Introduction

Welcome to your first LASER badge! This LASER Orientation Badge is really a warm-up activitiy to introduce you to R Markdown and the coding case studies that we will be using in the machine learning, network analysis, and text mining labs. It is a chance to become familiar with how RStudio and R Markdown works.

You may have used R before-or you may not have! Either is fine as this task will be designed with the assumption that you have not used R before. It includes “reaches” for anyone who may want to do a bit more.

In the context of doing so, we’ll focus on the following tasks:

  1. Reading data into R (in the Prepare section)
  2. Preparing and “wrangling” data in table (think spreadsheet!) format (in the Wrangle section)
  3. Creating some plots (in the Explore section)
  4. Running a model - specifically, a regression model (in the Model section)
  5. Finally, creating a reproducible report of your work you can share with others (in the Communicate section)

The LASER Cycle

You may be wondering what these bolded terms above refer to; what’s so special about preparing, wrangling, exploring, and modeling data - and communicating results? We’re using these terms as a part of a framework, or model, for what we mean by doing learning in STEM education research.

The particular framework we are using comes from the work of Krumm et al.’s Learning Analytics Goes to School. You can check that out, but don’t feel any need to dive deep for now - we’ll be spending more time on this in first day of the summer institute. For now, know that this document is organized around three of the five components of what we’re referring to as the LASER cycle.

Click the green arrow to the right of the “code chunk” below to view the image (more on that process of clicking the green arrow and what it does, too, in a moment)!

knitr::include_graphics("img/laser-cycle.png")

How to use this R Markdown document

This is an R Markdown file as indicated by the .rmd extension at the end of the file name. R Markdown documents are fully reproducible and use a productive notebook interface to combine narrative text and “chunks” of code to produce a range of formatted outputs including: formats including HTMLPDFMS WordBeamerHTML5 slidesTufte-style handoutsbooksdashboardsshiny applicationsscientific articleswebsites, and more.

There are two keys to your use of R Markdown for this activity:

  1. First, be sure that you are viewing the document in the “Visual Editor” mode. You can use this mode by clicking the word “Visual” on the left side of the toolbar above.
  2. Second, click “Knit” next to the yarn ball at the top of this screen to preview the document as you work through it. This will allow you to see your code and the input in a rendered - easy-to-read - document, just as others will see this document when shared. Try knitting the document now and see what happens.

Let’s get started! We are glad you are here and to begin this exciting (and challenging) journey together.

1. PREPARE

By preparing, we refer to developing a question or purpose for the analysis, which you likely know from your research can be difficult! This part of the process also involves developing an understanding of the data and what you may need to analyze the data. This often involves looking at the data and its documentation. For now, we’ll focus on just a few parts of this process, diving in much more deeply over the coming weeks.

Packages 📦

R uses “packages,” add-ons that enhance its functionality. One package that we’ll be using is the tidyverse. To load the tidyverse, click the green arrow in the right corner of the block-or “chunk”-of code that follows.

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.1
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.7     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.2.1
## Warning: package 'tibble' was built under R version 4.2.1
## Warning: package 'tidyr' was built under R version 4.2.1
## Warning: package 'readr' was built under R version 4.2.1
## Warning: package 'purrr' was built under R version 4.2.1
## Warning: package 'dplyr' was built under R version 4.2.1
## Warning: package 'stringr' was built under R version 4.2.1
## Warning: package 'forcats' was built under R version 4.2.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()

Please do not worry if you saw a number of messages: those probably mean that the tidyverse loaded just fine. If you see an error, though, try to interpret or search via your search engine the contents of the error, or reach out to us for assistance.

Loading (or reading in) data

Next, we’ll load data-specifically, a CSV file, the kind that you can export from Microsoft Excel or Google Sheets - into R, using the read_csv() function in the next chunk.

Clicking the green arrow runs the code; do that next to read the sci-online-classes.csv file stored in your data folder into your R environment:

d <- read_csv("data/sci-online-classes.csv")
## Rows: 603 Columns: 30
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (6): course_id, subject, semester, section, Gradebook_Item, Gender
## dbl (23): student_id, total_points_possible, total_points_earned, percentage...
## lgl  (1): Grade_Category
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Nice work! You should now see a new data “object” named d saved in your Environment pane. Try clicking on it and see what happens.

Viewing or inspecting data

Now let’s learn another way to inspect our data. Run the next chunk and look at the results, tabbing left or right with the arrows, or scanning through the rows by clicking the numbers at the bottom of the pane with the print-out of the data you loaded:

d
## # A tibble: 603 × 30
##    student_id course_id     total_points_poss… total_points_ea… percentage_earn…
##         <dbl> <chr>                      <dbl>            <dbl>            <dbl>
##  1      43146 FrScA-S216-02               3280             2220            0.677
##  2      44638 OcnA-S116-01                3531             2672            0.757
##  3      47448 FrScA-S216-01               2870             1897            0.661
##  4      47979 OcnA-S216-01                4562             3090            0.677
##  5      48797 PhysA-S116-01               2207             1910            0.865
##  6      51943 FrScA-S216-03               4208             3596            0.855
##  7      52326 AnPhA-S216-01               4325             2255            0.521
##  8      52446 PhysA-S116-01               2086             1719            0.824
##  9      53447 FrScA-S116-01               4655             3149            0.676
## 10      53475 FrScA-S116-02               1710             1402            0.820
## # … with 593 more rows, and 25 more variables: subject <chr>, semester <chr>,
## #   section <chr>, Gradebook_Item <chr>, Grade_Category <lgl>,
## #   FinalGradeCEMS <dbl>, Points_Possible <dbl>, Points_Earned <dbl>,
## #   Gender <chr>, q1 <dbl>, q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>,
## #   q7 <dbl>, q8 <dbl>, q9 <dbl>, q10 <dbl>, TimeSpent <dbl>,
## #   TimeSpent_hours <dbl>, TimeSpent_std <dbl>, int <dbl>, pc <dbl>, uv <dbl>

Your Turn

What do you notice about this data set? What do you wonder? Add one-two thoughts following the dashes next (you can add additional dashes if you like!):

  • quiz data and how much time each student spent

  • there are the lastthree columns that are not clear at this point

There are other ways to inspect your data; the glimpse() function provides one such way. Run the code below to take a glimpse at your data.

glimpse(d)
## Rows: 603
## Columns: 30
## $ student_id            <dbl> 43146, 44638, 47448, 47979, 48797, 51943, 52326,…
## $ course_id             <chr> "FrScA-S216-02", "OcnA-S116-01", "FrScA-S216-01"…
## $ total_points_possible <dbl> 3280, 3531, 2870, 4562, 2207, 4208, 4325, 2086, …
## $ total_points_earned   <dbl> 2220, 2672, 1897, 3090, 1910, 3596, 2255, 1719, …
## $ percentage_earned     <dbl> 0.6768293, 0.7567261, 0.6609756, 0.6773345, 0.86…
## $ subject               <chr> "FrScA", "OcnA", "FrScA", "OcnA", "PhysA", "FrSc…
## $ semester              <chr> "S216", "S116", "S216", "S216", "S116", "S216", …
## $ section               <chr> "02", "01", "01", "01", "01", "03", "01", "01", …
## $ Gradebook_Item        <chr> "POINTS EARNED & TOTAL COURSE POINTS", "ATTEMPTE…
## $ Grade_Category        <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ FinalGradeCEMS        <dbl> 93.45372, 81.70184, 88.48758, 81.85260, 84.00000…
## $ Points_Possible       <dbl> 5, 10, 10, 5, 438, 5, 10, 10, 443, 5, 12, 10, 5,…
## $ Points_Earned         <dbl> NA, 10.00, NA, 4.00, 399.00, NA, NA, 10.00, 425.…
## $ Gender                <chr> "M", "F", "M", "M", "F", "F", "M", "F", "F", "M"…
## $ q1                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 4, 3, 5, NA,…
## $ q2                    <dbl> 4, 4, 4, 5, 3, NA, 5, 3, 3, NA, NA, 5, 3, 3, NA,…
## $ q3                    <dbl> 4, 3, 4, 3, 3, NA, 3, 3, 3, NA, NA, 3, 3, 5, NA,…
## $ q4                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 5, 3, 5, NA,…
## $ q5                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 5, 4, 5, NA,…
## $ q6                    <dbl> 5, 4, 4, 5, 4, NA, 5, 4, 3, NA, NA, 5, 3, 5, NA,…
## $ q7                    <dbl> 5, 4, 4, 4, 4, NA, 4, 3, 3, NA, NA, 5, 3, 5, NA,…
## $ q8                    <dbl> 5, 5, 5, 5, 4, NA, 5, 3, 4, NA, NA, 4, 3, 5, NA,…
## $ q9                    <dbl> 4, 4, 3, 5, NA, NA, 5, 3, 2, NA, NA, 5, 2, 2, NA…
## $ q10                   <dbl> 5, 4, 5, 5, 3, NA, 5, 3, 5, NA, NA, 4, 4, 5, NA,…
## $ TimeSpent             <dbl> 1555.1667, 1382.7001, 860.4335, 1598.6166, 1481.…
## $ TimeSpent_hours       <dbl> 25.91944500, 23.04500167, 14.34055833, 26.643610…
## $ TimeSpent_std         <dbl> -0.18051496, -0.30780313, -0.69325954, -0.148446…
## $ int                   <dbl> 5.0, 4.2, 5.0, 5.0, 3.8, 4.6, 5.0, 3.0, 4.2, NA,…
## $ pc                    <dbl> 4.50, 3.50, 4.00, 3.50, 3.50, 4.00, 3.50, 3.00, …
## $ uv                    <dbl> 4.333333, 4.000000, 3.666667, 5.000000, 3.500000…

