#importacion de datos
options(scipen = 999999)
load("C:/doc R/datos_parcial_1.RData")
library(lmtest)
modelo_ingreso<- lm(income~sex+status+verbal+gamble, data = teengamb)
summary(modelo_ingreso)
##
## Call:
## lm(formula = income ~ sex + status + verbal + gamble, data = teengamb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9561 -1.9072 -0.6399 1.1958 7.1716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.41097 2.00311 2.202 0.0332 *
## sex 0.09035 1.07210 0.084 0.9332
## status -0.06279 0.03250 -1.932 0.0601 .
## verbal 0.24660 0.26492 0.931 0.3572
## gamble 0.07214 0.01491 4.839 0.0000179 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.736 on 42 degrees of freedom
## Multiple R-squared: 0.4581, Adjusted R-squared: 0.4065
## F-statistic: 8.877 on 4 and 42 DF, p-value: 0.00002743
#b)calcule el intervalo de confianza del 92.5% para las variables “verbal” y “gamble”
confint(object = modelo_ingreso,parm = "verbal",level = .925)
## 3.75 % 96.25 %
## verbal -0.2370767 0.730284
confint(object = modelo_ingreso,parm = "gamble",level = .925)
## 3.75 % 96.25 %
## gamble 0.04492279 0.09936007
#c) el modelo es estadisticamente significativo
##El valor P del modelo gobal es inferior al 0.05 por lo tanto el modelo es estadisticamente significativo
#d) calcule las matrices A,P y M
#matriz de informacion
matriz.x<-model.matrix(modelo_ingreso)
matriz.xx<-t(matriz.x)%*%(matriz.x)
#matriz A
matriz.A<-solve(matriz.xx)%*%t(matriz.x)
matriz.A[1:5,1:5]
## 1 2 3 4
## (Intercept) -0.1074542196 -0.02196090939 0.0166636550 0.1071925261
## sex 0.0809403937 0.02485495618 0.0546438428 0.0478553863
## status 0.0012534153 -0.00199128049 0.0004440685 0.0004276380
## verbal 0.0053215827 0.01872696513 -0.0052703695 -0.0181905266
## gamble 0.0002006996 -0.00007513551 -0.0001277504 -0.0001794904
## 5
## (Intercept) -0.1997769992
## sex 0.1347212618
## status 0.0034635069
## verbal -0.0012648221
## gamble 0.0009505469
#calculando matriz P
matriz.P<-matriz.x%*%matriz.A
matriz.P[1:5,1:5]
## 1 2 3 4 5
## 1 0.07998301 0.05115446 0.05179203 0.03133324 0.10146454
## 2 0.05115446 0.09695391 0.04157846 0.02149756 0.02180388
## 3 0.05179203 0.04157846 0.05611581 0.06172736 0.05550509
## 4 0.03133324 0.02149756 0.06172736 0.09294939 0.03380216
## 5 0.10146454 0.02180388 0.05550509 0.03380216 0.16858435
#matriz C
n<-nrow(matriz.x)
matriz.M<-diag(n)-matriz.P
matriz.M[1:5,1:5]
## 1 2 3 4 5
## 1 0.92001699 -0.05115446 -0.05179203 -0.03133324 -0.10146454
## 2 -0.05115446 0.90304609 -0.04157846 -0.02149756 -0.02180388
## 3 -0.05179203 -0.04157846 0.94388419 -0.06172736 -0.05550509
## 4 -0.03133324 -0.02149756 -0.06172736 0.90705061 -0.03380216
## 5 -0.10146454 -0.02180388 -0.05550509 -0.03380216 0.83141565