Loading the dataset
data.test4 <- read.csv("~/Final_Adult_Study_R_Docs/adult_study011615.csv")
# Load the psych package
library(psych)
items <- grep("PWB[0-9]", names(data.test4), value=TRUE)
scaleKey <- c(-1,-1,-1,-1,-1,1,1,1,-1)
data.test4[,items] <- apply(data.test4[,items], 2, as.numeric)
data.test4$meanPWB <- scoreItems(scaleKey, items = data.test4[, items])$score
library(reshape2); library(car); library(Amelia);library(mitools);library(nlme);library(predictmeans)
##
## Attaching package: 'car'
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.3, built: 2014-11-14)
## ## Copyright (C) 2005-2015 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lme4'
##
## The following object is masked from 'package:nlme':
##
## lmList
#Remove the meanPWB and ID Group and wave from data.test4 and create a new #dataset with only those variables.
data <- data.test4[,c("ID", "GROUP", "wave", "meanPWB")]
#Use dcast to cnage from long-format data to wide format data
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanPWB")
# Changing all NaNs to NA
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
Unsing the mapply function we create a new data set with ID Group baseline meanPWB and wave 2 and 3 of meanPWB. So we have a Baseline, which is Time 1 (placed in column 3 one on top of the other) to compare to both Time 2 and 3 (placed in column 4 one on top of the other). In the next line of code we then create a separate column called “wave” which calls the first 89 (which compares Time 2 to Baseline) “wave 1” and then the second 89 we call “wave 2” which compares Time 3 to Baseline. In the third line of code we add names to the new columns of the dataset.
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanPWB", "WAVE")
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Imputing missing data
MI <- amelia(data2, 50, idvars = c("ID"), ords = "GROUP")
## -- Imputation 1 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 2 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 3 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 4 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 5 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 6 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 7 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 8 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 9 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14
##
## -- Imputation 10 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 11 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 12 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 13 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
##
## -- Imputation 14 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 15 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 16 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 17 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 18 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 19 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 20 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 21 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 22 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 23 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 24 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 25 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 26 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 27 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 28 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 29 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 30 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 31 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 32 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 33 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 34 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 35 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 36 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 37 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 38 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 39 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 40 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 41 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 42 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 43 --
##
## 1 2 3 4 5 6
##
## -- Imputation 44 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 45 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 46 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 47 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## -- Imputation 48 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 49 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 50 --
##
## 1 2 3 4 5 6 7
Creating new dataset with missing data imputed
data(MI$imputations)
## Warning in data(MI$imputations): data set 'MI$imputations' not found
allimplogreg<-lapply(MI$imputations,function(X) {lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = X, method = "ML", na.action = "na.omit")})
betas<-MIextract(allimplogreg, fun=fixef)
vars<-MIextract(allimplogreg, fun=vcov)
summary(MIcombine(betas,vars))
## Multiple imputation results:
## MIcombine.default(betas, vars)
## results se (lower upper) missInfo
## (Intercept) 1.7938791 0.35404056 1.0967536 2.4910046 44 %
## GROUP1 0.2152451 0.27216593 -0.3190618 0.7495520 26 %
## WAVE 0.1375976 0.12567007 -0.1093064 0.3845015 32 %
## BASELINE 0.5855195 0.06687102 0.4536008 0.7174383 52 %
## GROUP1:WAVE 0.1096885 0.17834004 -0.2408486 0.4602256 34 %
Check results with Imputations using Zelig
library("Zelig")
## Loading required package: boot
##
## Attaching package: 'boot'
##
## The following object is masked from 'package:car':
##
## logit
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: MASS
## Loading required package: sandwich
## ZELIG (Versions 4.2-1, built: 2013-09-12)
##
## +----------------------------------------------------------------+
## | Please refer to http://gking.harvard.edu/zelig for full |
## | documentation or help.zelig() for help with commands and |
## | models support by Zelig. |
## | |
## | Zelig project citations: |
## | Kosuke Imai, Gary King, and Olivia Lau. (2009). |
## | ``Zelig: Everyone's Statistical Software,'' |
## | http://gking.harvard.edu/zelig |
## | and |
## | Kosuke Imai, Gary King, and Olivia Lau. (2008). |
## | ``Toward A Common Framework for Statistical Analysis |
## | and Development,'' Journal of Computational and |
## | Graphical Statistics, Vol. 17, No. 4 (December) |
## | pp. 892-913. |
## | |
## | To cite individual Zelig models, please use the citation |
## | format printed with each model run and in the documentation. |
## +----------------------------------------------------------------+
##
##
##
## Attaching package: 'Zelig'
##
## The following objects are masked from 'package:psych':
##
## alpha, describe, sim
##
## The following object is masked from 'package:utils':
##
## cite
zelig.fit <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = MI$imputations, model = "ls", cite = FALSE)
summary(zelig.fit)
##
## Model: ls
## Number of multiply imputed data sets: 50
##
## Combined results:
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Coefficients:
