ELeFHAnt_Tutorial

library(ELeFHAnt)
#> Loading required package: Seurat
#> Attaching SeuratObject
#> Attaching sp
#> Loading required package: dplyr
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
#> Loading required package: tidyr
#> Loading required package: ggplot2
#> Loading required package: class
#> Loading required package: splitstackshape
#> Loading required package: fgsea
#> Loading required package: tibble
#> Loading required package: msigdbr
#> Loading required package: scPred
#> Loading required package: magrittr
#> 
#> Attaching package: 'magrittr'
#> The following object is masked from 'package:tidyr':
#> 
#>     extract
#> Loading required package: harmony
#> Loading required package: Rcpp
#> Loading required package: scater
#> Loading required package: SingleCellExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#> 
#> Attaching package: 'matrixStats'
#> The following object is masked from 'package:dplyr':
#> 
#>     count
#> 
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#> 
#>     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#>     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#>     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#>     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#>     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#>     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#>     colWeightedMeans, colWeightedMedians, colWeightedSds,
#>     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#>     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#>     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#>     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#>     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#>     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#>     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#>     rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> Loading required package: parallel
#> 
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:parallel':
#> 
#>     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
#>     clusterExport, clusterMap, parApply, parCapply, parLapply,
#>     parLapplyLB, parRapply, parSapply, parSapplyLB
#> The following objects are masked from 'package:dplyr':
#> 
#>     combine, intersect, setdiff, union
#> The following objects are masked from 'package:stats':
#> 
#>     IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#> 
#>     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
#>     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
#>     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
#>     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
#>     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
#>     union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#> 
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:tidyr':
#> 
#>     expand
#> The following objects are masked from 'package:dplyr':
#> 
#>     first, rename
#> The following object is masked from 'package:base':
#> 
#>     expand.grid
#> Loading required package: IRanges
#> 
#> Attaching package: 'IRanges'
#> The following objects are masked from 'package:dplyr':
#> 
#>     collapse, desc, slice
#> The following object is masked from 'package:sp':
#> 
#>     %over%
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#> 
#>     Vignettes contain introductory material; view with
#>     'browseVignettes()'. To cite Bioconductor, see
#>     'citation("Biobase")', and for packages 'citation("pkgname")'.
#> 
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#> 
#>     rowMedians
#> The following objects are masked from 'package:matrixStats':
#> 
#>     anyMissing, rowMedians
#> 
#> Attaching package: 'SummarizedExperiment'
#> The following object is masked from 'package:SeuratObject':
#> 
#>     Assays
#> The following object is masked from 'package:Seurat':
#> 
#>     Assays
#> Loading required package: parsnip
#> Loading required package: ranger
#> Loading required package: LiblineaR
#> Loading required package: caTools
#> 
#> Attaching package: 'caTools'
#> The following object is masked from 'package:IRanges':
#> 
#>     runmean
#> The following object is masked from 'package:S4Vectors':
#> 
#>     runmean
#> Loading required package: reshape2
#> 
#> Attaching package: 'reshape2'
#> The following object is masked from 'package:tidyr':
#> 
#>     smiths
#> Loading required package: biomaRt
#> Loading required package: readxl
#> Loading required package: Matrix
#> 
#> Attaching package: 'Matrix'
#> The following object is masked from 'package:S4Vectors':
#> 
#>     expand
#> The following objects are masked from 'package:tidyr':
#> 
#>     expand, pack, unpack
#> Warning: replacing previous import 'biomaRt::select' by 'dplyr::select' when
#> loading 'ELeFHAnt'
#> Warning: replacing previous import 'Matrix::expand' by 'tidyr::expand' when
#> loading 'ELeFHAnt'
#> Warning: replacing previous import 'magrittr::extract' by 'tidyr::extract' when
#> loading 'ELeFHAnt'
#> Warning: replacing previous import 'Matrix::pack' by 'tidyr::pack' when loading
#> 'ELeFHAnt'
#> Warning: replacing previous import 'Matrix::unpack' by 'tidyr::unpack' when
#> loading 'ELeFHAnt'
library(Matrix)
data("reference_PBMC")
data("query_PBMC")
reference = reference_PBMC
query = query_PBMC
query = NormalizeData(query)
query = FindVariableFeatures(query)
query = ScaleData(query)
#> Centering and scaling data matrix
query = RunPCA(query)
#> PC_ 1 
#> Positive:  CST3, AIF1, LST1, FTL, FTH1, TYMP, TYROBP, CFD, FCER1G, SERPINA1 
#>     FCN1, LYZ, CTSS, IFITM3, S100A9, LGALS1, COTL1, PSAP, IFI30, S100A11 
#>     NPC2, CFP, SAT1, RP11-290F20.3, S100A8, PYCARD, S100A6, PILRA, LGALS2, CEBPB 
#> Negative:  IL32, LTB, CD3E, LDHB, CTSW, GZMM, CD2, IL7R, CCL5, CD247 
#>     ACAP1, CST7, GZMA, STK17A, NKG7, CD27, PRF1, HOPX, GIMAP5, NOSIP 
#>     AQP3, GZMK, NCR3, FGFBP2, LYAR, KLRG1, SAMD3, CD8B, ETS1, GZMB 
#> PC_ 2 
#> Positive:  PF4, SDPR, GNG11, PPBP, SPARC, GP9, TUBB1, HIST1H2AC, CLU, AP001189.4 
#>     PTCRA, ITGA2B, NRGN, RGS18, CD9, TMEM40, MMD, CA2, ACRBP, TREML1 
#>     F13A1, SEPT5, TSC22D1, PTGS1, CMTM5, LY6G6F, GP1BA, RP11-367G6.3, MYL9, RUFY1 
#> Negative:  RPS2, TMSB10, CYBA, NKG7, S100A4, GZMA, CST7, PRF1, CTSW, GNLY 
#>     FGFBP2, CD247, EIF4A1, GZMB, GZMM, ID2, IFITM2, GZMH, SPON2, ANXA1 
#>     CCL4, FCGR3A, PFN1, APOBEC3G, RBM3, S100A10, GIMAP7, IGFBP7, HOPX, CLIC3 
#> PC_ 3 
#> Positive:  NKG7, PRF1, GZMB, CST7, GZMA, FGFBP2, GNLY, CTSW, SPON2, CD247 
#>     GZMH, GZMM, CCL5, CCL4, FCGR3A, SRGN, CLIC3, AKR1C3, XCL2, PFN1 
#>     ACTB, IGFBP7, TTC38, HOPX, APMAP, SH3BGRL3, RHOC, ID2, ARPC5L, ANXA1 
#> Negative:  CD79A, MS4A1, HLA-DRA, HLA-DQB1, TCL1A, HLA-DQA1, RPS2, HLA-DRB1, CD74, CD79B 
#>     LTB, HLA-DPB1, HLA-DMA, HLA-DRB5, HLA-DPA1, HLA-DQA2, FCER2, LY86, HVCN1, SNHG7 
#>     KIAA0125, P2RX5, IRF8, CD19, QRSL1, SWAP70, IGLL5, FCGR2B, C6orf48, POU2AF1 
#> PC_ 4 
#> Positive:  S100A4, S100A8, TMSB4X, S100A6, S100A9, CD14, GIMAP7, FCN1, IL32, RBP7 
#>     LGALS2, S100A11, CD3E, TYROBP, ANXA1, LYZ, S100A12, IL7R, MS4A6A, GZMM 
#>     GIMAP4, FTL, CFD, LGALS1, S100A10, NOSIP, CD2, AIF1, FYB, TIMP1 
#> Negative:  HLA-DQA1, KIAA0101, TYMS, CD79A, HLA-DQB1, RRM2, TK1, CD74, CD79B, GINS2 
#>     MS4A1, HLA-DQA2, MKI67, HLA-DPB1, ZWINT, HLA-DRA, MYBL2, HLA-DRB1, BIRC5, HLA-DPA1 
#>     HLA-DRB5, KIFC1, TCL1A, CLSPN, HLA-DMA, CENPM, MZB1, AURKB, STMN1, NUSAP1 
#> PC_ 5 
#> Positive:  LDHB, VIM, IL7R, CD3E, IL32, AQP3, NOSIP, CD27, RPS2, CD2 
#>     FYB, GIMAP7, CD40LG, RRM2, KIAA0101, S100A10, LTB, TYMS, GIMAP4, TK1 
#>     ZWINT, MKI67, PPA1, LDLRAP1, GIMAP5, BIRC5, GINS2, GAPDH, TRADD, COTL1 
#> Negative:  GZMB, FGFBP2, CD79B, CD79A, GNLY, TCL1A, SPON2, PRF1, MS4A1, CD74 
#>     HLA-DQA1, NKG7, CCL4, HLA-DQB1, HLA-DPB1, CLIC3, HLA-DPA1, HLA-DRA, CST7, HLA-DRB1 
#>     IGFBP7, PLAC8, TTC38, AKR1C3, GZMA, FCGR3A, XCL2, HLA-DRB5, FCER2, APMAP
query = RunUMAP(query, dims = 1:20)
#> Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
#> To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
#> This message will be shown once per session
#> 00:14:25 UMAP embedding parameters a = 0.9922 b = 1.112
#> 00:14:25 Read 1358 rows and found 20 numeric columns
#> 00:14:25 Using Annoy for neighbor search, n_neighbors = 30
#> 00:14:25 Building Annoy index with metric = cosine, n_trees = 50
#> 0%   10   20   30   40   50   60   70   80   90   100%
#> [----|----|----|----|----|----|----|----|----|----|
#> **************************************************|
#> 00:14:25 Writing NN index file to temp file /var/folders/bw/whg3swn15jb08_f7v2y09xw9glk1wg/T//RtmpWY8t69/filee0be63731190
#> 00:14:25 Searching Annoy index using 1 thread, search_k = 3000
#> 00:14:25 Annoy recall = 100%
#> 00:14:26 Commencing smooth kNN distance calibration using 1 thread
#> 00:14:27 Initializing from normalized Laplacian + noise
#> 00:14:27 Commencing optimization for 500 epochs, with 54848 positive edges
#> 00:14:29 Optimization finished
human_tissues
#>   [1] "Abdomen"                        "Abdominal adipose tissue"      
#>   [3] "Abdominal fat pad"              "Acinus"                        
#>   [5] "Adipose tissue"                 "Adrenal gland"                 
#>   [7] "Adventitia"                     "Airway"                        
#>   [9] "Airway epithelium"              "Allocortex"                    
#>  [11] "Alveolus"                       "Amniotic fluid"                
#>  [13] "Amniotic membrane"              "Ampullary"                     
#>  [15] "Antecubital vein"               "Anterior cruciate ligament"    
#>  [17] "Anterior presomitic mesoderm"   "Aorta"                         
#>  [19] "Aortic valve"                   "Artery"                        
#>  [21] "Arthrosis"                      "Articular Cartilage"           
#>  [23] "Ascites"                        "Ascitic fluid"                 
#>  [25] "Auditory cortex"                "Basal airway"                  
