Here are the number of tweets and the top 10 words in each cluster:
table(kfit$cluster)
##
## 1 2 3 4 5 6 7
## 283 1196 79 66 311 661 22
print(clusters_df)
## Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
## 1 kit student projector pencil set science
## 2 electric need lcd markers ipad include
## 3 circuit printer classroom erase mini cost
## 4 robot computer multimedia board case shipping
## 5 handson camera technological drill class material
## 6 machine laptop computer color classroom targetnew
## 7 solar makerbot screen paper use math
## 8 magnet digital access sharpen protect book
## 9 investigate print need supplied apple activate
## 10 knex tablet shipping notebook educate handson
## Cluster 7
## 1 ipod
## 2 touch
## 3 apple
## 4 technological
## 5 flip
## 6 classroom
## 7 camcorder
## 8 device
## 9 need
## 10 student
Here is a plot of the cosine similarity between topics and clusters:
print(plot)