
Job/school required
|
0.8703693
|
-0.7903159
|
-0.1208202
|
-0.2236268
|
|
Family supports it
|
0.5345852
|
-2.3265041
|
-1.2422821
|
-1.2051600
|
|
Trusted info source
|
0.0746403
|
-1.9717362
|
-0.9413717
|
-0.7232521
|
|
Something else
|
-0.7833651
|
-2.2118601
|
-0.6174550
|
-1.2960263
|
|
Rewards for vaxxing
|
-1.8633940
|
-0.4389812
|
0.4625860
|
0.6442515
|
|
Other
|
-3.1442121
|
-0.9506292
|
0.2964861
|
-0.6401798
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
147
|
275
|
133
|
88
|
26
|
31
|
6
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6104816
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
|
Job/school required
|
0.8621696
|
-0.780826
|
-0.0750920
|
-0.2034179
|
-0.5451625
|
|
Family supports it
|
0.5645228
|
-2.339567
|
-1.2278318
|
-1.1709885
|
-14.1945556
|
|
Trusted info source
|
0.1102563
|
-2.241895
|
-1.0040790
|
-0.7391879
|
-14.2526499
|
|
Something else
|
-0.7260202
|
-2.252958
|
-0.6304148
|
-1.2892707
|
-13.7879050
|
|
Rewards for vaxxing
|
-1.7869812
|
-0.498799
|
0.4305616
|
0.5519212
|
-13.1719354
|
|
Other
|
-3.0681590
|
-1.008617
|
0.2650143
|
-0.6515694
|
-9.3186689
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
141
|
261
|
130
|
84
|
23
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6127596
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
|
Job/school required
|
0.8542955
|
-0.7729649
|
-0.0672241
|
-0.1955863
|
-0.5386329
|
11.367742
|
|
Family supports it
|
0.5592141
|
-2.3342543
|
-1.2225292
|
-1.1657084
|
-15.6796719
|
10.969735
|
|
Trusted info source
|
0.1102588
|
-2.2419199
|
-1.0040689
|
-0.7392041
|
-15.8691448
|
-5.243318
|
|
Something else
|
-0.7652063
|
-2.2137750
|
-0.5912391
|
-1.2500971
|
-15.4328727
|
12.987377
|
|
Rewards for vaxxing
|
-1.7869012
|
-0.4988211
|
0.4304844
|
0.5518272
|
-14.8444868
|
-2.616233
|
|
Other
|
-3.0678589
|
-1.0092613
|
0.2647290
|
-0.6523810
|
-10.5158675
|
-1.087051
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
140
|
260
|
130
|
84
|
23
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6142433
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
|
Job/school required
|
0.8761828
|
-0.7948568
|
-0.0891080
|
-0.2173660
|
-0.5571991
|
11.588572
|
-0.8762196
|
|
Family supports it
|
0.5917619
|
-2.3668246
|
-1.2550729
|
-1.1981675
|
-16.1807167
|
11.179863
|
-1.9781908
|
|
Trusted info source
|
0.1481266
|
-2.2797845
|
-1.0419247
|
-0.7769774
|
-16.4179132
|
-5.486366
|
-15.4112529
|
|
Something else
|
-0.7273263
|
-2.2515034
|
-0.6291066
|
-1.2878825
|
-15.9201415
|
13.192108
|
-14.7822807
|
|
Rewards for vaxxing
|
-1.7489264
|
-0.5368490
|
0.3924883
|
0.5139184
|
-15.2658480
|
-2.711525
|
-14.7163839
|
|
Other
|
-3.0299614
|
-1.0466892
|
0.2268806
|
-0.6903533
|
-10.9146331
|
-1.168340
|
-11.3021794
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
|
Job/school required
|
140
|
259
|
129
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.615727
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
|
Job/school required
|
0.8700935
|
-0.7887876
|
-0.0830333
|
-0.2143875
|
-0.551479
|
11.900503
|
-0.870124
|
11.925664
|
|
Family supports it
|
0.5917566
|
-2.3667719
|
-1.2550591
|
-1.1981785
|
-16.534847
|
11.485668
|
-1.978216
|
-5.732912
|
|
Trusted info source
|
0.1481233
|
-2.2797664
|
-1.0419255
|
-0.7769764
|
-16.835055
|
-5.666500
|
-15.813336
|
-5.366723
|
|
Something else
|
-0.7454529
|
-2.2334644
|
-0.6109465
|
-1.2789927
|
-16.290923