#>  [27] "Basilar membrane"               "Bile duct"                     
#>  [29] "Biliary tract"                  "Bladder"                       
#>  [31] "Blood"                          "Blood vessel"                  
#>  [33] "Bone"                           "Bone marrow"                   
#>  [35] "Brain"                          "Breast"                        
#>  [37] "Bronchial vessel"               "Bronchiole"                    
#>  [39] "Bronchoalveolar lavage"         "Bronchoalveolar system"        
#>  [41] "Bronchus"                       "Brown adipose tissue"          
#>  [43] "Calvaria"                       "Capillary"                     
#>  [45] "Cardiovascular system"          "Carotid artery"                
#>  [47] "Carotid plaque"                 "Cartilage"                     
#>  [49] "Caudal cortex"                  "Caudal forebrain"              
#>  [51] "Caudal ganglionic eminence"     "Cavernosum"                    
#>  [53] "Central amygdala"               "Central nervous system"        
#>  [55] "Cerebellum"                     "Cerebral organoid"             
#>  [57] "Cerebrospinal fluid"            "Chorionic villi"               
#>  [59] "Chorionic villus"               "Choroid"                       
#>  [61] "Choroid plexus"                 "Colon"                         
#>  [63] "Colon epithelium"               "Colorectum"                    
#>  [65] "Cornea"                         "Corneal endothelium"           
#>  [67] "Corneal epithelium"             "Coronary artery"               
#>  [69] "Corpus callosum"                "Corpus luteum"                 
#>  [71] "Cortex"                         "Cortical layer"                
#>  [73] "Cortical thymus"                "Decidua"                       
#>  [75] "Deciduous tooth"                "Dental pulp"                   
#>  [77] "Dermis"                         "Diencephalon"                  
#>  [79] "Dorsal forebrain"               "Dorsal root ganglion"          
#>  [81] "Dorsolateral prefrontal cortex" "Ductal tissue"                 
#>  [83] "Duodenum"                       "Ectocervix"                    
#>  [85] "Ectoderm"                       "Embryo"                        
#>  [87] "Embryoid body"                  "Embryonic brain"               
#>  [89] "Embryonic heart"                "Embryonic Kidney"              
#>  [91] "Embryonic stem cell"            "Endocardium"                   
#>  [93] "Endocrine"                      "Endoderm"                      
#>  [95] "Endometrium"                    "Endometrium stroma"            
#>  [97] "Entorhinal cortex"              "Epidermis"                     
#>  [99] "Epithelium"                     "Esophagus"                     
#> [101] "Eye"                            "Fetal brain"                   
#> [103] "Fetal heart"                    "Fetal ileums"                  
#> [105] "Fetal kidney"                   "Fetal Leydig"                  
#> [107] "Fetal liver"                    "Fetal lung"                    
#> [109] "Fetal pancreas"                 "Fetal thymus"                  
#> [111] "Fetal umbilical cord"           "Fetus"                         
#> [113] "Foreskin"                       "Frontal cortex"                
#> [115] "Fundic gland"                   "Gall bladder"                  
#> [117] "Gastric corpus"                 "Gastric epithelium"            
#> [119] "Gastric gland"                  "Gastrointestinal tract"        
#> [121] "Germ"                           "Germinal center"               
#> [123] "Gingiva"                        "Gonad"                         
#> [125] "Gut"                            "Hair follicle"                 
#> [127] "Head and neck"                  "Heart"                         
#> [129] "Heart muscle"                   "Hippocampus"                   
#> [131] "Ileum"                          "Iliac crest"                   
#> [133] "Inferior colliculus"            "Interfollicular epidermis"     
#> [135] "Intervertebral disc"            "Intestinal crypt"              
#> [137] "Intestine"                      "Intrahepatic cholangio"        
#> [139] "Jejunum"                        "Kidney"                        
#> [141] "Lacrimal gland"                 "Large intestine"               
#> [143] "Laryngeal squamous epithelium"  "Larynx"                        
#> [145] "Lateral ganglionic eminence"    "Left lobe"                     
#> [147] "Limb bud"                       "Limbal epithelium"             
#> [149] "Liver"                          "Lumbar vertebra"               
#> [151] "Lung"                           "Lymph"                         
#> [153] "Lymph node"                     "Lymphatic vessel"              
#> [155] "Lymphoid tissue"                "Malignant pleural effusion"    
#> [157] "Mammary epithelium"             "Mammary gland"                 
#> [159] "Medial ganglionic eminence"     "Medullary thymus"              
#> [161] "Meniscus"                       "Mesenchyme"                    
#> [163] "Mesoblast"                      "Mesoderm"                      
#> [165] "Microvascular endothelium"      "Microvessel"                   
#> [167] "Midbrain"                       "Middle temporal gyrus"         
#> [169] "Milk"                           "Molar"                         
#> [171] "Muscle"                         "Myenteric plexus"              
#> [173] "Myocardium"                     "Myometrium"                    
#> [175] "Nasal concha"                   "Nasal epithelium"              
#> [177] "Nasal mucosa"                   "Nasal polyp"                   
#> [179] "Nasopharyngeal mucosa"          "Nasopharynx"                   
#> [181] "Neocortex"                      "Nerve"                         
#> [183] "Nose"                           "Nucleus pulposus"              
#> [185] "Olfactory neuroepithelium"      "Omentum"                       
#> [187] "Optic nerve"                    "Oral cavity"                   
#> [189] "Oral mucosa"                    "Osteoarthritic cartilage"      
#> [191] "Ovarian cortex"                 "Ovarian follicle"              
#> [193] "Ovary"                          "Oviduct"                       
#> [195] "Palatine tonsil"                "Pancreas"                      
#> [197] "Pancreatic acinar tissue"       "Pancreatic duct"               
#> [199] "Pancreatic islet"               "Parotid gland"                 
#> [201] "Periodontal ligament"           "Periodontium"                  
#> [203] "Periosteum"                     "Peripheral blood"              
#> [205] "Peritoneal fluid"               "Peritoneum"                    
#> [207] "Pituitary"                      "Pituitary gland"               
#> [209] "Placenta"                       "Plasma"                        
#> [211] "Pleura"                         "Pluripotent stem cell"         
#> [213] "Polyp"                          "Posterior fossa"               
#> [215] "Posterior presomitic mesoderm"  "Prefrontal cortex"             
#> [217] "Premolar"                       "Presomitic mesoderm"           
#> [219] "Primitive streak"               "Prostate"                      
#> [221] "Pulmonary arteriy"              "Pyloric gland"                 
#> [223] "Rectum"                         "Renal glomerulus"              
#> [225] "Respiratory tract"              "Retina"                        
#> [227] "Retinal organoid"               "Retinal pigment epithelium"    
#> [229] "Right ventricle"                "Saliva"                        
#> [231] "Salivary gland"                 "Scalp"                         
#> [233] "Sclerocorneal tissue"           "Seminal plasma"                
#> [235] "Septum transversum"             "Serum"                         
#> [237] "Serum exosome"                  "Sinonasal mucosa"              
#> [239] "Sinus tissue"                   "Skeletal muscle"               
#> [241] "Skin"                           "Small intestinal crypt"        
#> [243] "Small intestine"                "Soft tissue"                   
#> [245] "Sperm"                          "Spinal cord"                   
#> [247] "Spleen"                         "Splenic red pulp"              
#> [249] "Sputum"                         "Stomach"                       
#> [251] "Subcutaneous adipose tissue"    "Submandibular gland"           
#> [253] "Subpallium"                     "Subplate"                      
#> [255] "Subventricular zone"            "Superior frontal gyrus"        
#> [257] "Sympathetic ganglion"           "Synovial fluid"                
#> [259] "Synovium"                       "Taste bud"                     
#> [261] "Tendon"                         "Testis"                        
#> [263] "Thalamus"                       "Thymus"                        
#> [265] "Thyroid"                        "Tongue"                        
#> [267] "Tonsil"                         "Tooth"                         
#> [269] "Trachea"                        "Tracheal airway epithelium"    
#> [271] "Transformed artery"             "Trophoblast"                   
#> [273] "Umbilical cord"                 "Umbilical cord blood"          
#> [275] "Umbilical vein"                 "Undefined"                     
#> [277] "Urine"                          "Urothelium"                    
#> [279] "Uterine cervix"                 "Uterus"                        
#> [281] "Vagina"                         "Vein"                          
#> [283] "Venous blood"                   "Ventral thalamus"              
#> [285] "Ventricular and atrial"         "Ventricular zone"              
#> [287] "Vessel"                         "Visceral adipose tissue"       
#> [289] "Vocal cord"                     "Vocal fold"                    
#> [291] "White adipose tissue"           "White matter"                  
#> [293] "Yolk sac"