## Value Std. Error t-stat p-value
## (Intercept) 1.7881850 0.35511025 5.0355772 8.887242e-07
## GROUP1 0.2155407 0.29248363 0.7369326 4.613380e-01
## WAVE 0.1375976 0.13661689 1.0071782 3.141965e-01
## BASELINE 0.5868059 0.06467635 9.0729596 3.460875e-16
## GROUP1:WAVE 0.1096862 0.19328807 0.5674753 5.706082e-01
##
## For combined results from datasets i to j, use summary(x, subset = i:j).
## For separate results, use print(summary(x), subset = i:j).
Check assumptions with Random Computations
data1=MI$imputations[[1]]
library("Zelig")
zelig.fitdata1 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, model = "ls", cite = FALSE)
summary(zelig.fitdata1)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8441 -0.3056 0.0058 0.3757 1.4487
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0968 0.2774 7.557 2.29e-12 ***
## GROUP1 0.3476 0.2694 1.290 0.199
## WAVE 0.1351 0.1224 1.103 0.271
## BASELINE 0.5404 0.0449 12.036 < 2e-16 ***
## GROUP1:WAVE -0.1098 0.1703 -0.645 0.520
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5677 on 173 degrees of freedom
## Multiple R-squared: 0.4591, Adjusted R-squared: 0.4466
## F-statistic: 36.71 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data1[,3:4], group = data1$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 0.97 4.67 4.47 0.82 2.33 6.0 3.67 -0.43
## meanPWB 2 86 4.69 0.85 4.80 4.73 0.80 2.44 6.4 3.95 -0.46
## kurtosis se
## BASELINE -0.75 0.10
## meanPWB -0.37 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.22 0.94 4.06 4.25 0.91 1.00 6.49 5.49 -0.56
## meanPWB 2 92 4.76 0.68 4.87 4.81 0.53 2.89 6.10 3.21 -0.56
## kurtosis se
## BASELINE 1.33 0.10
## meanPWB 0.10 0.07
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
library(influence.ME)
##
## Attaching package: 'influence.ME'
##
## The following object is masked from 'package:stats':
##
## influence
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data1)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data1$meanPWB))
sel2 <- which(!is.na(data1$BASELINE))
data1$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data1, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data1, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data1, boxplot(meanPWB ~ WAVE + GROUP))
with(data1, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata1 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, method = "ML", na.action = "na.omit")
CookD(fullModeldata1)
plot(fullModeldata1, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata1)
## Linear mixed-effects model fit by maximum likelihood
## Data: data1
## AIC BIC logLik
## 307.1821 329.4545 -146.591
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2747064 0.4875913
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.0994726 0.28145720 87 7.459296 0.0000
## GROUP1 0.3474915 0.24208118 87 1.435434 0.1547
## WAVE 0.1350700 0.10666542 86 1.266296 0.2088
## BASELINE 0.5398528 0.04999342 86 10.798477 0.0000
## GROUP1:WAVE -0.1097702 0.14837071 86 -0.739838 0.4614
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.472
## WAVE -0.568 0.661
## BASELINE -0.786 0.036 0.000
## GROUP1:WAVE 0.404 -0.919 -0.719 0.006
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.49627900 -0.47386962 -0.03524971 0.67464629 2.60808061
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data10=MI$imputations[[10]]
library("Zelig")
zelig.fitdata10 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, model = "ls", cite = FALSE)
summary(zelig.fitdata10)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.72751 -0.25471 -0.00669 0.27639 1.23293
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.67914 0.25246 6.651 3.67e-10 ***
## GROUP1 0.24324 0.24377 0.998 0.320
## WAVE 0.18131 0.11080 1.636 0.104
## BASELINE 0.59912 0.04107 14.589 < 2e-16 ***
## GROUP1:WAVE 0.04371 0.15413 0.284 0.777
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5138 on 173 degrees of freedom
## Multiple R-squared: 0.5646, Adjusted R-squared: 0.5545
## F-statistic: 56.08 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data10[,3:4], group = data10$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 0.97 4.67 4.47 0.82 2.33 6.00 3.67 -0.43
## meanPWB 2 86 4.60 0.84 4.76 4.65 0.85 2.21 6.08 3.87 -0.59
## kurtosis se
## BASELINE -0.75 0.10
## meanPWB -0.10 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.21 0.92 4.04 4.25 0.93 1.00 5.71 4.71 -0.68
## meanPWB 2 92 4.78 0.69 4.89 4.82 0.66 2.85 6.21 3.36 -0.52
## kurtosis se
## BASELINE 1.31 0.10
## meanPWB 0.10 0.07
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data10)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data10$meanPWB))