|
13.515983
|
-15.165252
|
13.024015
|
|
Rewards for vaxxing
|
-1.7824400
|
-0.5033201
|
0.4259939
|
0.5303243
|
-15.530481
|
-2.745471
|
-14.997504
|
13.644830
|
|
Other
|
-3.0298638
|
-1.0470089
|
0.2267592
|
-0.6905497
|
-11.152615
|
-1.236064
|
-11.597172
|
-1.078981
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
|
Job/school required
|
141
|
260
|
129
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6142433
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
|
Job/school required
|
0.8583857
|
-0.7770448
|
-0.0730393
|
-0.2042254
|
-0.5410743
|
12.075071
|
-0.8584983
|
12.152710
|
0.5495011
|
|
Family supports it
|
0.5720914
|
-2.3470672
|
-1.2382693
|
-1.1810482
|
-16.7678934
|
11.668130
|
-1.9582929
|
-5.870275
|
0.8013042
|
|
Trusted info source
|
0.1567431
|
-2.2883646
|
-1.0493056
|
-0.7845785
|
-17.0824560
|
-5.806439
|
-16.1022958
|
-5.514434
|
-0.7482351
|
|
Something else
|
-0.7481622
|
-2.2308052
|
-0.6086963
|
-1.2766862
|
-16.4741128
|
13.681471
|
-15.4215544
|
13.244412
|
0.1564343
|
|
Rewards for vaxxing
|
-1.7662933
|
-0.5195101
|
0.4122002
|
0.5162976
|
-15.6917507
|
-2.780917
|
-15.2052938
|
13.852549
|
-12.8024346
|
|
Other
|
-3.0133601
|
-1.0642724
|
0.2123291
|
-0.7050178
|
-11.2979887
|
-1.235577
|
-11.7748782
|
-1.087235
|
-12.4960779
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
|
Job/school required
|
141
|
260
|
129
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6142433
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
|
Job/school required
|
0.8553385
|
-0.7744816
|
-0.0699878
|
-0.2012100
|
-0.5386681
|
12.348952
|
-0.8553532
|
12.519397
|
0.5526571
|
0.0664060
|
|
Family supports it
|
0.5958437
|
-2.3671077
|
-1.2618973
|
-1.2047131
|
-17.3062379
|
11.915360
|
-1.9822377
|
-6.155191
|
0.7800602
|
-0.7399334
|
|
Trusted info source
|
0.1943876
|
-2.3201608
|
-1.0868991
|
-0.8221918
|
-17.6863520
|
-6.095470
|
-16.7082513
|
-5.794445
|
-0.7818563
|
-1.7251951
|
|
Something else
|
-0.7022756
|
-2.2694696
|
-0.6544668
|
-1.3220920
|
-17.0663959
|
13.906716
|
-16.0382054
|
13.567444
|
0.1151790
|
-14.2846232
|
|
Rewards for vaxxing
|
-1.7761138
|
-0.5112354
|
0.4220404
|
0.5260271
|
-16.0449076
|
-2.792530
|
-15.5976888
|
14.222585
|
-13.1046808
|
0.2007767
|
|
Other
|
-2.9674587
|
-1.1025472
|
0.1664643
|
-0.7505739
|
-11.7618173
|
-1.278577
|
-12.2875085
|
-1.131245
|
-12.9096471
|
-14.4667527
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
|
Job/school required
|
140
|
259
|
129
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.615727
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
|
Job/school required
|
0.8733146
|
-0.7923490
|
-0.0879198
|
-0.2191034
|
-0.5539366
|
12.097861
|
-0.8733001
|
12.332973
|
0.5379052
|
0.0496814
|
-0.8734548
|
|
Family supports it
|
0.6213437
|
-2.3924228
|
-1.2873083
|
-1.2301259
|
-17.2040375
|
11.657376
|
-2.0077013
|
-6.229759
|
0.7580660
|
-0.7643090
|
-1.7203395
|
|
Trusted info source
|
0.2085153
|
-2.3341882
|
-1.1009744
|
-0.8362479
|
-17.5902574
|
-6.131574
|
-16.6926421
|
-5.828826
|
-0.7930861
|
-1.7382388
|
-0.6141138
|
|
Something else
|
-0.6711203
|
-2.3005718
|
-0.6855245
|
-1.3530841
|
-16.9362950
|
13.643606
|
-15.9963099
|
13.369416
|
0.0880926
|
-14.2162842
|
-15.4435515
|
|
Rewards for vaxxing
|
-1.7450749
|
-0.5420361
|
0.3910186
|
0.4951153
|
-15.8534534
|
-2.767267
|
-15.4889352
|
14.026870
|
-12.9287440
|
0.1718843
|
-14.7130964
|
|
Other
|