mouse_tissues
#>   [1] "Adipose tissue"                      
#>   [2] "Adrenal gland"                       
#>   [3] "Adventitia"                          
#>   [4] "Afferent artery"                     
#>   [5] "Airway"                              
#>   [6] "Alveolar capillary"                  
#>   [7] "Alveolus"                            
#>   [8] "Amygdala"                            
#>   [9] "Annulus fibrosus"                    
#>  [10] "Anorectal junction"                  
#>  [11] "Anterior lobule"                     
#>  [12] "Aorta"                               
#>  [13] "Aortic root"                         
#>  [14] "Aortic valve"                        
#>  [15] "Arm"                                 
#>  [16] "Artery"                              
#>  [17] "Arthrosis"                           
#>  [18] "Ascending aorta"                     
#>  [19] "Auditory cortex"                     
#>  [20] "Basilar membrane"                    
#>  [21] "Bed nucleus of the stria terminalis" 
#>  [22] "Belly"                               
#>  [23] "Bile duct"                           
#>  [24] "Biliary tract"                       
#>  [25] "Bladder"                             
#>  [26] "Bladder mucosa"                      
#>  [27] "Blood"                               
#>  [28] "Blood brain barrier"                 
#>  [29] "Blood vessel"                        
#>  [30] "Bone"                                
#>  [31] "Bone marrow"                         
#>  [32] "Brain"                               
#>  [33] "Breast"                              
#>  [34] "Bronchiole"                          
#>  [35] "Bronchus"                            
#>  [36] "Buccal mucosal epithelium"           
#>  [37] "Caecum"                              
#>  [38] "Capillary"                           
#>  [39] "Cardiac neural crest"                
#>  [40] "Cardiovascular system"               
#>  [41] "Carotid artery"                      
#>  [42] "Cartilage"                           
#>  [43] "Cauda epididymis"                    
#>  [44] "Caudal ganglionic eminence"          
#>  [45] "Central nervous system"              
#>  [46] "Cerebellar nuclei"                   
#>  [47] "Cerebellum"                          
#>  [48] "Cerebral cortex"                     
#>  [49] "Cerebral motor cortex"               
#>  [50] "Cerebral organoid"                   
#>  [51] "Cerebrospinal fluid"                 
#>  [52] "Choroid"                             
#>  [53] "Choroid plexus"                      
#>  [54] "Choroid plexus capillary"            
#>  [55] "Cochlea"                             
#>  [56] "Cochlear duct"                       
#>  [57] "Colon"                               
#>  [58] "Colon epithelium"                    
#>  [59] "Colonic crypt"                       
#>  [60] "Colorectum"                          
#>  [61] "Conjunctiva"                         
#>  [62] "Connective tissue"                   
#>  [63] "Cornea"                              
#>  [64] "Corneal epithelium"                  
#>  [65] "Cornu ammonis 1"                     
#>  [66] "Cornu ammonis 2"                     
#>  [67] "Coronary artery"                     
#>  [68] "Corpus callosum"                     
#>  [69] "Cortex"                              
#>  [70] "Dermal microvasculature"             
#>  [71] "Dermal papilla"                      
#>  [72] "Dermis"                              
#>  [73] "Diaphragm"                           
#>  [74] "Distal limb mesenchyme"              
#>  [75] "Distal lung endoderm"                
#>  [76] "Dorsal forebrain"                    
#>  [77] "Dorsal root ganglia"                 
#>  [78] "Dorsal root ganglion"                
#>  [79] "Dorsal skin"                         
#>  [80] "Dorsolateral prefrontal cortex"      
#>  [81] "Dorsomedial hypothalamus"            
#>  [82] "Ear"                                 
#>  [83] "Ectoderm"                            
#>  [84] "Efferent artery"                     
#>  [85] "Embryo"                              
#>  [86] "Embryoid body"                       
#>  [87] "Embryonic brain"                     
#>  [88] "Embryonic breast"                    
#>  [89] "Embryonic ectoderm"                  
#>  [90] "Embryonic endoderm"                  
#>  [91] "Embryonic heart"                     
#>  [92] "Embryonic Kidney"                    
#>  [93] "Embryonic mesoderm"                  
#>  [94] "Embryonic stem cell"                 
#>  [95] "Embryos"                             
#>  [96] "Endocardium"                         
#>  [97] "Endoderm"                            
#>  [98] "Endodontium"                         
#>  [99] "Endometrium"                         
#> [100] "Endothelium"                         
#> [101] "Enteric neural crest"                
#> [102] "Epiblast"                            
#> [103] "Epidermis"                           
#> [104] "Epithelium"                          
#> [105] "Esophagus"                           
#> [106] "External genitalia"                  
#> [107] "Extra-embryonic ectoderm"            
#> [108] "Extra-embryonic endoderm"            
#> [109] "Extra-embryonic mesoderm"            
#> [110] "Extra-embryonic tissue"              
#> [111] "Eye"                                 
#> [112] "Fat pad"                             
#> [113] "Femur bone"                          
#> [114] "Fetal hypothalamus"                  
#> [115] "Fetal kidney"                        
#> [116] "Fetal liver"                         
#> [117] "Fetal ovary"                         
#> [118] "Fetal skin"                          
#> [119] "First heart field(FHF)"              
#> [120] "Flesh"                               
#> [121] "Focculus"                            
#> [122] "Foregut endoderm"                    
#> [123] "Ganglion cell layer of retina"       
#> [124] "Gastric corpus"                      
#> [125] "Gastric epithelium"                  
#> [126] "Gastric gland"                       
#> [127] "Gastric isthmus"                     
#> [128] "Gastrointestinal tract"              
#> [129] "Germinal center"                     
#> [130] "Gingiva"                             
#> [131] "Glomerular capillary"                
#> [132] "Glomerulus"                          
#> [133] "Gonad"                               
#> [134] "Gut"                                 
#> [135] "Hair canal"                          
#> [136] "Hair follicle"                       
#> [137] "Head and Neck"                       
#> [138] "Heart"                               
#> [139] "Heart muscle"                        
#> [140] "Heart valve"                         
#> [141] "Hind limb"                           
#> [142] "Hippocampus"                         
#> [143] "Hypothalamic brain slice"            
#> [144] "Hypothalamic nucleus"                
#> [145] "Hypothalamus"                        
#> [146] "Hypothalamus-POA"                    