We have one more question to pose to you: What do rows and columns typically represent in your area of work and/or research?

Generally, rows typically represent “cases,” the units that we measure, or the units on which we collect data. This is not a trick question! What counts as a “case” (and therefore what is represented as a row) varies by (and within) fields. There may be multiple types or levels of units studied in your field; listing more than one is fine! Also, please consider what columns - which usually represent variables - represent in your area of work and/or research.

Your Turn

What rows typically (or you think may) represent:

  • cases or individual students in my research

What columns typically (or you think may) represent:

  • variables, i.e., grades

Next, we’ll use a few functions that are handy for preparing data in table form.

2. WRANGLE

By wrangle, we refer to the process of cleaning and processing data, and, in cases, merging (or joining) data from multiple sources. Often, this part of the process is very (surprisingly) time-intensive. Wrangling your data into shape can itself be an important accomplishment! There are great tools in R to do this, especially through the use of the {dplyr} R package.

Selecting variables

Let’s select only a few variables.

d |> 
  select(student_id, total_points_possible, total_points_earned)
## # A tibble: 603 × 3
##    student_id total_points_possible total_points_earned
##         <dbl>                 <dbl>               <dbl>
##  1      43146                  3280                2220
##  2      44638                  3531                2672
##  3      47448                  2870                1897
##  4      47979                  4562                3090
##  5      48797                  2207                1910
##  6      51943                  4208                3596
##  7      52326                  4325                2255
##  8      52446                  2086                1719
##  9      53447                  4655                3149
## 10      53475                  1710                1402
## # … with 593 more rows

Notice how the number of columns (variables) is now different.

Let’s include one additional variable in your select function.

First, we need to figure out what variables exist in our dataset (or be reminded of this - it’s very common in R to be continually checking and inspecting your data)!

You can use a function named glimpse() to do this.

glimpse(d)
## Rows: 603
## Columns: 30
## $ student_id            <dbl> 43146, 44638, 47448, 47979, 48797, 51943, 52326,…
## $ course_id             <chr> "FrScA-S216-02", "OcnA-S116-01", "FrScA-S216-01"…
## $ total_points_possible <dbl> 3280, 3531, 2870, 4562, 2207, 4208, 4325, 2086, …
## $ total_points_earned   <dbl> 2220, 2672, 1897, 3090, 1910, 3596, 2255, 1719, …
## $ percentage_earned     <dbl> 0.6768293, 0.7567261, 0.6609756, 0.6773345, 0.86…
## $ subject               <chr> "FrScA", "OcnA", "FrScA", "OcnA", "PhysA", "FrSc…
## $ semester              <chr> "S216", "S116", "S216", "S216", "S116", "S216", …
## $ section               <chr> "02", "01", "01", "01", "01", "03", "01", "01", …
## $ Gradebook_Item        <chr> "POINTS EARNED & TOTAL COURSE POINTS", "ATTEMPTE…
## $ Grade_Category        <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ FinalGradeCEMS        <dbl> 93.45372, 81.70184, 88.48758, 81.85260, 84.00000…
## $ Points_Possible       <dbl> 5, 10, 10, 5, 438, 5, 10, 10, 443, 5, 12, 10, 5,…
## $ Points_Earned         <dbl> NA, 10.00, NA, 4.00, 399.00, NA, NA, 10.00, 425.…
## $ Gender                <chr> "M", "F", "M", "M", "F", "F", "M", "F", "F", "M"…
## $ q1                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 4, 3, 5, NA,…
## $ q2                    <dbl> 4, 4, 4, 5, 3, NA, 5, 3, 3, NA, NA, 5, 3, 3, NA,…
## $ q3                    <dbl> 4, 3, 4, 3, 3, NA, 3, 3, 3, NA, NA, 3, 3, 5, NA,…
## $ q4                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 5, 3, 5, NA,…
## $ q5                    <dbl> 5, 4, 5, 5, 4, NA, 5, 3, 4, NA, NA, 5, 4, 5, NA,…
## $ q6                    <dbl> 5, 4, 4, 5, 4, NA, 5, 4, 3, NA, NA, 5, 3, 5, NA,…
## $ q7                    <dbl> 5, 4, 4, 4, 4, NA, 4, 3, 3, NA, NA, 5, 3, 5, NA,…
## $ q8                    <dbl> 5, 5, 5, 5, 4, NA, 5, 3, 4, NA, NA, 4, 3, 5, NA,…
## $ q9                    <dbl> 4, 4, 3, 5, NA, NA, 5, 3, 2, NA, NA, 5, 2, 2, NA…
## $ q10                   <dbl> 5, 4, 5, 5, 3, NA, 5, 3, 5, NA, NA, 4, 4, 5, NA,…
## $ TimeSpent             <dbl> 1555.1667, 1382.7001, 860.4335, 1598.6166, 1481.…
## $ TimeSpent_hours       <dbl> 25.91944500, 23.04500167, 14.34055833, 26.643610…
## $ TimeSpent_std         <dbl> -0.18051496, -0.30780313, -0.69325954, -0.148446…
## $ int                   <dbl> 5.0, 4.2, 5.0, 5.0, 3.8, 4.6, 5.0, 3.0, 4.2, NA,…
## $ pc                    <dbl> 4.50, 3.50, 4.00, 3.50, 3.50, 4.00, 3.50, 3.00, …
## $ uv                    <dbl> 4.333333, 4.000000, 3.666667, 5.000000, 3.500000…

Your Turn

In the code chunk below, add a new variable to the code below, being careful to type the new variable name as it appears in the data. We’ve added some code to get you started. Consider how the names of the other variables are separated as you think about how to add an additional variable to this code.

d |> 
  select(student_id, total_points_possible, total_points_earned, TimeSpent)
## # A tibble: 603 × 4
##    student_id total_points_possible total_points_earned TimeSpent
##         <dbl>                 <dbl>               <dbl>     <dbl>
##  1      43146                  3280                2220   1555.  
##  2      44638                  3531                2672   1383.  
##  3      47448                  2870                1897    860.  
##  4      47979                  4562                3090   1599.  
##  5      48797                  2207                1910   1482.  
##  6      51943                  4208                3596      3.45
##  7      52326                  4325                2255   1322.  
##  8      52446                  2086                1719   1390.  
##  9      53447                  4655                3149   1479.  
## 10      53475                  1710                1402     NA   
## # … with 593 more rows

Once added, the output should be different than in the code above - there should now be an additional variable included in the print-out.