-2.9361986
|
-1.1337861
|
0.1352931
|
-0.7817856
|
-11.5984959
|
-1.269052
|
-12.1871150
|
-1.129263
|
-12.7280922
|
-14.3713178
|
-11.3393655
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
|
Job/school required
|
139
|
260
|
130
|
84
|
23
|
29
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6127596
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
|
Job/school required
|
0.8733110
|
-0.7923453
|
-0.0879130
|
-0.2190911
|
-0.5538715
|
12.080634
|
-0.8732853
|
12.324787
|
0.5378774
|
0.0496896
|
-0.8734345
|
-4.0242629
|
|
Family supports it
|
0.6156391
|
-2.3867391
|
-1.2816243
|
-1.2244368
|
-17.1693926
|
11.645863
|
-2.0020155
|
-6.252395
|
0.7633431
|
-0.7586445
|
-1.7146238
|
13.8038158
|
|
Trusted info source
|
0.2085170
|
-2.3341842
|
-1.1009771
|
-0.8362402
|
-17.5765628
|
-6.149647
|
-16.6918804
|
-5.848559
|
-0.7932310
|
-1.7382351
|
-0.6141189
|
-2.9087314
|
|
Something else
|
-0.6711240
|
-2.3005538
|
-0.6855154
|
-1.3530824
|
-16.9113769
|
13.626398
|
-15.9915000
|
13.361243
|
0.0879404
|
-14.2075968
|
-15.4287698
|
-1.6168840
|
|
Rewards for vaxxing
|
-1.7450859
|
-0.5420323
|
0.3910272
|
0.4951293
|
-15.8113415
|
-2.765706
|
-15.4613019
|
14.018710
|
-12.8861563
|
0.1719096
|
-14.6783006
|
-0.6504267
|
|
Other
|
-2.9362426
|
-1.1335726
|
0.1353583
|
-0.7817009
|
-11.5596283
|
-1.275746
|
-12.1640961
|
-1.136929
|
-12.6960299
|
-14.3692432
|
-11.3109248
|
-0.2305628
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
|
Job/school required
|
139
|
260
|
130
|
84
|
23
|
29
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6127596
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
|
Job/school required
|
0.8857482
|
-0.8046923
|
-0.1003336
|
-0.2314961
|
-0.5643284
|
12.201152
|
-0.8857295
|
12.518343
|
0.5274952
|
0.0381068
|
-0.8856772
|
-4.1269429
|
-0.8860912
|
|
Family supports it
|
0.6312443
|
-2.4022212
|
-1.2972238
|
-1.2400171
|
-17.5034551
|
11.763035
|
-2.0174824
|
-6.454839
|
0.7498910
|
-0.7735050
|
-1.7297946
|
14.0486828
|
-1.3249966
|
|
Trusted info source
|
0.2298773
|
-2.3554979
|
-1.1223171
|
-0.8575892
|
-17.9528300
|
-6.311868
|
-17.0677202
|
-6.017573
|
-0.8119868
|
-1.7586849
|
-0.6352566
|
-2.9781516
|
-17.5458687
|
|
Something else
|
-0.6497848
|
-2.3219957
|
-0.7068195
|
-1.3743410
|
-17.2621099
|
13.737665
|
-16.3654699
|
13.547215
|
0.0692000
|
-14.4871393
|
-15.7661385
|
-1.6478031
|
-16.8599779
|
|
Rewards for vaxxing
|
-1.7238247
|
-0.5631650
|
0.3697814
|
0.4739404
|
-16.0832264
|
-2.813595
|
-15.7825561
|
14.206224
|
-13.0695047
|
0.1521785
|
-14.9610475
|
-0.6598495
|
-14.8767697
|
|
Other
|
-2.9148773
|
-1.1552929
|
0.1140212
|
-0.8030269
|
-11.7192210
|
-1.319934
|
-12.3935828
|
-1.183242
|
-12.9269519
|
-14.7302010
|
-11.5084281
|
-0.2409025
|
-9.9030520
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
|
Job/school required
|
140
|
258
|
130
|
84
|
23
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6172107
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
|
Job/school required
|
0.9303643
|
-0.8489857
|
-0.1448639
|
-0.2718267
|
-0.6033871
|
12.554437
|
-0.9303826
|
12.981889
|
0.4893754
|
-0.0038915
|
-0.9304775
|
-4.3336072
|
-0.9303828
|
-1.3177526
|
|
Family supports it
|
0.6816415
|
-2.4524616
|
-1.3475459
|
-1.2856864
|
-18.3289849
|
12.109895
|
-2.0678696
|
-6.811831
|
0.7059414
|
-0.8219910
|
-1.7805340
|
14.5531467
|
-1.3749611
|
-1.7244522
|
|
Trusted info source
|
0.2832765
|