#> [147] "Ileum"                               
#> [148] "Incisor"                             
#> [149] "Inferior colliculus"                 
#> [150] "Inner cell mass"                     
#> [151] "Inner Ear"                           
#> [152] "Inner nuclear layer of retina"       
#> [153] "Interfollicular epidermis"           
#> [154] "Intestinal crypt"                    
#> [155] "Intestine"                           
#> [156] "Juxta-cardiac field (JCF)"           
#> [157] "Kidney"                              
#> [158] "Kidney cortex"                       
#> [159] "Knee"                                
#> [160] "Lacrimal gland"                      
#> [161] "Large intestine"                     
#> [162] "Large peritoneal"                    
#> [163] "Lateral hypothalamus"                
#> [164] "Left ventricle"                      
#> [165] "limb"                                
#> [166] "Limb bud"                            
#> [167] "Liver"                               
#> [168] "Lobule VI"                           
#> [169] "Lower dermis"                        
#> [170] "Lower hair follicle"                 
#> [171] "Lung"                                
#> [172] "Lymph"                               
#> [173] "Lymph node"                          
#> [174] "Lymphatic vessel"                    
#> [175] "Lymphoid tissue"                     
#> [176] "Macrovessel"                         
#> [177] "Main olfactory epithelia"            
#> [178] "Mammary epithelium"                  
#> [179] "Mammary gland"                       
#> [180] "Mandibular alveolar bone"            
#> [181] "Meninge"                             
#> [182] "Meniscus"                            
#> [183] "Mesenteric lymph node"               
#> [184] "Mesoderm"                            
#> [185] "Mesodermal precursor"                
#> [186] "Mesonephros"                         
#> [187] "Microvessel"                         
#> [188] "Midbrain"                            
#> [189] "Molar"                               
#> [190] "Motor cortex"                        
#> [191] "Muscle"                              
#> [192] "Myenteric plexus"                    
#> [193] "Myocardium"                          
#> [194] "Nasal cavity"                        
#> [195] "Neocortex"                           
#> [196] "Nerve"                               
#> [197] "Neural tube"                         
#> [198] "Nodose"                              
#> [199] "Nodulus"                             
#> [200] "Non-Vasculature"                     
#> [201] "Nucleus accumbens"                   
#> [202] "Olfactory neuroepithelium"           
#> [203] "Omentum"                             
#> [204] "Oral cavity"                         
#> [205] "Outflow tract"                       
#> [206] "Ovarian follicle"                    
#> [207] "Ovary"                               
#> [208] "Pancreas"                            
#> [209] "Pancreatic duct"                     
#> [210] "Pancreatic islet"                    
#> [211] "PeriBiliary cell gland"              
#> [212] "Peribiliary gland"                   
#> [213] "Perichondrium"                       
#> [214] "Periosteum"                          
#> [215] "Peripheral blood"                    
#> [216] "Peritoneal cavity"                   
#> [217] "Peritoneum"                          
#> [218] "Peyer patch"                         
#> [219] "Pharynx"                             
#> [220] "Pituitary"                           
#> [221] "Placenta"                            
#> [222] "Pluripotent stem cell"               
#> [223] "Polyp"                               
#> [224] "Posterior lobule"                    
#> [225] "Posterior second heart field"        
#> [226] "Prefrontal cortex"                   
#> [227] "Presomitic mesoderm"                 
#> [228] "Primary motor cortex"                
#> [229] "Primary visual cortex"               
#> [230] "Primitive endoderm"                  
#> [231] "Primordial germ"                     
#> [232] "Prostate"                            
#> [233] "Proximal lung endoderm"              
#> [234] "Pulmonary aorta"                     
#> [235] "Pulmonary arteriy"                   
#> [236] "Pylorus"                             
#> [237] "Red pulp"                            
#> [238] "Renal glomerulus"                    
#> [239] "Retina"                              
#> [240] "Retina vessel"                       
#> [241] "Retinal pigment epithelium"          
#> [242] "Salivary duct"                       
#> [243] "Salivary gland"                      
#> [244] "Sciatic nerve"                       
#> [245] "Sebaceous gland"                     
#> [246] "Seminal plasma"                      
#> [247] "Serum"                               
#> [248] "Sinoatrial node"                     
#> [249] "Skeletal muscle"                     
#> [250] "Skin"                                
#> [251] "Skin of back"                        
#> [252] "Small intestinal crypt"              
#> [253] "Small intestine"                     
#> [254] "Smooth muscle"                       
#> [255] "Soft palate"                         
#> [256] "Soft tissue"                         
#> [257] "Somatosensory cortex"                
#> [258] "Spinal cord"                         
#> [259] "Spleen"                              
#> [260] "Stomach"                             
#> [261] "Striatum"                            
#> [262] "Subcutaneous adipose tissue"         
#> [263] "Subgranular zone"                    
#> [264] "Submandibular gland"                 
#> [265] "Subventricular zone"                 
#> [266] "Superior cervical ganglion"          
#> [267] "Suture mesenchyme"                   
#> [268] "Synovium"                            
#> [269] "Taste bud"                           
#> [270] "Tendon"                              
#> [271] "Testis"                              
#> [272] "Thoracic aorta"                      
#> [273] "Thymus"                              
#> [274] "Thyroid"                             
#> [275] "Tongue"                              
#> [276] "Tonsil"                              
#> [277] "Trachea"                             
#> [278] "Trophectoderm"                       
#> [279] "Umbilical cord"                      
#> [280] "Umbilical cord blood"                
#> [281] "Undefined"                           
#> [282] "Upper hair follicle"                 
#> [283] "Urethra"                             
#> [284] "Uterine cervix"                      
#> [285] "Uterus"                              
#> [286] "Vein"                                
#> [287] "Ventral posterior hypothalamus (VPH)"
#> [288] "Ventral tegmental area"              
#> [289] "Ventromedial hypothalamus (VMHvl)"   
#> [290] "Vessel"                              
#> [291] "White adipose tissue"                
#> [292] "White matter"                        
#> [293] "Yolk sac"