Filtering variables

Next, let’s explore filtering variables. Check out and run the next chunk of code, imagining that we wish to filter our data to view only the rows associated with students who earned a final grade (as a percentage) of 70 - 70% - or higher.

d |> 
  filter(FinalGradeCEMS > 70)
## # A tibble: 438 × 30
##    student_id course_id     total_points_poss… total_points_ea… percentage_earn…
##         <dbl> <chr>                      <dbl>            <dbl>            <dbl>
##  1      43146 FrScA-S216-02               3280             2220            0.677
##  2      44638 OcnA-S116-01                3531             2672            0.757
##  3      47448 FrScA-S216-01               2870             1897            0.661
##  4      47979 OcnA-S216-01                4562             3090            0.677
##  5      48797 PhysA-S116-01               2207             1910            0.865
##  6      52326 AnPhA-S216-01               4325             2255            0.521
##  7      52446 PhysA-S116-01               2086             1719            0.824
##  8      53447 FrScA-S116-01               4655             3149            0.676
##  9      53475 FrScA-S216-01               1209              977            0.808
## 10      54066 OcnA-S116-01                4641             3429            0.739
## # … with 428 more rows, and 25 more variables: subject <chr>, semester <chr>,
## #   section <chr>, Gradebook_Item <chr>, Grade_Category <lgl>,
## #   FinalGradeCEMS <dbl>, Points_Possible <dbl>, Points_Earned <dbl>,
## #   Gender <chr>, q1 <dbl>, q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>,
## #   q7 <dbl>, q8 <dbl>, q9 <dbl>, q10 <dbl>, TimeSpent <dbl>,
## #   TimeSpent_hours <dbl>, TimeSpent_std <dbl>, int <dbl>, pc <dbl>, uv <dbl>
Your Turn

In the next code chunk, change the cut-off from 70% to some other value - larger or smaller (maybe much larger or smaller - feel free to play around with the code a bit!).

d |> 
  filter(FinalGradeCEMS > 50)
## # A tibble: 510 × 30
##    student_id course_id     total_points_poss… total_points_ea… percentage_earn…
##         <dbl> <chr>                      <dbl>            <dbl>            <dbl>
##  1      43146 FrScA-S216-02               3280             2220            0.677
##  2      44638 OcnA-S116-01                3531             2672            0.757
##  3      47448 FrScA-S216-01               2870             1897            0.661
##  4      47979 OcnA-S216-01                4562             3090            0.677
##  5      48797 PhysA-S116-01               2207             1910            0.865
##  6      52326 AnPhA-S216-01               4325             2255            0.521
##  7      52446 PhysA-S116-01               2086             1719            0.824
##  8      53447 FrScA-S116-01               4655             3149            0.676
##  9      53475 FrScA-S216-01               1209              977            0.808
## 10      54066 OcnA-S116-01                4641             3429            0.739
## # … with 500 more rows, and 25 more variables: subject <chr>, semester <chr>,
## #   section <chr>, Gradebook_Item <chr>, Grade_Category <lgl>,
## #   FinalGradeCEMS <dbl>, Points_Possible <dbl>, Points_Earned <dbl>,
## #   Gender <chr>, q1 <dbl>, q2 <dbl>, q3 <dbl>, q4 <dbl>, q5 <dbl>, q6 <dbl>,
## #   q7 <dbl>, q8 <dbl>, q9 <dbl>, q10 <dbl>, TimeSpent <dbl>,
## #   TimeSpent_hours <dbl>, TimeSpent_std <dbl>, int <dbl>, pc <dbl>, uv <dbl>

What happens when you change the cut-off from 70 to something else? Add a thought (or more):

  • Cases changed from 438 rows to 510 rows meaning 510 students went cut-off from 50

Arrange

The last function we’ll use for preparing tables is arrange.

We’ll combine this arrange() function with a function we used already - select(). We do this so we can view only the student ID and their final grade.

d |> 
  select(student_id, FinalGradeCEMS) |> 
  arrange(FinalGradeCEMS)
## # A tibble: 603 × 2
##    student_id FinalGradeCEMS
##         <dbl>          <dbl>
##  1      90995          0    
##  2      92606          0.535
##  3      95684          0.903
##  4      90996          1.80 
##  5      94876          2.93 
##  6      92633          3.01 
##  7      85390          3.06 
##  8      94630          3.43 
##  9      90995          5.04 
## 10      96677          5.2  
## # … with 593 more rows

Note that arrange works by sorting values in ascending order (from lowest to highest); you can change this by using the desc() function with arrange, like the following:

d |> 
  select(student_id, FinalGradeCEMS) |> 
  arrange(desc(FinalGradeCEMS))
## # A tibble: 603 × 2
##    student_id FinalGradeCEMS
##         <dbl>          <dbl>
##  1      85650          100  
##  2      91067           99.8
##  3      66740           99.3
##  4      86792           99.1
##  5      78153           99.0
##  6      66689           98.6
##  7      88261           98.6
##  8      92740           98.6
##  9      92726           98.2
## 10      92741           98.2
## # … with 593 more rows

Your Turn

In the code chunk below, replace FinalGradeCEMS that is used with both the select() and arrange() functions with a different variable in the data set. Consider returning to the code chunk above in which you glimpsed at the names of all of the variables.

d |> 
  select(student_id, TimeSpent) |> 
  arrange(desc(TimeSpent))
## # A tibble: 603 × 2
##    student_id TimeSpent
##         <dbl>     <dbl>
##  1      94744     8871.
##  2      69743     7085.
##  3      86275     7067.
##  4      86429     7003.
##  5      88153     6955.
##  6      85410     6772.
##  7      70408     6664.
##  8      89435     6348.
##  9      91163     6244.
## 10      92185     6162.
## # … with 593 more rows

Reach 1 🎉

Can you compose a series of functions that include the select(), filter(), and arrange functions? Recall that you can “pipe” the output from one function to the next as when we used select() and arrange() together in the code chunk above.

This reach is not required/necessary to complete; it’s just for those who wish to do a bit more with these functions at this time (we’ll do more in class, too!)

3. EXPLORE

Exploratory data analysis, or exploring your data, involves processes of describing your data (such as by calculating the means and standard deviations of numeric variables, or counting the frequency of categorical variables) and, often, visualizing your data prior. In this section, we’ll create a few plots to explore our data.

Histogram

The code below creates a histogram, or a distribution of the values, in this case for students’ final grades.

ggplot(d, aes(x = FinalGradeCEMS)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 30 rows containing non-finite values (stat_bin).

You can change the color of the histogram bars by specifying a color as follows:

ggplot(d, aes(x = FinalGradeCEMS)) +
  geom_histogram(fill = "blue")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 30 rows containing non-finite values (stat_bin).

Changing colors

Your Turn

In the code chunk below, change the color to one of your choosing; consider this list of valid color names here: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

ggplot(d, aes(x = FinalGradeCEMS)) +
  geom_histogram(fill = "pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 30 rows containing non-finite values (stat_bin).

Finally, we’ll make one more change; visualize the distribution of another variable in the data - one other than FinalGradeCEMS. You can do so by swapping out the name for another variable with FinalGradeCEMS. Also, change the color to one other than blue.

ggplot(d, aes(x = TimeSpent)) +
  geom_histogram(fill = "green")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 5 rows containing non-finite values (stat_bin).

Reach 2 🎉

Completed the above? Nice job! Try for a “reach” by creating a scatter plot for the relationship between two variables. You will need to pass the names of two variables to the code below for what is now simply XXX (a placeholder).

ggplot(d, aes(x = TimeSpent, y = FinalGradeCEMS)) +
  geom_point()
## Warning: Removed 30 rows containing missing values (geom_point).

4. MODEL

“Model” is one of those terms that has many different meanings. For our purpose, we refer to the process of simplifying and summarizing our data. Thus, models can take many forms; calculating means represents a legitimate form of modeling data, as does estimating more complex models, including linear regressions, and models and algorithms associated with machine learning tasks. For now, we’ll run a linear regression to predict students’ final grades.

Below, we predict students’ final grades (FinaGradeCEMS, which is on a 0-100 point scale) on the basis of the time they spent on the course (measured through their learning management system in minutes, TimeSpent, and the subject (one of five) of their specific course.

m1 <- lm(FinalGradeCEMS ~ TimeSpent + subject, data = d)
summary(m1)
## 
## Call:
## lm(formula = FinalGradeCEMS ~ TimeSpent + subject, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.378  -8.836   4.816  12.855  36.047 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  57.3931739  2.3382193  24.546  < 2e-16 ***
## TimeSpent     0.0071098  0.0006516  10.912  < 2e-16 ***
## subjectBioA  -1.5596482  3.6053075  -0.433    0.665    
## subjectFrScA 11.7306546  2.2143847   5.297 1.68e-07 ***
## subjectOcnA   1.0974545  2.5771474   0.426    0.670    
## subjectPhysA 16.0357213  3.0712923   5.221 2.50e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.8 on 567 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.213,  Adjusted R-squared:  0.2061 
## F-statistic: 30.69 on 5 and 567 DF,  p-value: < 2.2e-16

Your Turn

Notice how above the variables are separated by a + symbol. Below, add another - a third - variable to the regression model. Specifically, add a variable students’ initial, self-reported interest in science, int - and any other variable(s) you like! What do you notice about the results? We’re going to dive into this much more: if you have many questions now, you’re in the right spot!

m2 <- lm(FinalGradeCEMS ~ TimeSpent + semester, data = d)
summary(m2)
## 
## Call:
## lm(formula = FinalGradeCEMS ~ TimeSpent + semester, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -68.039  -7.442   4.962  14.592  30.359 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  67.6128776  1.7071997  39.605   <2e-16 ***
## TimeSpent     0.0060158  0.0006471   9.297   <2e-16 ***
## semesterS216 -4.0572474  1.7770965  -2.283   0.0228 *  
## semesterT116  0.8319735  4.2202455   0.197   0.8438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.64 on 569 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.142,  Adjusted R-squared:  0.1375 
## F-statistic: 31.39 on 3 and 569 DF,  p-value: < 2.2e-16

5. COMMUNICATE

Great job! Once you’ve finished your work, Upon doing so, you should see a new laser-orientation-badge.html.