-2.4087345
|
-1.1756840
|
-0.9060815
|
-18.8617870
|
-6.688424
|
-17.9289553
|
-6.364076
|
-0.8588032
|
-1.8105106
|
-0.6888968
|
-3.1461905
|
-18.4860759
|
-2.0294301
|
|
Something else
|
-0.5880875
|
-2.3834107
|
-0.7683500
|
-1.4299444
|
-18.2090966
|
14.072713
|
-17.2487182
|
13.990877
|
0.0147245
|
-15.2108584
|
-16.6402911
|
-1.7413137
|
-17.8627933
|
-15.3794547
|
|
Rewards for vaxxing
|
-1.7739748
|
-0.5134393
|
0.4200789
|
0.5189453
|
-16.7428795
|
-2.789186
|
-16.4786680
|
14.733807
|
-13.5859334
|
0.1998603
|
-15.5864954
|
-0.6334534
|
-15.4422692
|
0.6254274
|
|
Other
|
-2.8533183
|
-1.2166886
|
0.0524309
|
-0.8586073
|
-12.3995064
|
-1.400214
|
-13.1160175
|
-1.252715
|
-13.7206553
|
-15.5610640
|
-12.2036657
|
-0.2515998
|
-10.5161868
|
-13.2746857
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
2
|
6
|
5
|
0
|
1
|
1
|
0
|
|
Job/school required
|
139
|
255
|
125
|
84
|
22
|
29
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6186944
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
|
Job/school required
|
0.9436722
|
-0.8622292
|
-0.1567952
|
-0.2849910
|
-0.615039
|
12.089183
|
-0.9436659
|
12.620283
|
0.4782696
|
-0.0164415
|
-0.9436456
|
-4.2614252
|
-0.9440428
|
-1.3304832
|
-0.3734656
|
|
Family supports it
|
0.7195571
|
-2.4902442
|
-1.3814409
|
-1.3234681
|
-17.923416
|
11.620077
|
-2.1057685
|
-6.808379
|
0.6717506
|
-0.8593548
|
-1.8182740
|
14.1756318
|
-1.4133723
|
-1.7620859
|
-2.0499987
|
|
Trusted info source
|
0.3269391
|
-2.4523714
|
-1.2148703
|
-0.9496736
|
-18.457542
|
-6.618490
|
-17.6368978
|
-6.316988
|
-0.8979464
|
-1.8531130
|
-0.7323173
|
-3.1207436
|
-18.0836299
|
-2.0722515
|
-16.2108522
|
|
Something else
|
-0.5647413
|
-2.4066801
|
-0.7893816
|
-1.4530017
|
-17.738338
|
13.597413
|
-16.9511865
|
13.615702
|
-0.0055432
|
-15.0078787
|
-16.3376922
|
-1.7077075
|
-17.3690708
|
-15.2276339
|
-0.7811536
|
|
Rewards for vaxxing
|
-1.8562951
|
-0.4318411
|
0.4934595
|
0.5999581
|
-15.944362
|
-2.536427
|
-15.7722087
|
14.434249
|
-12.9653068
|
0.2780384
|
-14.8413504
|
-0.5643659
|
-14.4701733
|
0.6984642
|
1.1185130
|
|
Other
|
-2.8093598
|
-1.2612295
|
0.0128024
|
-0.9030106
|
-12.060285
|
-1.364067
|
-12.8095148
|
-1.227726
|
-13.2482723
|
-15.0942887
|
-11.9262058
|
-0.2445652
|
-10.2852240
|
-12.9989751
|
-13.6627128
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
5
|
5
|
0
|
1
|
0
|
0
|
|
Job/school required
|
140
|
256
|
125
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6186944
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
|
Job/school required
|
0.9822805
|
-0.9005243
|
-0.1934033
|
-0.3217166
|
-0.6477145
|
12.496521
|
-0.982341
|
13.040666
|
0.4466406
|
-0.0528348
|
-0.9822704
|
-4.3642824
|
-0.9828188
|
-1.3673884
|
-0.4099482
|
-0.5604247
|
|
Family supports it
|
0.7896544
|
-2.5600824
|
-1.4481316
|
-1.3905239
|
-18.5039628
|
11.996014
|
-2.175848
|
-6.975358
|
0.6100567
|
-0.9276191
|
-1.8884411
|
14.4659648
|
-1.4835967
|
-1.8317221
|
-2.1198151
|
-1.4269577
|
|
Trusted info source
|
0.3771487
|
-2.5023693
|
-1.2626841
|
-0.9977428
|
-19.0526498
|
-6.810662
|
-18.142328
|
-6.456830
|
-0.9405663
|
-1.9020537
|
-0.7828012
|
-3.2492931
|
-18.7245554
|
-2.1216469
|
-16.7542177
|
-0.7976868
|
|
Something else
|
-0.5574654
|
-2.4140302
|
-0.7962506
|
-1.4597726
|
-18.3264240
|
14.036362
|
-17.418453
|
14.055974
|
-0.0080075
|
-15.5274033
|
-16.9026204
|
-1.7447878
|
-17.9966027
|
-15.6463101
|