#### Copy the names of tissues you are interested. Multiple tissues are accepted by Validate Predictions.
out.CelltypeAnnotation = CelltypeAnnotation(reference = reference, query = query, downsample = TRUE, downsample_to = 1000, validatePredictions = TRUE, annotationCol = "Celltype", species = "human", tissue = "Peripheral blood")
#> Setting Assay of reference and query to RNA
#> Running Diagonistis on reference and query
#> Number of cells in reference:2019
#> Number of cells in query:1358
#> Downsampling reference
#> Number of cells in reference after downsampling per celltype:2019
#> Calculating ratio of number of cells in downsampled reference vs query
#> Ratio of number of cells in query vs downsampled reference:0.672610203070827
#> Centering and scaling data matrix
#> Centering and scaling data matrix
#> Finding common variable features between reference and query
#> Subsetting reference and query for common variable features
#> Preparing train and test datasets from reference and query
#> Scaling reference to obtain training set
#> Scaling query to obtain test set
#> 
#> Setting up three classifiers: randomForest, SVM and LR
#> Initializing randomForest
#> randomForest Complete
#> Initializing SVM
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 2.949909
#> #nonzeros/#features = 51/493
#> ..*.*
#> optimization finished, #iter = 39
#> Objective value = 22.066079
#> #nonzeros/#features = 188/493
#> ..*.*
#> optimization finished, #iter = 35
#> Objective value = 8.864476
#> #nonzeros/#features = 117/493
#> ..*.*
#> optimization finished, #iter = 33
#> Objective value = 22.589678
#> #nonzeros/#features = 186/493
#> ..*.*
#> optimization finished, #iter = 31
#> Objective value = 7.711503
#> #nonzeros/#features = 96/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 13.829589
#> #nonzeros/#features = 198/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 3.922960
#> #nonzeros/#features = 69/493
#> ....**.
#> optimization finished, #iter = 50
#> Objective value = 21.344268
#> #nonzeros/#features = 208/493
#> ..*.*
#> optimization finished, #iter = 32
#> Objective value = 15.986209
#> #nonzeros/#features = 154/493
#> ..*.*.
#> optimization finished, #iter = 40
#> Objective value = 19.200190
#> #nonzeros/#features = 159/493
#> .**
#> optimization finished, #iter = 18
#> Objective value = 4.516412
#> #nonzeros/#features = 50/493
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> SVM Complete
#> Initializing LR
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .
#> optimization finished, #iter = 13
#> Objective value = -3.992689
#> ....
#> optimization finished, #iter = 40
#> Objective value = -18.939503
#> ...
#> optimization finished, #iter = 34
#> Objective value = -10.360630
#> ....
#> optimization finished, #iter = 40
#> Objective value = -19.051939
#> ..
#> optimization finished, #iter = 28
#> Objective value = -9.799596
#> ...
#> optimization finished, #iter = 36
#> Objective value = -12.786152
#> ..
#> optimization finished, #iter = 23
#> Objective value = -7.560311
#> ....
#> optimization finished, #iter = 43
#> Objective value = -18.135476
#> ..
#> optimization finished, #iter = 28
#> Objective value = -15.249190
#> ..
#> optimization finished, #iter = 27
#> Objective value = -17.553502
#> ..
#> optimization finished, #iter = 23
#> Objective value = -10.646397
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> LR Complete
#> 
#> Classifying cells in query using each classifier
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_RF_CD14..Monocyte.ProbabilityELeFHAnt_RF_CD19..B.ProbabilityELeFHAnt_RF_CD34..ProbabilityELeFHAnt_RF_CD4..T.Helper2.ProbabilityELeFHAnt_RF_CD4..CD25.T.Reg.ProbabilityELeFHAnt_RF_CD4..CD45RA..CD25..Naive.T.ProbabilityELeFHAnt_RF_CD4..CD45RO..Memory.ProbabilityELeFHAnt_RF_CD56..NK.ProbabilityELeFHAnt_RF_CD8..Cytotoxic.T.ProbabilityELeFHAnt_RF_CD8..CD45RA..Naive.Cytotoxic.ProbabilityELeFHAnt_RF_Dendritic.Probability;
#> see ?make.names for more details on syntax validity
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_SVM_CD34..Decision.ValuesELeFHAnt_SVM_CD4..CD45RO..Memory.Decision.ValuesELeFHAnt_SVM_CD14..Monocyte.Decision.ValuesELeFHAnt_SVM_CD4..CD25.T.Reg.Decision.ValuesELeFHAnt_SVM_CD56..NK.Decision.ValuesELeFHAnt_SVM_Dendritic.Decision.ValuesELeFHAnt_SVM_CD19..B.Decision.ValuesELeFHAnt_SVM_CD4..CD45RA..CD25..Naive.T.Decision.ValuesELeFHAnt_SVM_CD8..Cytotoxic.T.Decision.ValuesELeFHAnt_SVM_CD8..CD45RA..Naive.Cytotoxic.Decision.ValuesELeFHAnt_SVM_CD4..T.Helper2.Decision.Values;
#> see ?make.names for more details on syntax validity
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_LR_CD34..ProbabilityELeFHAnt_LR_CD4..CD45RO..Memory.ProbabilityELeFHAnt_LR_CD14..Monocyte.ProbabilityELeFHAnt_LR_CD4..CD25.T.Reg.ProbabilityELeFHAnt_LR_CD56..NK.ProbabilityELeFHAnt_LR_Dendritic.ProbabilityELeFHAnt_LR_CD19..B.ProbabilityELeFHAnt_LR_CD4..CD45RA..CD25..Naive.T.ProbabilityELeFHAnt_LR_CD8..Cytotoxic.T.ProbabilityELeFHAnt_LR_CD8..CD45RA..Naive.Cytotoxic.ProbabilityELeFHAnt_LR_CD4..T.Helper2.Probability;
#> see ?make.names for more details on syntax validity
#> 
#> Obtaing Ensemble Predictions using RF, SVM and LR
#> 
#> Celltype predictions are stored in query metadata. Please see: ELeFHAnt_RF_CelltypePrediction, ELeFHAnt_SVM_CelltypePrediction, ELeFHAnt_LR_CelltypePrediction, ELeFHAnt_Ensemble_CelltypePrediction
#> Ensembl celltype annotation completed. Starting validation of celltype assignments using GSEA
#> 
#> Setting up Directory to write ValidatePredictions Results
#> Extracting Cell type Markers from CellMarker Database v2.0 [Experiment Based] and C8 Hallmark gene sets GSEA
#> 
#> GSEA BASED VALIDATION
#> Obtaining markers per annotated cluster
#> Calculating cluster 0
#> Calculating cluster 1
#> Calculating cluster 2
#> Calculating cluster 3
#> Calculating cluster 4
#> Calculating cluster 5
#> Calculating cluster 6
#> Calculating cluster 7
#> Calculating cluster 8
#> Performing Gene Set Enrichment Analysis (GSEA) using gene sets from C8 Hallmark MsigDB
#> Obtaing GSEA statistics for cluster:0
#> Generating a Barplot with Normalized Enrichment Score for cluster:0
#> Obtaing GSEA statistics for cluster:1
#> Generating a Barplot with Normalized Enrichment Score for cluster:1
#> Obtaing GSEA statistics for cluster:2
#> Generating a Barplot with Normalized Enrichment Score for cluster:2
#> Obtaing GSEA statistics for cluster:3
#> Generating a Barplot with Normalized Enrichment Score for cluster:3
#> Obtaing GSEA statistics for cluster:4
#> Generating a Barplot with Normalized Enrichment Score for cluster:4
#> Obtaing GSEA statistics for cluster:5
#> Generating a Barplot with Normalized Enrichment Score for cluster:5
#> Obtaing GSEA statistics for cluster:6
#> Generating a Barplot with Normalized Enrichment Score for cluster:6
#> Obtaing GSEA statistics for cluster:7
#> Generating a Barplot with Normalized Enrichment Score for cluster:7
#> Obtaing GSEA statistics for cluster:8
#> Generating a Barplot with Normalized Enrichment Score for cluster:8
#> 
#> GSEA VALIDATION COMPLETED
#> 
#> CellMarker DATABASE BASED VALIDATION
#> 
#> CellMarker DATABASE BASED VALIDATION FOR QUERY
#> Tissue of interest:Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Memory CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Memory CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Classical monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:T cell large granular lymphocytic leukemia cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Mast cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:M1 macrophage in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD4+ cytotoxic T1 cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Natural killer cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Activated CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD4+ cytotoxic T2 cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Gamma delta(γδ) T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Myeloid cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Macrophage in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD14+ monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Mature dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD14 monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Intermediate monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD16+ monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Intermediate monocyte cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Monocytic myeloid-derived suppressor cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Monocyte lineage in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Fully activated dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Non-classical monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Monocyte derived dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Myeloid dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Polymorphonuclear myeloid-derived suppressor cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Dendritic cell lineage in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Myeloid derived suppressor cell (MDSC) in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Mature B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Naive T(Th0) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Exhausted CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Regulatory T(Treg) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Regulatory CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Proliferative CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Proliferative T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Naive CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Cytotoxic T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Early effector T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Central memory T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Effector CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Naive CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Proliferative CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Regulatory CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Effector CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Exhausted CD8+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Natural killer T(NKT) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD8 T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD4+ central memory like T (Tcm-like) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD4 T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Activated CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Immature B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Memory B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Megakaryocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Naive B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Plasma cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Memory CD8 T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Monocyte precursor in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Abnormal myeloid cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD16 monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Platelet in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Effector memory CD4+ T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Plasmacytoid dendritic cell(pDC) in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Cytotoxic CD4+ T2 cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Responding conventional T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Cytotoxic CD8 T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Effector memory CD8 T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Mucosa-associated invariant T (MAIT) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Memory T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Lymphocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Neutrophil in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Germinal center B cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Patelet in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Activated T cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Polymorphonuclear myeloid-derived suppressor(PMN-MDSC) cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Circulating progenitor cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:CD16+ dendritic cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Granulocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Eosinophil in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Suppressive monocyte in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Immature myeloid cell in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:M2 macrophage in Peripheral blood
#> Generating DotPlot/FeaturePlot for experimental evidence based markers for:Myeloid-derived suppressor cell in Peripheral blood
#> 
#> CellMarker DATABASE BASED VALIDATION COMPLETED
#> Validation completed. Please see ValidatePredictions Folder for results