Congratulations, you’ve completed your Models & Inference Badge! Complete the following steps to submit your work for review by

  1. Change the name of the author: in the YAML header at the very top of this document to your name. As noted in Reproducible Research in R, The YAML header controls the style and feel for knitted document but doesn’t actually display in the final output.

  2. Click the yarn icon above to “knit” your data product to a HTML file that will be saved in your R Project folder.

  3. Commit your changes in GitHub Desktop and push them to your online GitHub repository.

  4. Publish your HTML page the web using one of the following publishing methods:

    • Publish on RPubs by clicking the “Publish” button located in the Viewer Pane when you knit your document. Note, you will need to quickly create a RPubs account.

    • Publishing on GitHub using either GitHub Pages or the HTML previewer.

  5. Post a new discussion on GitHub to our Foundations Badges forum. In your post, include a link to your published web page and a short reflection highlighting one thing you learned from this lab and one thing you’d like to explore further.

LS0tDQp0aXRsZTogIkxBU0VSIEJhZGdlIg0Kc3VidGl0bGU6ICJMQVNFUiBJbnN0aXR1dGUgT3JpZW50YXRpb24iDQphdXRob3I6ICJMYXJpc2EgT2xlc292YSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwnJUIgJWUsICVZJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiA0DQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBjb2RlX2ZvbGRpbmc6IHNob3cNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQplZGl0b3Jfb3B0aW9uczoNCiAgbWFya2Rvd246DQogICAgd3JhcDogNzINCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgZXJyb3IgPSBUUlVFKQ0KYGBgDQoNCiFbXShpbWcvTEFTRVJfSHgucG5nKXt3aWR0aD0iNDAlIn0NCg0KIyMgSW50cm9kdWN0aW9uDQoNCldlbGNvbWUgdG8geW91ciBmaXJzdCBMQVNFUiBiYWRnZSEgVGhpcyBMQVNFUiBPcmllbnRhdGlvbiBCYWRnZSBpcw0KcmVhbGx5IGEgd2FybS11cCBhY3Rpdml0aXkgdG8gaW50cm9kdWNlIHlvdSB0byBSIE1hcmtkb3duIGFuZCB0aGUgY29kaW5nDQpjYXNlIHN0dWRpZXMgdGhhdCB3ZSB3aWxsIGJlIHVzaW5nIGluIHRoZSBtYWNoaW5lIGxlYXJuaW5nLCBuZXR3b3JrDQphbmFseXNpcywgYW5kIHRleHQgbWluaW5nIGxhYnMuIEl0IGlzIGEgY2hhbmNlIHRvIGJlY29tZSBmYW1pbGlhciB3aXRoDQpob3cgUlN0dWRpbyBhbmQgUiBNYXJrZG93biB3b3Jrcy4NCg0KWW91IG1heSBoYXZlIHVzZWQgUiBiZWZvcmUtb3IgeW91IG1heSBub3QgaGF2ZSEgRWl0aGVyIGlzIGZpbmUgYXMgdGhpcw0KdGFzayB3aWxsIGJlIGRlc2lnbmVkIHdpdGggdGhlIGFzc3VtcHRpb24gdGhhdCB5b3UgaGF2ZSBub3QgdXNlZCBSDQpiZWZvcmUuIEl0IGluY2x1ZGVzICJyZWFjaGVzIiBmb3IgYW55b25lIHdobyBtYXkgd2FudCB0byBkbyBhIGJpdCBtb3JlLg0KDQpJbiB0aGUgY29udGV4dCBvZiBkb2luZyBzbywgd2UnbGwgZm9jdXMgb24gdGhlIGZvbGxvd2luZyB0YXNrczoNCg0KMS4gIFJlYWRpbmcgZGF0YSBpbnRvIFIgKGluIHRoZSAqKlByZXBhcmUqKiBzZWN0aW9uKQ0KMi4gIFByZXBhcmluZyBhbmQgIndyYW5nbGluZyIgZGF0YSBpbiB0YWJsZSAodGhpbmsgc3ByZWFkc2hlZXQhKSBmb3JtYXQNCiAgICAoaW4gdGhlICoqV3JhbmdsZSoqIHNlY3Rpb24pDQozLiAgQ3JlYXRpbmcgc29tZSBwbG90cyAoaW4gdGhlICoqRXhwbG9yZSoqIHNlY3Rpb24pDQo0LiAgUnVubmluZyBhIG1vZGVsIC0gc3BlY2lmaWNhbGx5LCBhIHJlZ3Jlc3Npb24gbW9kZWwgKGluIHRoZSAqKk1vZGVsKioNCiAgICBzZWN0aW9uKQ0KNS4gIEZpbmFsbHksIGNyZWF0aW5nIGEgcmVwcm9kdWNpYmxlIHJlcG9ydCBvZiB5b3VyIHdvcmsgeW91IGNhbiBzaGFyZQ0KICAgIHdpdGggb3RoZXJzIChpbiB0aGUgKipDb21tdW5pY2F0ZSoqIHNlY3Rpb24pDQoNCiMjIyBUaGUgTEFTRVIgQ3ljbGUNCg0KWW91IG1heSBiZSB3b25kZXJpbmcgd2hhdCB0aGVzZSBib2xkZWQgdGVybXMgYWJvdmUgcmVmZXIgdG87IHdoYXQncyBzbw0Kc3BlY2lhbCBhYm91dCBwcmVwYXJpbmcsIHdyYW5nbGluZywgZXhwbG9yaW5nLCBhbmQgbW9kZWxpbmcgZGF0YSAtIGFuZA0KY29tbXVuaWNhdGluZyByZXN1bHRzPyBXZSdyZSB1c2luZyB0aGVzZSB0ZXJtcyBhcyBhIHBhcnQgb2YgYSBmcmFtZXdvcmssDQpvciBtb2RlbCwgZm9yIHdoYXQgd2UgbWVhbiBieSBkb2luZyBsZWFybmluZyBpbiBTVEVNIGVkdWNhdGlvbiByZXNlYXJjaC4NCg0KVGhlIHBhcnRpY3VsYXIgZnJhbWV3b3JrIHdlIGFyZSB1c2luZyBjb21lcyBmcm9tIHRoZSB3b3JrIG9mIEtydW1tIGV0DQphbC4ncyBbKkxlYXJuaW5nIEFuYWx5dGljcyBHb2VzIHRvDQpTY2hvb2wqXShodHRwczovL2dpdGh1Yi5jb20vbGFzZXItaW5zdGl0dXRlL2Vzc2VudGlhbC1yZWFkaW5ncy9ibG9iL21haW4vbGFzZXItb3JpZW50YXRpb24vTGVhcm5pbmclMjBBbmFseXRpY3MlMjBHb2VzJTIwdG8lMjBTY2hvb2wucGRmKSouKg0KWW91IGNhbiBjaGVjayB0aGF0IG91dCwgYnV0IGRvbid0IGZlZWwgYW55IG5lZWQgdG8gZGl2ZSBkZWVwIGZvciBub3cgLQ0Kd2UnbGwgYmUgc3BlbmRpbmcgbW9yZSB0aW1lIG9uIHRoaXMgaW4gZmlyc3QgZGF5IG9mIHRoZSBzdW1tZXINCmluc3RpdHV0ZS4gRm9yIG5vdywga25vdyB0aGF0IHRoaXMgZG9jdW1lbnQgaXMgb3JnYW5pemVkIGFyb3VuZCB0aHJlZSBvZg0KdGhlIGZpdmUgY29tcG9uZW50cyBvZiB3aGF0IHdlJ3JlIHJlZmVycmluZyB0byBhcyB0aGUgKipMQVNFUiBjeWNsZSoqLg0KDQpDbGljayB0aGUgZ3JlZW4gYXJyb3cgdG8gdGhlIHJpZ2h0IG9mIHRoZSAiY29kZSBjaHVuayIgYmVsb3cgdG8gdmlldyB0aGUNCmltYWdlIChtb3JlIG9uIHRoYXQgcHJvY2VzcyBvZiBjbGlja2luZyB0aGUgZ3JlZW4gYXJyb3cgYW5kIHdoYXQgaXQNCmRvZXMsIHRvbywgaW4gYSBtb21lbnQpIQ0KDQpgYGB7cn0NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJpbWcvbGFzZXItY3ljbGUucG5nIikNCmBgYA0KDQojIyMgSG93IHRvIHVzZSB0aGlzIFIgTWFya2Rvd24gZG9jdW1lbnQNCg0KVGhpcyBpcyBhbiBSIE1hcmtkb3duIGZpbGUgYXMgaW5kaWNhdGVkIGJ5IHRoZSAucm1kIGV4dGVuc2lvbiBhdCB0aGUgZW5kDQpvZiB0aGUgZmlsZSBuYW1lLiBSIE1hcmtkb3duIGRvY3VtZW50cyBhcmUgZnVsbHkgcmVwcm9kdWNpYmxlIGFuZCB1c2UgYQ0KcHJvZHVjdGl2ZSBbbm90ZWJvb2sNCmludGVyZmFjZV0oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duL25vdGVib29rLmh0bWwpIHRvDQpjb21iaW5lIG5hcnJhdGl2ZSB0ZXh0IGFuZCAiY2h1bmtzIiBvZiBjb2RlIHRvIHByb2R1Y2UgYSByYW5nZSBvZg0KZm9ybWF0dGVkIG91dHB1dHMgaW5jbHVkaW5nOiBmb3JtYXRzDQppbmNsdWRpbmfCoFtIVE1MXShodHRwczovL2Jvb2tkb3duLm9yZy95aWh1aS9ybWFya2Rvd24vaHRtbC1kb2N1bWVudC5odG1sKSzCoFtQREZdKGh0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi9wZGYtZG9jdW1lbnQuaHRtbCkswqBbTVMNCldvcmRdKGh0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi93b3JkLWRvY3VtZW50Lmh0bWwpLMKgW0JlYW1lcl0oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duL2JlYW1lci1wcmVzZW50YXRpb24uaHRtbCkswqBbSFRNTDUNCnNsaWRlc10oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duL2lvc2xpZGVzLXByZXNlbnRhdGlvbi5odG1sKSzCoFtUdWZ0ZS1zdHlsZQ0KaGFuZG91dHNdKGh0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi90dWZ0ZS1oYW5kb3V0cy5odG1sKSzCoFtib29rc10oaHR0cHM6Ly9ib29rZG93bi5vcmcvKSzCoFtkYXNoYm9hcmRzXShodHRwczovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbS9mbGV4ZGFzaGJvYXJkLykswqBbc2hpbnkNCmFwcGxpY2F0aW9uc10oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duL3NoaW55LWRvY3VtZW50cy5odG1sKSzCoFtzY2llbnRpZmljDQphcnRpY2xlc10oaHR0cHM6Ly9naXRodWIuY29tL3JzdHVkaW8vcnRpY2xlcykswqBbd2Vic2l0ZXNdKGh0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi9ybWFya2Rvd24tc2l0ZS5odG1sKSwNCmFuZCBtb3JlLg0KDQpUaGVyZSBhcmUgdHdvIGtleXMgdG8geW91ciB1c2Ugb2YgUiBNYXJrZG93biBmb3IgdGhpcyBhY3Rpdml0eToNCg0KMS4gIEZpcnN0LCBiZSBzdXJlIHRoYXQgeW91IGFyZSB2aWV3aW5nIHRoZSBkb2N1bWVudCBpbiB0aGUgIlZpc3VhbA0KICAgIEVkaXRvciIgbW9kZS4gWW91IGNhbiB1c2UgdGhpcyBtb2RlIGJ5IGNsaWNraW5nIHRoZSB3b3JkICJWaXN1YWwiIG9uDQogICAgdGhlIGxlZnQgc2lkZSBvZiB0aGUgdG9vbGJhciBhYm92ZS4NCjIuICBTZWNvbmQsIGNsaWNrICJLbml0IiBuZXh0IHRvIHRoZSB5YXJuIGJhbGwgYXQgdGhlIHRvcCBvZiB0aGlzIHNjcmVlbg0KICAgIHRvIHByZXZpZXcgdGhlIGRvY3VtZW50IGFzIHlvdSB3b3JrIHRocm91Z2ggaXQuIFRoaXMgd2lsbCBhbGxvdyB5b3UNCiAgICB0byBzZWUgeW91ciBjb2RlIGFuZCB0aGUgaW5wdXQgaW4gYSByZW5kZXJlZCAtIGVhc3ktdG8tcmVhZCAtDQogICAgZG9jdW1lbnQsIGp1c3QgYXMgb3RoZXJzIHdpbGwgc2VlIHRoaXMgZG9jdW1lbnQgd2hlbiBzaGFyZWQuIFRyeQ0KICAgIGtuaXR0aW5nIHRoZSBkb2N1bWVudCBub3cgYW5kIHNlZSB3aGF0IGhhcHBlbnMuDQoNCkxldCdzIGdldCBzdGFydGVkISBXZSBhcmUgZ2xhZCB5b3UgYXJlIGhlcmUgYW5kIHRvIGJlZ2luIHRoaXMgZXhjaXRpbmcNCihhbmQgY2hhbGxlbmdpbmcpIGpvdXJuZXkgdG9nZXRoZXIuDQoNCiMjIDEuIFBSRVBBUkUNCg0KQnkgcHJlcGFyaW5nLCB3ZSByZWZlciB0byBkZXZlbG9waW5nIGEgcXVlc3Rpb24gb3IgcHVycG9zZSBmb3IgdGhlDQphbmFseXNpcywgd2hpY2ggeW91IGxpa2VseSBrbm93IGZyb20geW91ciByZXNlYXJjaCBjYW4gYmUgZGlmZmljdWx0IQ0KVGhpcyBwYXJ0IG9mIHRoZSBwcm9jZXNzIGFsc28gaW52b2x2ZXMgZGV2ZWxvcGluZyBhbiB1bmRlcnN0YW5kaW5nIG9mDQp0aGUgZGF0YSBhbmQgd2hhdCB5b3UgbWF5IG5lZWQgdG8gYW5hbHl6ZSB0aGUgZGF0YS4gVGhpcyBvZnRlbiBpbnZvbHZlcw0KbG9va2luZyBhdCB0aGUgZGF0YSBhbmQgaXRzIGRvY3VtZW50YXRpb24uIEZvciBub3csIHdlJ2xsIGZvY3VzIG9uIGp1c3QNCmEgZmV3IHBhcnRzIG9mIHRoaXMgcHJvY2VzcywgZGl2aW5nIGluIG11Y2ggbW9yZSBkZWVwbHkgb3ZlciB0aGUgY29taW5nDQp3ZWVrcy4NCg0KIyMjIFBhY2thZ2VzIPCfk6YNCg0KUiB1c2VzICJwYWNrYWdlcywiIGFkZC1vbnMgdGhhdCBlbmhhbmNlIGl0cyBmdW5jdGlvbmFsaXR5LiBPbmUgcGFja2FnZQ0KdGhhdCB3ZSdsbCBiZSB1c2luZyBpcyB0aGUgdGlkeXZlcnNlLiBUbyBsb2FkIHRoZSB0aWR5dmVyc2UsIGNsaWNrIHRoZQ0KZ3JlZW4gYXJyb3cgaW4gdGhlIHJpZ2h0IGNvcm5lciBvZiB0aGUgYmxvY2stb3IgImNodW5rIi1vZiBjb2RlIHRoYXQNCmZvbGxvd3MuDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpgYGANCg0KUGxlYXNlIGRvIG5vdCB3b3JyeSBpZiB5b3Ugc2F3IGEgbnVtYmVyIG9mIG1lc3NhZ2VzOiB0aG9zZSBwcm9iYWJseSBtZWFuDQp0aGF0IHRoZSB0aWR5dmVyc2UgbG9hZGVkIGp1c3QgZmluZS4gSWYgeW91IHNlZSBhbiBlcnJvciwgdGhvdWdoLCB0cnkgdG8NCmludGVycHJldCBvciBzZWFyY2ggdmlhIHlvdXIgc2VhcmNoIGVuZ2luZSB0aGUgY29udGVudHMgb2YgdGhlIGVycm9yLCBvcg0KcmVhY2ggb3V0IHRvIHVzIGZvciBhc3Npc3RhbmNlLg0KDQojIyMgTG9hZGluZyAob3IgcmVhZGluZyBpbikgZGF0YQ0KDQpOZXh0LCB3ZSdsbCBsb2FkIGRhdGEtc3BlY2lmaWNhbGx5LCBhIENTViBmaWxlLCB0aGUga2luZCB0aGF0IHlvdSBjYW4NCmV4cG9ydCBmcm9tIE1pY3Jvc29mdCBFeGNlbCBvciBHb29nbGUgU2hlZXRzIC0gaW50byBSLCB1c2luZyB0aGUNCmByZWFkX2NzdigpYCBmdW5jdGlvbiBpbiB0aGUgbmV4dCBjaHVuay4NCg0KQ2xpY2tpbmcgdGhlIGdyZWVuIGFycm93IHJ1bnMgdGhlIGNvZGU7IGRvIHRoYXQgbmV4dCB0byByZWFkIHRoZQ0KYHNjaS1vbmxpbmUtY2xhc3Nlcy5jc3ZgIGZpbGUgc3RvcmVkIGluIHlvdXIgZGF0YSBmb2xkZXIgaW50byB5b3VyIFINCmVudmlyb25tZW50Og0KDQpgYGB7cn0NCmQgPC0gcmVhZF9jc3YoImRhdGEvc2NpLW9ubGluZS1jbGFzc2VzLmNzdiIpDQpgYGANCg0KTmljZSB3b3JrISBZb3Ugc2hvdWxkIG5vdyBzZWUgYSBuZXcgZGF0YSAib2JqZWN0IiBuYW1lZCBgZGAgc2F2ZWQgaW4NCnlvdXIgRW52aXJvbm1lbnQgcGFuZS4gVHJ5IGNsaWNraW5nIG9uIGl0IGFuZCBzZWUgd2hhdCBoYXBwZW5zLg0KDQojIyMjIFZpZXdpbmcgb3IgaW5zcGVjdGluZyBkYXRhDQoNCk5vdyBsZXQncyBsZWFybiBhbm90aGVyIHdheSB0byBpbnNwZWN0IG91ciBkYXRhLiBSdW4gdGhlIG5leHQgY2h1bmsgYW5kDQpsb29rIGF0IHRoZSByZXN1bHRzLCB0YWJiaW5nIGxlZnQgb3IgcmlnaHQgd2l0aCB0aGUgYXJyb3dzLCBvciBzY2FubmluZw0KdGhyb3VnaCB0aGUgcm93cyBieSBjbGlja2luZyB0aGUgbnVtYmVycyBhdCB0aGUgYm90dG9tIG9mIHRoZSBwYW5lIHdpdGgNCnRoZSBwcmludC1vdXQgb2YgdGhlIGRhdGEgeW91IGxvYWRlZDoNCg0KYGBge3J9DQpkDQpgYGANCg0KIyMjIyBbKipZb3VyIFR1cm4qKl17c3R5bGU9ImNvbG9yOiBncmVlbjsifSAqKuKktSoqDQoNCldoYXQgZG8geW91IG5vdGljZSBhYm91dCB0aGlzIGRhdGEgc2V0PyBXaGF0IGRvIHlvdSB3b25kZXI/IEFkZCBvbmUtdHdvDQp0aG91Z2h0cyBmb2xsb3dpbmcgdGhlIGRhc2hlcyBuZXh0ICh5b3UgY2FuIGFkZCBhZGRpdGlvbmFsIGRhc2hlcyBpZiB5b3UNCmxpa2UhKToNCg0KLSAgIHF1aXogZGF0YSBhbmQgaG93IG11Y2ggdGltZSBlYWNoIHN0dWRlbnQgc3BlbnQNCg0KLSAgIHRoZXJlIGFyZSB0aGUgbGFzdHRocmVlICBjb2x1bW5zIHRoYXQgYXJlIG5vdCBjbGVhciBhdCB0aGlzIHBvaW50DQoNClRoZXJlIGFyZSBvdGhlciB3YXlzIHRvIGluc3BlY3QgeW91ciBkYXRhOyB0aGUgYGdsaW1wc2UoKWAgZnVuY3Rpb24NCnByb3ZpZGVzIG9uZSBzdWNoIHdheS4gUnVuIHRoZSBjb2RlIGJlbG93IHRvIHRha2UgYSBnbGltcHNlIGF0IHlvdXINCmRhdGEuDQoNCmBgYHtyfQ0KZ2xpbXBzZShkKQ0KYGBgDQoNCldlIGhhdmUgb25lIG1vcmUgcXVlc3Rpb24gdG8gcG9zZSB0byB5b3U6IFdoYXQgZG8gcm93cyBhbmQgY29sdW1ucw0KdHlwaWNhbGx5IHJlcHJlc2VudCBpbiB5b3VyIGFyZWEgb2Ygd29yayBhbmQvb3IgcmVzZWFyY2g/DQoNCkdlbmVyYWxseSwgcm93cyB0eXBpY2FsbHkgcmVwcmVzZW50ICJjYXNlcywiIHRoZSB1bml0cyB0aGF0IHdlIG1lYXN1cmUsDQpvciB0aGUgdW5pdHMgb24gd2hpY2ggd2UgY29sbGVjdCBkYXRhLiBUaGlzIGlzIG5vdCBhIHRyaWNrIHF1ZXN0aW9uIQ0KV2hhdCBjb3VudHMgYXMgYSAiY2FzZSIgKGFuZCB0aGVyZWZvcmUgd2hhdCBpcyByZXByZXNlbnRlZCBhcyBhIHJvdykNCnZhcmllcyBieSAoYW5kIHdpdGhpbikgZmllbGRzLiBUaGVyZSBtYXkgYmUgbXVsdGlwbGUgdHlwZXMgb3IgbGV2ZWxzIG9mDQp1bml0cyBzdHVkaWVkIGluIHlvdXIgZmllbGQ7IGxpc3RpbmcgbW9yZSB0aGFuIG9uZSBpcyBmaW5lISBBbHNvLCBwbGVhc2UNCmNvbnNpZGVyIHdoYXQgY29sdW1ucyAtIHdoaWNoIHVzdWFsbHkgcmVwcmVzZW50IHZhcmlhYmxlcyAtIHJlcHJlc2VudCBpbg0KeW91ciBhcmVhIG9mIHdvcmsgYW5kL29yIHJlc2VhcmNoLg0KDQojIyMjIFsqKllvdXIgVHVybioqXXtzdHlsZT0iY29sb3I6IGdyZWVuOyJ9ICoq4qS1KioNCg0KV2hhdCByb3dzIHR5cGljYWxseSAob3IgeW91IHRoaW5rIG1heSkgcmVwcmVzZW50Og0