-0.7888561
|
-0.0870384
|
|
Rewards for vaxxing
|
-1.9798473
|
-0.3095548
|
0.6091600
|
0.7160356
|
-16.3144245
|
-2.405101
|
-16.021372
|
14.960932
|
-13.4930236
|
0.3941990
|
-15.1241037
|
-0.5143334
|
-14.7216872
|
0.8074586
|
1.2287151
|
0.9333099
|
|
Other
|
-2.9248725
|
-1.1451358
|
0.1227084
|
-0.7921285
|
-12.1728803
|
-1.284469
|
-12.800999
|
-1.170000
|
-13.4532844
|
-15.0824872
|
-11.9852200
|
-0.2195478
|
-10.3833353
|
-13.0153816
|
-13.6984716
|
0.8611927
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
6
|
5
|
0
|
1
|
0
|
0
|
|
Job/school required
|
139
|
254
|
125
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6216617
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
|
Job/school required
|
0.9532430
|
-0.8717201
|
-0.1647762
|
-0.2931079
|
-0.623404
|
12.348077
|
-0.9533261
|
13.075255
|
0.4696879
|
-0.0264579
|
-0.9531784
|
-4.3546527
|
-0.9536256
|
-1.341298
|
-0.3834033
|
-0.5339544
|
14.226815
|
|
Family supports it
|
0.7729869
|
-2.5434386
|
-1.4319226
|
-1.3744862
|
-18.204931
|
11.835209
|
-2.1593751
|
-7.096327
|
0.6222259
|
-0.9135622
|
-1.8717036
|
14.3699842
|
-1.4666886
|
-1.820397
|
-2.1076664
|
-1.4139907
|
13.713781
|
|
Trusted info source
|
0.3785939
|
-2.5039774
|
-1.2646267
|
-0.9997241
|
-18.929200
|
-6.865558
|
-18.0019082
|
-6.573244
|
-0.9459546
|
-1.9064494
|
-0.7841080
|
-3.2723514
|
-18.6226370
|
-2.127051
|
-16.5223165
|
-0.8022745
|
-5.776305
|
|
Something else
|
-0.5563554
|
-2.4152138
|
-0.7975998
|
-1.4604820
|
-18.242832
|
13.857715
|
-17.3427755
|
14.049786
|
-0.0130776
|
-15.4907953
|
-16.8141930
|
-1.7554109
|
-17.9227172
|
-15.556352
|
-0.7928793
|
-0.0912593
|
-4.794503
|
|
Rewards for vaxxing
|
-2.2841581
|
-0.0085464
|
0.9074107
|
1.0133898
|
-15.245763
|
-1.950002
|
-14.7311283
|
15.168012
|
-12.5490014
|
0.6755415
|
-13.7070185
|
-0.4042826
|
-12.9946117
|
1.074270
|
1.4988318
|
1.1996629
|
16.771185
|
|
Other
|
-2.9238819
|
-1.1474277
|
0.1216251
|
-0.7936956
|
-11.834434
|
-1.291626
|
-12.5084759
|
-1.195866
|
-13.2093194
|
-14.8540724
|
-11.6956525
|
-0.2218726
|
-10.0469900
|
-12.790405
|
-13.4002829
|
0.8589842
|
-1.428094
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
6
|
5
|
0
|
1
|
0
|
0
|
|
Job/school required
|
139
|
254
|
125
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6216617
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
motive_gl_side_effects
|
|
Job/school required
|
0.9719391
|
-0.8887208
|
-0.1834917
|
-0.3117841
|
-0.6393507
|
12.037743
|
-0.9721634
|
12.925207
|
0.4554108
|
-0.0447548
|
-0.9719473
|
-4.3120365
|
-0.9721723
|
-1.360066
|
-0.4014945
|
-0.5518815
|
14.137392
|
-0.2413026
|
|
Family supports it
|
0.8331553
|
-2.5986997
|
-1.4920686
|
-1.4346057
|
-18.0967748
|
11.483386
|
-2.2193173
|
-7.240342
|
0.5692859
|
-0.9737652
|
-1.9316132
|
14.1569797
|
-1.5268403
|
-1.881504
|
-2.1682810
|
-1.4741491
|
13.583017
|
-1.1101577
|
|
Trusted info source
|
0.4329642
|
-2.5538381
|
-1.3189870
|
-1.0541212
|
-18.8026934
|
-6.942634
|
-18.0152988
|
-6.681801
|
-0.9919840
|
-1.9602132
|
-0.8382978
|
-3.2977133
|
-18.4819879
|
-2.181556
|
-16.5388722
|
-0.8561754
|
-5.924918
|
-0.9332548
|
|
Something else
|
-0.4888399
|
-2.4773168
|
-0.8646521
|
-1.5271518
|
-18.0710337
|
13.498672
|
-17.3401651
|
13.845842
|
-0.0714296
|
-15.6140121
|
-16.8070616
|
-1.7847645
|
-17.7359667
|
-15.689670
|
-0.8593896
|
-0.1579516
|
-4.938906
|
-1.3982560
|
|
Rewards for vaxxing
|