p1 = DimPlot(out.CelltypeAnnotation, group.by = "seurat_clusters", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p2 = DimPlot(out.CelltypeAnnotation, group.by = "ELeFHAnt_Ensemble_CelltypePrediction", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p3 = DimPlot(out.CelltypeAnnotation, group.by = "ELeFHAnt_RF_CelltypePrediction", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p4 = DimPlot(out.CelltypeAnnotation, group.by = "ELeFHAnt_SVM_CelltypePrediction", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p5 = DimPlot(out.CelltypeAnnotation, group.by = "ELeFHAnt_LR_CelltypePrediction", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p1

p2

p3

p4

p5

out.DR = DeduceRelationship(reference1 = reference, reference2 = query, downsample = TRUE, downsample_to = 1000, selectvarfeatures = 2000, ntree = 500, annotationCol_ref1 = "Celltype", annotationCol_ref2 = "Celltype")
#> Setting Assay of reference1 and reference2 to RNA
#> Number of cells in reference1:2019
#> Number of cells in reference2:1358
#> Centering and scaling data matrix
#> Centering and scaling data matrix
#> Number of cells in reference1 after downsampling:2019
#> Number of cells in reference2 after downsampling:1358
#> Finding common variable features between reference and query
#> Subsetting reference1 and reference2 for common variable features
#> Preparing train and test datasets from reference1 and reference2
#> Scaling reference1 to obtain training set
#> Scaling reference2 to obtain test set
#> 
#> Setting up three classifiers: randomForest, SVM and LR
#> Initializing randomForest
#> randomForest Complete
#> Initializing SVM
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 2.949909
#> #nonzeros/#features = 51/493
#> ..*.*
#> optimization finished, #iter = 39
#> Objective value = 22.066079
#> #nonzeros/#features = 188/493
#> ..*.*
#> optimization finished, #iter = 35
#> Objective value = 8.864476
#> #nonzeros/#features = 117/493
#> ..*.*
#> optimization finished, #iter = 33
#> Objective value = 22.589678
#> #nonzeros/#features = 186/493
#> ..*.*
#> optimization finished, #iter = 31
#> Objective value = 7.711503
#> #nonzeros/#features = 96/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 13.829589
#> #nonzeros/#features = 198/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 3.922960
#> #nonzeros/#features = 69/493
#> ....**.
#> optimization finished, #iter = 50
#> Objective value = 21.344268
#> #nonzeros/#features = 208/493
#> ..*.*
#> optimization finished, #iter = 32
#> Objective value = 15.986209
#> #nonzeros/#features = 154/493
#> ..*.*.
#> optimization finished, #iter = 40
#> Objective value = 19.200190
#> #nonzeros/#features = 159/493
#> .**
#> optimization finished, #iter = 18
#> Objective value = 4.516412
#> #nonzeros/#features = 50/493
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> SVM Complete
#> Initializing LR
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .
#> optimization finished, #iter = 13
#> Objective value = -3.992689
#> ....
#> optimization finished, #iter = 40
#> Objective value = -18.939503
#> ...
#> optimization finished, #iter = 34
#> Objective value = -10.360630
#> ....
#> optimization finished, #iter = 40
#> Objective value = -19.051939
#> ..
#> optimization finished, #iter = 28
#> Objective value = -9.799596
#> ...
#> optimization finished, #iter = 36
#> Objective value = -12.786152
#> ..
#> optimization finished, #iter = 23
#> Objective value = -7.560311
#> ....
#> optimization finished, #iter = 43
#> Objective value = -18.135476
#> ..
#> optimization finished, #iter = 28
#> Objective value = -15.249190
#> ..
#> optimization finished, #iter = 27
#> Objective value = -17.553502
#> ..
#> optimization finished, #iter = 23
#> Objective value = -10.646397
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> LR Complete
#> 
#> Classifying cells in query using each classifier and Generating scaled confusion matrix
#> 
#> Using Relative Similarity from Normalized Confusion matrices to generate Reference1 vs Reference2 similarity

out.DR

reference$Celltypes = reference$Celltype
query$Celltypes = query$Celltype

out.LH = LabelHarmonization(seurat.objects = c(reference, query), perform_integration = TRUE, integrated.atlas = NULL, downsample = TRUE, downsample_to = 1000, npcs = 30, resolution = 0.8, validatePredictions = FALSE, selectanchorfeatures = 2000, ntree = 500, k.anchor = 5, k.filter = 200, k.score = 30, dims = 1:30, species = NULL, tissue = NULL, annotationCol = "Celltypes")
#> Downsampling seurat objects
#> Starting integration using Seurat Canonical Correlation Algorithm
#> Computing 2000 integration features
#> Scaling features for provided objects
#> Finding all pairwise anchors
#> Running CCA
#> Merging objects
#> Finding neighborhoods
#> Finding anchors
#>  Found 4810 anchors
#> Filtering anchors
#>  Retained 3602 anchors
#> Merging dataset 2 into 1
#> Extracting anchors for merged samples
#> Finding integration vectors
#> Finding integration vector weights
#> Integrating data
#> Integration Completed. Performing Scaling, Dimension reduction and clustering
#> 00:25:52 UMAP embedding parameters a = 0.9922 b = 1.112
#> 00:25:52 Read 3377 rows and found 30 numeric columns
#> 00:25:52 Using Annoy for neighbor search, n_neighbors = 30
#> 00:25:52 Building Annoy index with metric = cosine, n_trees = 50
#> 0%   10   20   30   40   50   60   70   80   90   100%
#> [----|----|----|----|----|----|----|----|----|----|
#> **************************************************|
#> 00:25:53 Writing NN index file to temp file /var/folders/bw/whg3swn15jb08_f7v2y09xw9glk1wg/T//RtmpWY8t69/filee0be13889d15
#> 00:25:53 Searching Annoy index using 1 thread, search_k = 3000
#> 00:25:53 Annoy recall = 100%
#> 00:25:54 Commencing smooth kNN distance calibration using 1 thread
#> 00:25:55 Initializing from normalized Laplacian + noise
#> 00:25:56 Commencing optimization for 500 epochs, with 143848 positive edges
#> 00:26:01 Optimization finished
#> Computing nearest neighbor graph
#> Computing SNN
#> Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
#> 
#> Number of nodes: 3377
#> Number of edges: 168438
#> 
#> Running Louvain algorithm...
#> Maximum modularity in 10 random starts: 0.8663
#> Number of communities: 14
#> Elapsed time: 0 seconds
#> Number of cells in integrated atlas:3377
#> Generating train and test datasets using stratification -- 70% for training & 30% for testing
#> Number of Anchor Features selected:2000
#> 
#> Setting up three classifiers: randomForest, SVM and LR
#> Initializing randomForest
#> randomForest Complete
#> Initializing SVM
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> ..*...**
#> optimization finished, #iter = 59
#> Objective value = 3.463748
#> #nonzeros/#features = 63/2001
#> .**.
#> optimization finished, #iter = 20
#> Objective value = 1.870714
#> #nonzeros/#features = 17/2001
#> .**
#> optimization finished, #iter = 18
#> Objective value = 8.515331
#> #nonzeros/#features = 171/2001
#> .*.*
#> optimization finished, #iter = 24
#> Objective value = 9.205882
#> #nonzeros/#features = 190/2001
#> ..*.**
#> optimization finished, #iter = 37
#> Objective value = 9.426450
#> #nonzeros/#features = 212/2001
#> ..*.**
#> optimization finished, #iter = 36
#> Objective value = 10.029644
#> #nonzeros/#features = 216/2001
#> ..*.*
#> optimization finished, #iter = 36
#> Objective value = 11.192939
#> #nonzeros/#features = 284/2001
#> ..*.*
#> optimization finished, #iter = 32
#> Objective value = 10.068798
#> #nonzeros/#features = 246/2001
#> ...*.*
#> optimization finished, #iter = 49
#> Objective value = 7.784389
#> #nonzeros/#features = 162/2001
#> **.
#> optimization finished, #iter = 10
#> Objective value = 2.089124
#> #nonzeros/#features = 18/2001
#> .*.*
#> optimization finished, #iter = 25
#> Objective value = 11.347513
#> #nonzeros/#features = 270/2001
#> ..*.*.*
#> optimization finished, #iter = 41
#> Objective value = 8.589253
#> #nonzeros/#features = 222/2001
#> .*.*
#> optimization finished, #iter = 21
#> Objective value = 4.318886
#> #nonzeros/#features = 82/2001
#> ..*.*.*
#> optimization finished, #iter = 42
#> Objective value = 8.714387
#> #nonzeros/#features = 199/2001
#> ..*.*.*
#> optimization finished, #iter = 41
#> Objective value = 6.275500
#> #nonzeros/#features = 112/2001
#> ..*..*
#> optimization finished, #iter = 41
#> Objective value = 10.596130
#> #nonzeros/#features = 249/2001
#> ..*.**.
#> optimization finished, #iter = 40
#> Objective value = 5.188268
#> #nonzeros/#features = 103/2001
#> .**
#> optimization finished, #iter = 14
#> Objective value = 2.501563
#> #nonzeros/#features = 28/2001
#> .*.*
#> optimization finished, #iter = 24
#> Objective value = 6.337268
#> #nonzeros/#features = 117/2001
#> ..*.*
#> optimization finished, #iter = 36
#> Objective value = 6.841068
#> #nonzeros/#features = 130/2001
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> SVM Complete
#> Initializing LR
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .
#> optimization finished, #iter = 19
#> Objective value = -5.686856
#> ...
#> optimization finished, #iter = 33
#> Objective value = -6.688618
#> ..
#> optimization finished, #iter = 24
#> Objective value = -7.936455
#> ..
#> optimization finished, #iter = 22
#> Objective value = -8.181496
#> ..
#> optimization finished, #iter = 24
#> Objective value = -8.119265
#> ..
#> optimization finished, #iter = 20
#> Objective value = -8.384488
#> ..
#> optimization finished, #iter = 26
#> Objective value = -8.422691
#> ..
#> optimization finished, #iter = 25
#> Objective value = -8.130720
#> ..
#> optimization finished, #iter = 23
#> Objective value = -7.539691
#> ..
#> optimization finished, #iter = 21
#> Objective value = -6.777600
#> ..
#> optimization finished, #iter = 21
#> Objective value = -8.644200
#> ..
#> optimization finished, #iter = 23
#> Objective value = -7.524811
#> ..
#> optimization finished, #iter = 25
#> Objective value = -6.766292
#> ..
#> optimization finished, #iter = 27
#> Objective value = -7.640640
#> ..
#> optimization finished, #iter = 26
#> Objective value = -7.169847
#> ..
#> optimization finished, #iter = 21
#> Objective value = -8.331353
#> ..
#> optimization finished, #iter = 26
#> Objective value = -6.927301
#> ..
#> optimization finished, #iter = 25
#> Objective value = -6.634453
#> ..
#> optimization finished, #iter = 23
#> Objective value = -6.889984
#> ..
#> optimization finished, #iter = 21
#> Objective value = -7.274180
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> LR Complete
#> 
#> Classifying cells in query using each classifier and Generating scaled confusion matrix
#> 
#> Harmonized Celltype predictions are stored in integrated metadata. Please see: ELeFHAnt_RF_HarmonizedCelltype, ELeFHAnt_SVM_HarmonizedCelltype, ELeFHAnt_LR_HarmonizedCelltype, ELeFHAnt_Ensemble_HarmonizedCelltype
#> Ensembl celltype harmonization completed.