KDQotICAgY2FzZXMgb3IgaW5kaXZpZHVhbCBzdHVkZW50cyBpbiBteSByZXNlYXJjaA0KDQpXaGF0IGNvbHVtbnMgdHlwaWNhbGx5IChvciB5b3UgdGhpbmsgbWF5KSByZXByZXNlbnQ6DQoNCi0gICB2YXJpYWJsZXMsIGkuZS4sIGdyYWRlcw0KDQpOZXh0LCB3ZSdsbCB1c2UgYSBmZXcgZnVuY3Rpb25zIHRoYXQgYXJlIGhhbmR5IGZvciBwcmVwYXJpbmcgZGF0YSBpbg0KdGFibGUgZm9ybS4NCg0KIyMgMi4gV1JBTkdMRQ0KDQpCeSB3cmFuZ2xlLCB3ZSByZWZlciB0byB0aGUgcHJvY2VzcyBvZiBjbGVhbmluZyBhbmQgcHJvY2Vzc2luZyBkYXRhLA0KYW5kLCBpbiBjYXNlcywgbWVyZ2luZyAob3Igam9pbmluZykgZGF0YSBmcm9tIG11bHRpcGxlIHNvdXJjZXMuIE9mdGVuLA0KdGhpcyBwYXJ0IG9mIHRoZSBwcm9jZXNzIGlzIHZlcnkgKHN1cnByaXNpbmdseSkgdGltZS1pbnRlbnNpdmUuDQpXcmFuZ2xpbmcgeW91ciBkYXRhIGludG8gc2hhcGUgY2FuIGl0c2VsZiBiZSBhbiBpbXBvcnRhbnQNCmFjY29tcGxpc2htZW50ISBUaGVyZSBhcmUgZ3JlYXQgdG9vbHMgaW4gUiB0byBkbyB0aGlzLCBlc3BlY2lhbGx5DQp0aHJvdWdoIHRoZSB1c2Ugb2YgdGhlIHtkcGx5cn0gUiBwYWNrYWdlLg0KDQojIyMgU2VsZWN0aW5nIHZhcmlhYmxlcw0KDQpMZXQncyBzZWxlY3Qgb25seSBhIGZldyB2YXJpYWJsZXMuDQoNCmBgYHtyfQ0KZCB8PiANCiAgc2VsZWN0KHN0dWRlbnRfaWQsIHRvdGFsX3BvaW50c19wb3NzaWJsZSwgdG90YWxfcG9pbnRzX2Vhcm5lZCkNCmBgYA0KDQpOb3RpY2UgaG93IHRoZSBudW1iZXIgb2YgY29sdW1ucyAodmFyaWFibGVzKSBpcyBub3cgZGlmZmVyZW50Lg0KDQpMZXQncyAqaW5jbHVkZSBvbmUgYWRkaXRpb25hbCB2YXJpYWJsZSogaW4geW91ciBzZWxlY3QgZnVuY3Rpb24uDQoNCkZpcnN0LCB3ZSBuZWVkIHRvIGZpZ3VyZSBvdXQgd2hhdCB2YXJpYWJsZXMgZXhpc3QgaW4gb3VyIGRhdGFzZXQgKG9yIGJlDQpyZW1pbmRlZCBvZiB0aGlzIC0gaXQncyB2ZXJ5IGNvbW1vbiBpbiBSIHRvIGJlIGNvbnRpbnVhbGx5IGNoZWNraW5nIGFuZA0KaW5zcGVjdGluZyB5b3VyIGRhdGEpIQ0KDQpZb3UgY2FuIHVzZSBhIGZ1bmN0aW9uIG5hbWVkIGdsaW1wc2UoKSB0byBkbyB0aGlzLg0KDQpgYGB7cn0NCmdsaW1wc2UoZCkNCmBgYA0KDQojIyMjIFsqKllvdXIgVHVybioqXXtzdHlsZT0iY29sb3I6IGdyZWVuOyJ9ICoq4qS1KioNCg0KSW4gdGhlIGNvZGUgY2h1bmsgYmVsb3csIGFkZCBhIG5ldyB2YXJpYWJsZSB0byB0aGUgY29kZSBiZWxvdywgYmVpbmcNCmNhcmVmdWwgdG8gdHlwZSB0aGUgbmV3IHZhcmlhYmxlIG5hbWUgYXMgaXQgYXBwZWFycyBpbiB0aGUgZGF0YS4gV2UndmUNCmFkZGVkIHNvbWUgY29kZSB0byBnZXQgeW91IHN0YXJ0ZWQuIENvbnNpZGVyIGhvdyB0aGUgbmFtZXMgb2YgdGhlIG90aGVyDQp2YXJpYWJsZXMgYXJlIHNlcGFyYXRlZCBhcyB5b3UgdGhpbmsgYWJvdXQgaG93IHRvIGFkZCBhbiBhZGRpdGlvbmFsDQp2YXJpYWJsZSB0byB0aGlzIGNvZGUuDQoNCmBgYHtyfQ0KZCB8PiANCiAgc2VsZWN0KHN0dWRlbnRfaWQsIHRvdGFsX3BvaW50c19wb3NzaWJsZSwgdG90YWxfcG9pbnRzX2Vhcm5lZCwgVGltZVNwZW50KQ0KYGBgDQoNCk9uY2UgYWRkZWQsIHRoZSBvdXRwdXQgc2hvdWxkIGJlIGRpZmZlcmVudCB0aGFuIGluIHRoZSBjb2RlIGFib3ZlIC0NCnRoZXJlIHNob3VsZCBub3cgYmUgYW4gYWRkaXRpb25hbCB2YXJpYWJsZSBpbmNsdWRlZCBpbiB0aGUgcHJpbnQtb3V0Lg0KDQojIyMgRmlsdGVyaW5nIHZhcmlhYmxlcw0KDQpOZXh0LCBsZXQncyBleHBsb3JlIGZpbHRlcmluZyB2YXJpYWJsZXMuIENoZWNrIG91dCBhbmQgcnVuIHRoZSBuZXh0DQpjaHVuayBvZiBjb2RlLCBpbWFnaW5pbmcgdGhhdCB3ZSB3aXNoIHRvIGZpbHRlciBvdXIgZGF0YSB0byB2aWV3IG9ubHkNCnRoZSByb3dzIGFzc29jaWF0ZWQgd2l0aCBzdHVkZW50cyB3aG8gZWFybmVkIGEgZmluYWwgZ3JhZGUgKGFzIGENCnBlcmNlbnRhZ2UpIG9mIDcwIC0gNzAlIC0gb3IgaGlnaGVyLg0KDQpgYGB7cn0NCmQgfD4gDQogIGZpbHRlcihGaW5hbEdyYWRlQ0VNUyA+IDcwKQ0KYGBgDQoNCiMjIyMjIFsqKllvdXIgVHVybioqXXtzdHlsZT0iY29sb3I6IGdyZWVuOyJ9ICoq4qS1KioNCg0KSW4gdGhlIG5leHQgY29kZSBjaHVuaywgY2hhbmdlIHRoZSBjdXQtb2ZmIGZyb20gNzAlIHRvIHNvbWUgb3RoZXINCnZhbHVlIC0gbGFyZ2VyIG9yIHNtYWxsZXIgKG1heWJlIG11Y2ggbGFyZ2VyIG9yIHNtYWxsZXIgLSBmZWVsIGZyZWUgdG8NCnBsYXkgYXJvdW5kIHdpdGggdGhlIGNvZGUgYSBiaXQhKS4NCg0KYGBge3J9DQpkIHw+IA0KICBmaWx0ZXIoRmluYWxHcmFkZUNFTVMgPiA1MCkNCmBgYA0KDQpXaGF0IGhhcHBlbnMgd2hlbiB5b3UgY2hhbmdlIHRoZSBjdXQtb2ZmIGZyb20gNzAgdG8gc29tZXRoaW5nIGVsc2U/IEFkZA0KYSB0aG91Z2h0IChvciBtb3JlKToNCg0KLSAgQ2FzZXMgY2hhbmdlZCBmcm9tIDQzOCByb3dzIHRvIDUxMCByb3dzIG1lYW5pbmcgNTEwIHN0dWRlbnRzIHdlbnQgY3V0LW9mZiBmcm9tIDUwIA0KDQojIyMgQXJyYW5nZQ0KDQpUaGUgbGFzdCBmdW5jdGlvbiB3ZSdsbCB1c2UgZm9yIHByZXBhcmluZyB0YWJsZXMgaXMgYXJyYW5nZS4NCg0KV2UnbGwgY29tYmluZSB0aGlzIGFycmFuZ2UoKSBmdW5jdGlvbiB3aXRoIGEgZnVuY3Rpb24gd2UgdXNlZCBhbHJlYWR5IC0NCnNlbGVjdCgpLiBXZSBkbyB0aGlzIHNvIHdlIGNhbiB2aWV3IG9ubHkgdGhlIHN0dWRlbnQgSUQgYW5kIHRoZWlyIGZpbmFsDQpncmFkZS4NCg0KYGBge3J9DQpkIHw+IA0KICBzZWxlY3Qoc3R1