-2.4431660
|
0.1317397
|
1.0627496
|
1.1683523
|
-14.5001456
|
-1.676909
|
-13.8326773
|
15.125402
|
-12.0332871
|
0.8222144
|
-12.8047900
|
-0.3403723
|
-11.9860492
|
1.211471
|
1.6364872
|
1.3347820
|
16.859392
|
1.1818367
|
|
Other
|
-2.8341733
|
-1.2289674
|
0.0326361
|
-0.8824342
|
-11.9263844
|
-1.264623
|
-12.6176738
|
-1.179922
|
-13.1126032
|
-14.7115913
|
-11.8224216
|
-0.2121825
|
-10.2471916
|
-12.844945
|
-13.3753454
|
0.7736499
|
-1.353651
|
-15.9592195
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
6
|
5
|
0
|
1
|
0
|
0
|
|
Job/school required
|
139
|
254
|
125
|
84
|
22
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6216617
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
motive_gl_side_effects
|
motive_gl_social_media
|
|
Job/school required
|
0.9862109
|
-0.9027421
|
-0.1975958
|
-0.3258251
|
-0.6511594
|
14.443361
|
-0.9857301
|
15.647510
|
0.4443203
|
-0.0583888
|
-0.9862725
|
-5.1321138
|
-0.9866865
|
-1.373325
|
-0.4149187
|
-0.5653562
|
16.913712
|
-0.2552212
|
-25.137312
|
|
Family supports it
|
0.8475467
|
-2.6128058
|
-1.5062813
|
-1.4488252
|
-21.5258941
|
13.888827
|
-2.2339581
|
-8.551796
|
0.5577986
|
-0.9880777
|
-1.9464397
|
16.8897625
|
-1.5414324
|
-1.894712
|
-2.1826013
|
-1.4879225
|
16.359003
|
-1.1243277
|
-24.965930
|
|
Trusted info source
|
0.4472944
|
-2.5680408
|
-1.3331883
|
-1.0683190
|
-22.6301210
|
-8.226679
|
-21.5166718
|
-7.969402
|
-1.0032872
|
-1.9738048
|
-0.8529022
|
-3.9429117
|
-22.2543996
|
-2.195289
|
-19.5451185
|
-0.8699102
|
-6.828794
|
-0.9475171
|
-24.484827
|
|
Something else
|
-0.4744844
|
-2.4915479
|
-0.8789794
|
-1.5413752
|
-21.9209449
|
15.903983
|
-20.9167253
|
16.567983
|
-0.0827003
|
-18.6238767
|
-20.2810284
|
-2.1331042
|
-21.5082511
|
-18.691122
|
-0.8735822
|
-0.1717453
|
-5.829826
|
-1.4118665
|
-21.694488
|
|
Rewards for vaxxing
|
-2.4291708
|
0.1181769
|
1.0489271
|
1.1545532
|
-17.5524422
|
-2.003864
|
-16.7291266
|
17.847644
|
-14.5420991
|
0.8092733
|
-15.4852647
|
-0.4052172
|
-14.5082384
|
1.197737
|
1.6238585
|
1.3220761
|
19.636014
|
1.1685917
|
-10.606394
|
|
Other
|
-2.8194271
|
-1.2439349
|
0.0179345
|
-0.8976189
|
-14.5387864
|
-1.607268
|
-15.3902266
|
-1.500130
|
-16.2208807
|
-18.1489676
|
-14.4295492
|
-0.2725134
|
-12.4522520
|
-15.664460
|
-16.4028179
|
0.7595618
|
-1.841228
|
-19.7448930
|
-7.953794
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
2
|
5
|
4
|
0
|
0
|
1
|
0
|
|
Job/school required
|
139
|
256
|
126
|
84
|
23
|
29
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6172107
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
motive_gl_side_effects
|
motive_gl_social_media
|
motive_gl_too_much_information
|
|
Job/school required
|
0.9826394
|
-0.8992237
|
-0.1940873
|
-0.3243163
|
-0.6478445
|
14.398407
|
-0.982174
|
15.679305
|
0.4476152
|
-0.0552171
|
-0.9826120
|
-5.1391998
|
-0.9830727
|
-1.369878
|
-0.4116818
|
-0.5620230
|
16.957864
|
-0.2520324
|
-25.022440
|
17.2048038
|
|
Family supports it
|
0.8477675
|
-2.6130797
|
-1.5065818
|
-1.4490823
|
-21.4603628
|
13.840071
|
-2.234166
|
-8.603621
|
0.5575387
|
-0.9887165
|
-1.9466240
|
16.8765534
|
-1.5415676
|
-1.895222
|
-2.1835622
|
-1.4885657
|
16.399350
|
-1.1250135
|
-24.860688
|
-7.4563635
|
|
Trusted info source
|
0.4475164
|
-2.5683222
|
-1.3334955
|
-1.0685778
|
-22.6099947
|
-8.247079
|
-21.503928
|
-8.016566
|
-1.0034760
|
-1.9744897
|
-0.8531384
|
-3.9456580
|
-22.2202433
|