sel2 <- which(!is.na(data10$BASELINE))
data10$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data10, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data10, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data10, boxplot(meanPWB ~ WAVE + GROUP))
with(data10, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata10 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, method = "ML", na.action = "na.omit")
CookD(fullModeldata10)
plot(fullModeldata10, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata10)
## Linear mixed-effects model fit by maximum likelihood
## Data: data10
## AIC BIC logLik
## 274.319 296.5915 -130.1595
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2098766 0.4609743
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.6851381 0.25508932 87 6.606071 0.0000
## GROUP1 0.2430386 0.22643150 87 1.073343 0.2861
## WAVE 0.1813088 0.10084269 86 1.797937 0.0757
## BASELINE 0.5977629 0.04438237 86 13.468477 0.0000
## GROUP1:WAVE 0.0436472 0.14028306 86 0.311137 0.7564
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.481
## WAVE -0.593 0.668
## BASELINE -0.770 0.029 0.000
## GROUP1:WAVE 0.415 -0.929 -0.719 0.014
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.90010617 -0.49999338 0.02029593 0.62087109 2.39451689
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data15=MI$imputations[[15]]
library("Zelig")
zelig.fitdata15 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, model = "ls", cite = FALSE)
summary(zelig.fitdata15)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.76742 -0.29389 0.05508 0.35141 1.46656
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57432 0.28018 5.619 7.55e-08 ***
## GROUP1 0.47637 0.26908 1.770 0.0784 .
## WAVE 0.22446 0.12228 1.836 0.0681 .
## BASELINE 0.61555 0.04581 13.436 < 2e-16 ***
## GROUP1:WAVE -0.08889 0.17009 -0.523 0.6019
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.567 on 173 degrees of freedom
## Multiple R-squared: 0.5228, Adjusted R-squared: 0.5118
## F-statistic: 47.39 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data15[,3:4], group = data15$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 0.97 4.67 4.47 0.82 2.33 6.00 3.67 -0.43
## meanPWB 2 86 4.64 0.85 4.78 4.67 0.82 2.44 6.44 4.00 -0.37
## kurtosis se
## BASELINE -0.75 0.10
## meanPWB -0.38 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.17 0.90 4.00 4.21 0.99 1.00 5.56 4.56 -0.68
## meanPWB 2 92 4.82 0.77 4.89 4.84 0.66 2.54 6.57 4.03 -0.24
## kurtosis se
## BASELINE 1.46 0.09
## meanPWB 0.43 0.08
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data15)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data15$meanPWB))
sel2 <- which(!is.na(data15$BASELINE))
data15$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data15, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data15, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data15, boxplot(meanPWB ~ WAVE + GROUP))
with(data15, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata15 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, method = "ML", na.action = "na.omit")
CookD(fullModeldata15)
plot(fullModeldata15, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata15)
## Linear mixed-effects model fit by maximum likelihood
## Data: data15
## AIC BIC logLik
## 309.902 332.1745 -147.951
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2198593 0.5138937
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.5785872 0.28310353 87 5.576007 0.0000
## GROUP1 0.4761720 0.25192737 87 1.890116 0.0621
## WAVE 0.2244625 0.11241933 86 1.996654 0.0490
## BASELINE 0.6145842 0.04918392 86 12.495632 0.0000
## GROUP1:WAVE -0.0889281 0.15638116 86 -0.568662 0.5711
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.490
## WAVE -0.596 0.669
## BASELINE -0.769 0.040 0.000
## GROUP1:WAVE 0.420 -0.931 -0.719 0.011
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.7142323 -0.5299018 0.0565178 0.6205942 2.7106416
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data25=MI$imputations[[25]]
library("Zelig")
zelig.fitdata25 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, model = "ls", cite = FALSE)
summary(zelig.fitdata25)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7215 -0.3597 -0.0036 0.3466 1.7645
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.09192 0.28929 7.231 1.48e-11 ***