p1 = DimPlot(out.LH, group.by = "Celltypes", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p2 = DimPlot(out.LH, group.by = "ELeFHAnt_Ensemble_HarmonizedCelltype", label = T, reduction = "umap", label.size = 6, repel = T) + NoLegend()
p1
#> Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
#> increasing max.overlaps

p2


out.Benchmark = BenchmarkELeFHAnt(reference = reference, query = query, downsample = TRUE, downsample_to = 1000, selectvarfeatures = 2000, ntree = 500, annotationCol = "Celltype")
#> 
#> Downsampling reference cells to enable fast computation
#> Centering and scaling data matrix
#> 
#> Deploying ELeFHAnt
#> Setting Assay of reference and query to RNA
#> Running Diagonistis on reference and query
#> Number of cells in reference:2019
#> Number of cells in query:1358
#> Downsampling reference
#> Number of cells in reference after downsampling per celltype:2019
#> Calculating ratio of number of cells in downsampled reference vs query
#> Ratio of number of cells in query vs downsampled reference:0.672610203070827
#> Centering and scaling data matrix
#> Centering and scaling data matrix
#> Finding common variable features between reference and query
#> Subsetting reference and query for common variable features
#> Preparing train and test datasets from reference and query
#> Scaling reference to obtain training set
#> Scaling query to obtain test set
#> 
#> Setting up three classifiers: randomForest, SVM and LR
#> Initializing randomForest
#> randomForest Complete
#> Initializing SVM
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 2.949909
#> #nonzeros/#features = 51/493
#> ..*.*
#> optimization finished, #iter = 39
#> Objective value = 22.066079
#> #nonzeros/#features = 188/493
#> ..*.*
#> optimization finished, #iter = 35
#> Objective value = 8.864476
#> #nonzeros/#features = 117/493
#> ..*.*
#> optimization finished, #iter = 33
#> Objective value = 22.589678
#> #nonzeros/#features = 186/493
#> ..*.*
#> optimization finished, #iter = 31
#> Objective value = 7.711503
#> #nonzeros/#features = 96/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 13.829589
#> #nonzeros/#features = 198/493
#> .*.*
#> optimization finished, #iter = 29
#> Objective value = 3.922960
#> #nonzeros/#features = 69/493
#> ....**.
#> optimization finished, #iter = 50
#> Objective value = 21.344268
#> #nonzeros/#features = 208/493
#> ..*.*
#> optimization finished, #iter = 32
#> Objective value = 15.986209
#> #nonzeros/#features = 154/493
#> ..*.*.
#> optimization finished, #iter = 40
#> Objective value = 19.200190
#> #nonzeros/#features = 159/493
#> .**
#> optimization finished, #iter = 18
#> Objective value = 4.516412
#> #nonzeros/#features = 50/493
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> SVM Complete
#> Initializing LR
#> ARGUMENTS SETUP
#> PROBLEM SETUP
#> FILL DATA STRUCTURE
#> SETUP CHECK
#> TRAIN
#> .
#> optimization finished, #iter = 13
#> Objective value = -3.992689
#> ....
#> optimization finished, #iter = 40
#> Objective value = -18.939503
#> ...
#> optimization finished, #iter = 34
#> Objective value = -10.360630
#> ....
#> optimization finished, #iter = 40
#> Objective value = -19.051939
#> ..
#> optimization finished, #iter = 28
#> Objective value = -9.799596
#> ...
#> optimization finished, #iter = 36
#> Objective value = -12.786152
#> ..
#> optimization finished, #iter = 23
#> Objective value = -7.560311
#> ....
#> optimization finished, #iter = 43
#> Objective value = -18.135476
#> ..
#> optimization finished, #iter = 28
#> Objective value = -15.249190
#> ..
#> optimization finished, #iter = 27
#> Objective value = -17.553502
#> ..
#> optimization finished, #iter = 23
#> Objective value = -10.646397
#> COPY MODEL TO WEIGHT VECTOR
#> FREE SPACE
#> FREED SPACE
#> LR Complete
#> 
#> Classifying cells in query using each classifier
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_RF_CD14..Monocyte.ProbabilityELeFHAnt_RF_CD19..B.ProbabilityELeFHAnt_RF_CD34..ProbabilityELeFHAnt_RF_CD4..T.Helper2.ProbabilityELeFHAnt_RF_CD4..CD25.T.Reg.ProbabilityELeFHAnt_RF_CD4..CD45RA..CD25..Naive.T.ProbabilityELeFHAnt_RF_CD4..CD45RO..Memory.ProbabilityELeFHAnt_RF_CD56..NK.ProbabilityELeFHAnt_RF_CD8..Cytotoxic.T.ProbabilityELeFHAnt_RF_CD8..CD45RA..Naive.Cytotoxic.ProbabilityELeFHAnt_RF_Dendritic.Probability;
#> see ?make.names for more details on syntax validity
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_SVM_CD34..Decision.ValuesELeFHAnt_SVM_CD4..CD45RO..Memory.Decision.ValuesELeFHAnt_SVM_CD14..Monocyte.Decision.ValuesELeFHAnt_SVM_CD4..CD25.T.Reg.Decision.ValuesELeFHAnt_SVM_CD56..NK.Decision.ValuesELeFHAnt_SVM_Dendritic.Decision.ValuesELeFHAnt_SVM_CD19..B.Decision.ValuesELeFHAnt_SVM_CD4..CD45RA..CD25..Naive.T.Decision.ValuesELeFHAnt_SVM_CD8..Cytotoxic.T.Decision.ValuesELeFHAnt_SVM_CD8..CD45RA..Naive.Cytotoxic.Decision.ValuesELeFHAnt_SVM_CD4..T.Helper2.Decision.Values;
#> see ?make.names for more details on syntax validity
#> Warning: Invalid name supplied, making object
#> name syntactically valid. New object name is
#> ELeFHAnt_LR_CD34..ProbabilityELeFHAnt_LR_CD4..CD45RO..Memory.ProbabilityELeFHAnt_LR_CD14..Monocyte.ProbabilityELeFHAnt_LR_CD4..CD25.T.Reg.ProbabilityELeFHAnt_LR_CD56..NK.ProbabilityELeFHAnt_LR_Dendritic.ProbabilityELeFHAnt_LR_CD19..B.ProbabilityELeFHAnt_LR_CD4..CD45RA..CD25..Naive.T.ProbabilityELeFHAnt_LR_CD8..Cytotoxic.T.ProbabilityELeFHAnt_LR_CD8..CD45RA..Naive.Cytotoxic.ProbabilityELeFHAnt_LR_CD4..T.Helper2.Probability;