-2.195755
|
-19.4918796
|
-0.8705034
|
-6.878881
|
-0.9482002
|
-24.367059
|
-6.6173731
|
|
Something else
|
-0.4743018
|
-2.4918082
|
-0.8791968
|
-1.5415544
|
-21.9138975
|
15.855246
|
-20.935132
|
16.595305
|
-0.0828411
|
-18.6674318
|
-20.2843515
|
-2.1312339
|
-21.4744660
|
-18.719092
|
-0.8743046
|
-0.1722684
|
-5.877493
|
-1.4124784
|
-21.545184
|
-4.0775496
|
|
Rewards for vaxxing
|
-2.4781103
|
0.1654876
|
1.0967388
|
1.1728464
|
-17.2304922
|
-1.955657
|
-16.382604
|
17.918052
|
-14.3133958
|
0.8536777
|
-15.1385867
|
-0.3962517
|
-14.1147501
|
1.244059
|
1.6665005
|
1.3661829
|
19.725550
|
1.2142442
|
-10.258039
|
19.9170714
|
|
Other
|
-2.8192992
|
-1.2441690
|
0.0178108
|
-0.8977620
|
-14.4799390
|
-1.619399
|
-15.361663
|
-1.518440
|
-16.1871510
|
-18.1664109
|
-14.3914300
|
-0.2764140
|
-12.3863957
|
-15.668715
|
-16.3859905
|
0.7593839
|
-1.877217
|
-19.7839591
|
-7.900435
|
-0.8479648
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
5
|
4
|
0
|
0
|
0
|
0
|
|
Job/school required
|
140
|
256
|
126
|
84
|
23
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6186944
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
motive_gl_side_effects
|
motive_gl_social_media
|
motive_gl_too_much_information
|
motive_gl_vaccinated
|
|
Job/school required
|
0.9663925
|
-0.8831861
|
-0.1779725
|
-0.3082487
|
-0.6340169
|
14.439180
|
-0.9658616
|
15.732935
|
0.4611771
|
-0.0399211
|
-0.9663793
|
-5.1362357
|
-0.9668708
|
-1.354408
|
-0.3963215
|
-0.5466836
|
16.992386
|
-0.2364244
|
-24.916353
|
17.2434490
|
15.5261717
|
|
Family supports it
|
0.8479996
|
-2.6133473
|
-1.5068254
|
-1.4493597
|
-21.4508731
|
13.864211
|
-2.2344252
|
-8.648793
|
0.5559844
|
-0.9895228
|
-1.9468198
|
16.8935561
|
-1.5418313
|
-1.895667
|
-2.1840774
|
-1.4890924
|
16.417389
|
-1.1255844
|
-24.783941
|
-7.4968783
|
-6.9727412
|
|
Trusted info source
|
0.4477610
|
-2.5686215
|
-1.3337946
|
-1.0688934
|
-22.6047568
|
-8.277191
|
-21.5180187
|
-8.061799
|
-1.0049416
|
-1.9752981
|
-0.8533665
|
-3.9641555
|
-22.1994079
|
-2.196160
|
-19.4852998
|
-0.8710212
|
-6.895644
|
-0.9487759
|
-24.284533
|
-6.6511786
|
-6.4008670
|
|
Something else
|
-0.4979057
|
-2.4683527
|
-0.8557736
|
-1.5182132
|
-21.8025512
|
15.903088
|
-20.8671220
|
16.656512
|
-0.0619507
|
-18.6131482
|
-20.1961731
|
-2.1104593
|
-21.3351932
|
-18.707076
|
-0.8515134
|
-0.1494589
|
-5.876976
|
-1.3893629
|
-21.332151
|
-4.0476628
|
15.8915983
|
|
Rewards for vaxxing
|
-2.4795910
|
0.1670776
|
1.0982997
|
1.1744834
|
-17.1650587
|
-1.970616
|
-16.3341412
|
17.963022
|
-14.2495250
|
0.8551686
|
-15.0882134
|
-0.4001644
|
-14.0546767
|
1.245740
|
1.6685166
|
1.3681522
|
19.745290
|
1.2156782
|
-10.215139
|
19.9481909
|
-1.0982116
|
|
Other
|
-2.8191256
|
-1.2445182
|
0.0176454
|
-0.8979075
|
-14.4408486
|
-1.634939
|
-15.3434415
|
-1.534762
|
-16.1526009
|
-18.1849207
|
-14.3658015
|
-0.2804113
|
-12.3419757
|
-15.695404
|
-16.3760847
|
0.7590542
|
-1.899333
|
-19.8236677
|
-7.868344
|
-0.8562027
|
-0.7031036
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
5
|
4
|
0
|
0
|
0
|
0
|
|
Job/school required
|
140
|
256
|
126
|
84
|
23
|
30
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6186944
|
|
(Intercept)
|
against_beliefs
|
no_benefits
|
risky
|
motive_gl_beliefs
|
motive_gl_benefit
|
motive_gl_community_stories_experiences_influence
|
motive_gl_mandates
|
motive_gl_misinformation
|
motive_gl_no_reason
|
motive_gl_nonsensical