## GROUP1 -0.07913 0.27818 -0.284 0.7764
## WAVE 0.10790 0.12640 0.854 0.3945
## BASELINE 0.52263 0.04725 11.061 < 2e-16 ***
## GROUP1:WAVE 0.33038 0.17582 1.879 0.0619 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5861 on 173 degrees of freedom
## Multiple R-squared: 0.4597, Adjusted R-squared: 0.4472
## F-statistic: 36.8 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data25[,3:4], group = data25$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 0.97 4.67 4.47 0.82 2.33 6 3.67 -0.43
## meanPWB 2 86 4.57 0.81 4.72 4.62 0.91 2.44 6 3.56 -0.51
## kurtosis se
## BASELINE -0.75 0.10
## meanPWB -0.35 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.20 0.90 4.06 4.25 0.97 1.00 5.56 4.56 -0.76
## meanPWB 2 92 4.87 0.74 4.89 4.89 0.74 2.89 6.69 3.80 -0.28
## kurtosis se
## BASELINE 1.48 0.09
## meanPWB -0.29 0.08
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data25)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data25$meanPWB))
sel2 <- which(!is.na(data25$BASELINE))
data25$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data25, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data25, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data25, boxplot(meanPWB ~ WAVE + GROUP))
with(data25, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata25 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, method = "ML", na.action = "na.omit")
CookD(fullModeldata25)
plot(fullModeldata25, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata25)
## Linear mixed-effects model fit by maximum likelihood
## Data: data25
## AIC BIC logLik
## 323.0047 345.2772 -154.5023
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.1813425 0.5486156
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.0915443 0.29127854 87 7.180565 0.0000
## GROUP1 -0.0791139 0.26702377 87 -0.296280 0.7677
## WAVE 0.1079049 0.12001509 86 0.899095 0.3711
## BASELINE 0.5227150 0.04952083 86 10.555458 0.0000
## GROUP1:WAVE 0.3303799 0.16693736 86 1.979065 0.0510
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.503
## WAVE -0.618 0.674
## BASELINE -0.753 0.039 0.000
## GROUP1:WAVE 0.442 -0.938 -0.719 0.003
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.70741008 -0.59266401 0.01572838 0.60798136 2.93787964
##
## Number of Observations: 178
## Number of Groups: 89
Check assumptions on model without any imputations
Describe the meanPWB variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 0.97 4.67 4.47 0.82 2.33 6 3.67 -0.43
## meanPWB 2 59 4.69 0.82 4.78 4.75 0.82 2.44 6 3.56 -0.70
## kurtosis se
## BASELINE -0.75 0.10
## meanPWB 0.03 0.11
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 4.17 0.91 4.00 4.21 0.99 1.00 5.56 4.56 -0.69
## meanPWB 2 54 4.88 0.64 4.94 4.93 0.49 2.89 6.00 3.11 -0.83
## kurtosis se
## BASELINE 1.41 0.10
## meanPWB 0.69 0.09
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$meanPWB))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data2, boxplot(meanPWB ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
CookD(fullModel)
plot(fullModel, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 176.3976 195.237 -81.19878
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.4091197 0.3619596
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.8931604 0.3810992 66 4.967632 0.0000
## GROUP1 0.0601033 0.2504277 66 0.240003 0.8111
## WAVE 0.0681424 0.1066892 38 0.638700 0.5268
## BASELINE 0.5790232 0.0749272 66 7.727815 0.0000
## GROUP1:WAVE 0.2198848 0.1559119 38 1.410314 0.1666
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.380
## WAVE -0.383 0.585
## BASELINE -0.896 0.090 -0.002
## GROUP1:WAVE 0.258 -0.860 -0.684 0.007
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.29290462 -0.47354223 0.08279482 0.52335417 1.88597819
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-value
| | Value| Std.Error| DF| t-value| p-value|
|:------------|----------:|----------:|---:|----------:|----------:|
|(Intercept) | 1.8931604| 0.3810992| 66| 4.9676319| 0.0000051|
|GROUP1 | 0.0601033| 0.2504277| 66| 0.2400027| 0.8110720|
|WAVE | 0.0681424| 0.1066892| 38| 0.6387000| 0.5268493|
|BASELINE | 0.5790232| 0.0749272| 66| 7.7278147| 0.0000000|
|GROUP1:WAVE | 0.2198848| 0.1559119| 38| 1.4103142| 0.1665805|
Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 1.8931604 | 1.1499278 | 2.6363930 |
| GROUP1 | 0.0601033 | -0.4282893 | 0.5484960 |
| WAVE | 0.0681424 | -0.1428268 | 0.2791116 |
| BASELINE | 0.5790232 | 0.4328977 | 0.7251487 |
| GROUP1:WAVE | 0.2198848 | -0.0884182 | 0.5281878 |