#> see ?make.names for more details on syntax validity
#> 
#> Obtaing Ensemble Predictions using RF, SVM and LR
#> 
#> Celltype predictions are stored in query metadata. Please see: ELeFHAnt_RF_CelltypePrediction, ELeFHAnt_SVM_CelltypePrediction, ELeFHAnt_LR_CelltypePrediction, ELeFHAnt_Ensemble_CelltypePrediction
#> Ensembl celltype annotation completed.
#> 
#> Deploying Seurat Label Transfer
#> Performing PCA on the provided reference using 1850 features as input.
#> Projecting cell embeddings
#> Finding neighborhoods
#> Finding anchors
#>  Found 2258 anchors
#> Filtering anchors
#>  Retained 1914 anchors
#> Finding integration vectors
#> Finding integration vector weights
#> Predicting cell labels
#> 
#> Deploying scPred
#> PC_ 1 
#> Positive:  RPS2, RPS4X, RPLP0, LTB, NPM1, S100A4, S100A6, CD74, VIM, IFITM2 
#>     DUSP1, HLA-DRB1, IL32, HLA-DRA, HLA-DRB5, ZFP36, HLA-DPB1, PRELID1, FOS, CD7 
#>     TYROBP, LGALS1, PPIB, HLA-DPA1, HLA-DQA1, S100A11, GSTP1, HLA-DQB1, PFN1, HLA-DQA2 
#> Negative:  PF4, SDPR, PPBP, GNG11, TUBB1, GP9, ACRBP, CMTM5, SPARC, CLU 
#>     HIST1H2AC, NRGN, TREML1, RUFY1, NCOA4, ITGA2B, CLDN5, AP001189.4, PTCRA, AC147651.3 
#>     RGS18, TMEM40, MYL9, MAP3K7CL, CLEC1B, SNCA, MPP1, CD9, CTSA, FERMT3 
#> PC_ 2 
#> Positive:  LST1, AIF1, SPI1, CST3, SERPINA1, LYZ, IFI30, CFD, FCN1, CFP 
#>     RP11-290F20.3, HCK, MS4A7, TYMP, PILRA, TMEM176B, FCER1G, TYROBP, LRRC25, HLA-DRB1 
#>     CTSS, HLA-DPA1, PSAP, HLA-DRB5, CD68, HLA-DRA, S100A11, FTL, HMOX1, SAT1 
#> Negative:  IL32, CD7, LTB, CCL5, CTSW, GZMA, NPM1, CST7, RPS4X, GNLY 
#>     NKG7, RPLP0, HOPX, AQP3, GZMH, GZMK, PRF1, CCR7, ITM2A, FGFBP2 
#>     CD8B, GZMB, CD8A, CCL4, SH3YL1, SPON2, CLIC3, RGCC, NCR3, KLRG1 
#> PC_ 3 
#> Positive:  NKG7, GNLY, GZMA, CST7, FGFBP2, FCGR3A, CTSW, PRF1, GZMH, CCL5 
#>     GZMB, CD7, SPON2, IFITM2, HOPX, CCL4, S100A4, TMSB4X, ID2, IL32 
#>     TYROBP, SRGN, PFN1, RHOC, GPR56, CLIC3, ABI3, PRSS23, KLRC1, IL2RB 
#> Negative:  CD79A, HLA-DRA, HLA-DQA1, MS4A1, TCL1A, CD79B, HLA-DQA2, CD74, HLA-DRB1, HLA-DMB 
#>     HLA-DMA, HLA-DPB1, HLA-DRB5, LINC00926, HLA-DPA1, HLA-DQB1, FCER2, SPIB, VPREB3, IRF8 
#>     LTB, HVCN1, CYB561A3, HLA-DOB, BANK1, EAF2, FCGR2B, KIAA0125, BLK, CD19 
#> PC_ 4 
#> Positive:  GZMB, NKG7, GNLY, CLIC3, CST7, FGFBP2, PRF1, GZMA, CTSW, GZMH 
#>     HOPX, PRSS57, IGFBP7, SPON2, CCL4, FCER1A, AKR1C3, CYTL1, PTGDS, GPR56 
#>     GSTP1, MZB1, C19orf77, CCL5, LRRC26, ITM2C, IL2RB, PFN1, LILRA4, PRSS23 
#> Negative:  LTB, CFD, RP11-290F20.3, SERPINA1, TMSB4X, TMEM176B, CCR7, S100A8, COTL1, MS4A7 
#>     AQP3, S100A9, SAT1, CDKN1C, FCN1, PILRA, HES4, GPBAR1, VMO1, LYPD2 
#>     C5AR1, HCK, HMOX1, C1QA, FTH1, IFI30, TYMP, RBP7, CDA, CD14 
#> PC_ 5 
#> Positive:  CYTL1, PRSS57, C19orf77, SPINK2, GATA2, CRHBP, MYB, NFE2, RP11-620J15.3, SOX4 
#>     NPM1, FAM212A, IL18, EGFL7, IGLL1, RP11-354E11.2, CD34, GNA15, GATA1, ARMCX1 
#>     SERPINB1, HOXA9, H2AFY, HMGA1, IL1B, ID1, EREG, PTRF, RPLP0, ERG 
#> Negative:  GZMB, TMSB4X, CD79A, CLIC3, TCL1A, GNLY, HLA-DRB1, MS4A1, NKG7, FGFBP2 
#>     HLA-DRB5, HLA-DPB1, CD79B, CST7, PRF1, IRF8, CD74, CCL5, SPIB, HLA-DQA2 
#>     GZMH, HLA-DQA1, TYROBP, PTGDS, LINC00926, GZMA, FCER1G, HLA-DRA, HLA-DMB, HLA-DPA1
#> 00:26:51 UMAP embedding parameters a = 0.9922 b = 1.112
#> 00:26:51 Read 2019 rows and found 30 numeric columns
#> 00:26:51 Using Annoy for neighbor search, n_neighbors = 30
#> 00:26:51 Building Annoy index with metric = cosine, n_trees = 50
#> 0%   10   20   30   40   50   60   70   80   90   100%
#> [----|----|----|----|----|----|----|----|----|----|
#> **************************************************|
#> 00:26:51 Writing NN index file to temp file /var/folders/bw/whg3swn15jb08_f7v2y09xw9glk1wg/T//RtmpWY8t69/filee0be795267cc
#> 00:26:51 Searching Annoy index using 1 thread, search_k = 3000
#> 00:26:52 Annoy recall = 100%
#> 00:26:53 Commencing smooth kNN distance calibration using 1 thread
#> 00:26:54 Initializing from normalized Laplacian + noise
#> 00:26:54 Commencing optimization for 500 epochs, with 88246 positive edges
#> 00:26:58 Optimization finished
#> ●  Extracting feature space for each cell type...
#> DONE!
#> ●  Training models for each cell type...
#> Loading required package: lattice
#> DONE!
#> ●  Matching reference with new dataset...
#>   ─ 2000 features present in reference loadings
#>   ─ 1850 features shared between reference and new dataset
#>   ─ 92.5% of features in the reference are present in new dataset
#> ●  Aligning new data to reference...
#> Harmony 1/20
#> Harmony 2/20
#> Harmony 3/20
#> Harmony 4/20
#> Harmony 5/20
#> Harmony 6/20
#> Harmony converged after 6 iterations
#> ●  Classifying cells...
#> DONE!

p1 = DimPlot(out.Benchmark, group.by = "ELeFHAnt_Ensemble_CelltypePrediction", label=T, repel = T, label.size = 6, reduction = "umap") + NoLegend() + ggtitle("ELeFHAnt Predictions")
p2 = DimPlot(out.Benchmark, group.by = "predicted.id", label=T, repel = T, label.size = 6, reduction = "umap") + NoLegend() + ggtitle("LabelTransfer Predictions")
p3 = DimPlot(out.Benchmark, group.by = "scpred_prediction", label=T, repel = T, label.size = 6, reduction = "umap") + NoLegend() + ggtitle("scPred Predictions")

p1

p2

p3