|
motive_gl_not_interested
|
motive_gl_personal_beliefs
|
motive_gl_personal_health
|
motive_gl_personal_medical_beliefs
|
motive_gl_risky
|
motive_gl_scared
|
motive_gl_side_effects
|
motive_gl_social_media
|
motive_gl_too_much_information
|
motive_gl_vaccinated
|
motive_gl_wants_vaccine
|
|
Job/school required
|
0.9609210
|
-0.8777844
|
-0.1725466
|
-0.3028431
|
-0.6293461
|
14.446983
|
-0.9603944
|
15.749297
|
0.4657656
|
-0.0347690
|
-0.9609114
|
-5.1374605
|
-0.9614073
|
-1.349213
|
-0.3911535
|
-0.5415194
|
17.010661
|
-0.2311699
|
-24.874292
|
17.2698202
|
15.5396268
|
16.7644701
|
|
Family supports it
|
0.8480765
|
-2.6134424
|
-1.5069073
|
-1.4494535
|
-21.4507800
|
13.866456
|
-2.2345015
|
-8.674796
|
0.5555172
|
-0.9897961
|
-1.9468958
|
16.9058267
|
-1.5419206
|
-1.895800
|
-2.1842484
|
-1.4892588
|
16.430109
|
-1.1257820
|
-24.762634
|
-7.5175863
|
-6.9856225
|
-4.9354799
|
|
Trusted info source
|
0.4478419
|
-2.5687235
|
-1.3338918
|
-1.0689994
|
-22.6158049
|
-8.294956
|
-21.5341929
|
-8.084124
|
-1.0053648
|
-1.9755678
|
-0.8534424
|
-3.9697963
|
-22.2016694
|
-2.196290
|
-19.4890160
|
-0.8711819
|
-6.919977
|
-0.9489754
|
-24.259417
|
-6.6681082
|
-6.4096797
|
-3.9942486
|
|
Something else
|
-0.4978363
|
-2.4684509
|
-0.8558487
|
-1.5182863
|
-21.8078635
|
15.905331
|
-20.8829981
|
16.668041
|
-0.0623543
|
-18.6297435
|
-20.2055890
|
-2.1122611
|
-21.3307601
|
-18.736749
|
-0.8516470
|
-0.1496063
|
-5.895734
|
-1.3895481
|
-21.298095
|
-4.0537964
|
15.8995094
|
-2.1242670
|
|
Rewards for vaxxing
|
-2.4800226
|
0.1675458
|
1.0987561
|
1.1749595
|
-17.1431543
|
-1.974732
|
-16.3180426
|
17.976130
|
-14.2281985
|
0.8555958
|
-15.0700253
|
-0.4013343
|
-14.0300264
|
1.246232
|
1.6691140
|
1.3687095
|
19.758530
|
1.2160986
|
-10.193438
|
19.9719896
|
-1.1017518
|
-0.4022712
|
|
Other
|
-2.8190564
|
-1.2446304
|
0.0175658
|
-0.8980005
|
-14.4263532
|
-1.642441
|
-15.3391947
|
-1.542944
|
-16.1476865
|
-18.2033399
|
-14.3576227
|
-0.2826374
|
-12.3220467
|
-15.713617
|
-16.3812674
|
0.7589556
|
-1.913640
|
-19.8553125
|
-7.851658
|
-0.8613467
|
-0.7081405
|
-0.2773374
|
|
Predicted class
|
True class
|
|
|
Nothing
|
Job/school required
|
Family supports it
|
Trusted info source
|
Something else
|
Rewards for vaxxing
|
Other
|
|
Nothing
|
1
|
5
|
4
|
0
|
0
|
1
|
0
|
|
Job/school required
|
140
|
256
|
126
|
84
|
23
|
29
|
5
|
|
Family supports it
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Trusted info source
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Something else
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Rewards for vaxxing
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
|
Other
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
[1] “misclassification error:” [1] 0.6186944
MeanDecreaseAccuracy gives a rough estimate of the loss in prediction performance when that particular variable is omitted from the training set.
MeanDecreaseGini: GINI is a measure of node impurity. Highest purity means that each node contains only elements of a single class. Assessing the decrease in GINI when that feature is omitted leads to an understanding of how important that feature is to split the data correctly.
Random Forest
We now try a random forest model with 70/30 train/test split for the task of predicting preferred treatments from a linear combination of features. The misclassification error still stays as high as 64% (now 57%!).