ZGVudF9pZCwgRmluYWxHcmFkZUNFTVMpIHw+IA0KICBhcnJhbmdlKEZpbmFsR3JhZGVDRU1TKQ0KYGBgDQoNCk5vdGUgdGhhdCBhcnJhbmdlIHdvcmtzIGJ5IHNvcnRpbmcgdmFsdWVzIGluIGFzY2VuZGluZyBvcmRlciAoZnJvbQ0KbG93ZXN0IHRvIGhpZ2hlc3QpOyB5b3UgY2FuIGNoYW5nZSB0aGlzIGJ5IHVzaW5nIHRoZSBkZXNjKCkgZnVuY3Rpb24NCndpdGggYXJyYW5nZSwgbGlrZSB0aGUgZm9sbG93aW5nOg0KDQpgYGB7cn0NCmQgfD4gDQogIHNlbGVjdChzdHVkZW50X2lkLCBGaW5hbEdyYWRlQ0VNUykgfD4gDQogIGFycmFuZ2UoZGVzYyhGaW5hbEdyYWRlQ0VNUykpDQpgYGANCg0KIyMjIyBbKipZb3VyIFR1cm4qKl17c3R5bGU9ImNvbG9yOiBncmVlbjsifSAqKuKktSoqDQoNCkluIHRoZSBjb2RlIGNodW5rIGJlbG93LCByZXBsYWNlIEZpbmFsR3JhZGVDRU1TIHRoYXQgaXMgdXNlZCB3aXRoIGJvdGgNCnRoZSBzZWxlY3QoKSBhbmQgYXJyYW5nZSgpIGZ1bmN0aW9ucyB3aXRoIGEgZGlmZmVyZW50IHZhcmlhYmxlIGluIHRoZQ0KZGF0YSBzZXQuIENvbnNpZGVyIHJldHVybmluZyB0byB0aGUgY29kZSBjaHVuayBhYm92ZSBpbiB3aGljaCB5b3UNCmdsaW1wc2VkIGF0IHRoZSBuYW1lcyBvZiBhbGwgb2YgdGhlIHZhcmlhYmxlcy4NCg0KYGBge3J9DQpkIHw+IA0KICBzZWxlY3Qoc3R1ZGVudF9pZCwgVGltZVNwZW50KSB8PiANCiAgYXJyYW5nZShkZXNjKFRpbWVTcGVudCkpDQpgYGANCg0KIyMjIFJlYWNoIDEg8J+OiQ0KDQpDYW4geW91IGNvbXBvc2UgYSBzZXJpZXMgb2YgZnVuY3Rpb25zIHRoYXQgaW5jbHVkZSB0aGUgc2VsZWN0KCksDQpmaWx0ZXIoKSwgYW5kIGFycmFuZ2UgZnVuY3Rpb25zPyBSZWNhbGwgdGhhdCB5b3UgY2FuICJwaXBlIiB0aGUgb3V0cHV0DQpmcm9tIG9uZSBmdW5jdGlvbiB0byB0aGUgbmV4dCBhcyB3aGVuIHdlIHVzZWQgc2VsZWN0KCkgYW5kIGFycmFuZ2UoKQ0KdG9nZXRoZXIgaW4gdGhlIGNvZGUgY2h1bmsgYWJvdmUuDQoNCipUaGlzIHJlYWNoIGlzIG5vdCByZXF1aXJlZC9uZWNlc3NhcnkgdG8gY29tcGxldGU7IGl0J3MganVzdCBmb3IgdGhvc2UNCndobyB3aXNoIHRvIGRvIGEgYml0IG1vcmUgd2l0aCB0aGVzZSBmdW5jdGlvbnMgYXQgdGhpcyB0aW1lICh3ZSdsbCBkbw0KbW9yZSBpbiBjbGFzcywgdG9vISkqDQoNCmBgYHtyfQ0KDQpgYGANCg0KIyMgMy4gRVhQTE9SRQ0KDQpFeHBsb3JhdG9yeSBkYXRhIGFuYWx5c2lzLCBvciBleHBsb3JpbmcgeW91ciBkYXRhLCBpbnZvbHZlcyBwcm9jZXNzZXMgb2YNCipkZXNjcmliaW5nKiB5b3VyIGRhdGEgKHN1Y2ggYXMgYnkgY2FsY3VsYXRpbmcgdGhlIG1lYW5zIGFuZCBzdGFuZGFyZA0KZGV2aWF0aW9ucyBvZiBudW1lcmljIHZhcmlhYmxlcywgb3IgY291bnRpbmcgdGhlIGZyZXF1ZW5jeSBvZg0KY2F0ZWdvcmljYWwgdmFyaWFibGVzKSBhbmQsIG9mdGVuLCB2aXN1YWxpemluZyB5b3VyIGRhdGEgcHJpb3IuIEluIHRoaXMNCnNlY3Rpb24sIHdlJ2xsIGNyZWF0ZSBhIGZldyBwbG90cyB0byBleHBsb3JlIG91ciBkYXRhLg0KDQojIyMgSGlzdG9ncmFtDQoNClRoZSBjb2RlIGJlbG93IGNyZWF0ZXMgYSBoaXN0b2dyYW0sIG9yIGEgZGlzdHJpYnV0aW9uIG9mIHRoZSB2YWx1ZXMsIGluDQp0aGlzIGNhc2UgZm9yIHN0dWRlbnRzJyBmaW5hbCBncmFkZXMuDQoNCmBgYHtyfQ0KZ2dwbG90KGQsIGFlcyh4ID0gRmluYWxHcmFkZUNFTVMpKSArDQogIGdlb21faGlzdG9ncmFtKCkNCmBgYA0KDQpZb3UgY2FuIGNoYW5nZSB0aGUgY29sb3Igb2YgdGhlIGhpc3RvZ3JhbSBiYXJzIGJ5IHNwZWNpZnlpbmcgYSBjb2xvciBhcw0KZm9sbG93czoNCg0KYGBge3J9DQpnZ3Bsb3QoZCwgYWVzKHggPSBGaW5hbEdyYWRlQ0VNUykpICsNCiAgZ2VvbV9oaXN0b2dyYW0oZmlsbCA9ICJibHVlIikNCmBgYA0KDQojIyMgQ2hhbmdpbmcgY29sb3JzDQoNCiMjIyMgWyoqWW91ciBUdXJuKipde3N0eWxlPSJjb2xvcjogZ3JlZW47In0gKiripLUqKg0KDQpJbiB0aGUgY29kZSBjaHVuayBiZWxvdywgY2hhbmdlIHRoZSBjb2xvciB0byBvbmUgb2YgeW91ciBjaG9vc2luZzsNCmNvbnNpZGVyIHRoaXMgbGlzdCBvZiB2YWxpZCBjb2xvciBuYW1lcyBoZXJlOg0KPGh0dHA6Ly93d3cuc3RhdC5jb2x1bWJpYS5lZHUvfnR6aGVuZy9maWxlcy9SY29sb3IucGRmPg0KDQpgYGB7cn0NCmdncGxvdChkLCBhZXMoeCA9IEZpbmFsR3JhZGVDRU1TKSkgKw0KICBnZW9tX2hpc3RvZ3JhbShmaWxsID0gInBpbmsiKQ0KYGBgDQoNCkZpbmFsbHksIHdlJ2xsIG1ha2Ugb25lIG1vcmUgY2hhbmdlOyB2aXN1YWxpemUgdGhlIGRpc3RyaWJ1dGlvbiBvZg0KYW5vdGhlciB2YXJpYWJsZSBpbiB0aGUgZGF0YSAtIG9uZSBvdGhlciB0aGFuIEZpbmFsR3JhZGVDRU1TLiBZb3UgY2FuIGRvDQpzbyBieSBzd2FwcGluZyBvdXQgdGhlIG5hbWUgZm9yIGFub3RoZXIgdmFyaWFibGUgd2l0aCBGaW5hbEdyYWRlQ0VNUy4NCkFsc28sIGNoYW5nZSB0aGUgY29sb3IgdG8gb25lIG90aGVyIHRoYW4gYmx1ZS4NCg0KYGBge3J9DQpnZ3Bsb3QoZCwgYWVzKHggPSBUaW1lU3BlbnQpKSArDQogIGdlb21faGlzdG9ncmFtKGZpbGwgPSAiZ3JlZW4iKQ0KYGBgDQoNCiMjIyBSZWFjaCAyIPCfjokNCg0KQ29tcGxldGVkIHRoZSBhYm92ZT8gTmljZSBqb2IhIFRyeSBmb3IgYSAicmVhY2giIGJ5IGNyZWF0aW5nIGEgc2NhdHRlcg0KcGxvdCBmb3IgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIFlvdSB3aWxsIG5lZWQgdG8gcGFzcw0KdGhlIG5hbWVzIG9mIHR3byB2YXJpYWJsZXMgdG8gdGhlIGNvZGUgYmVsb3cgZm9yIHdoYXQgaXMgbm93IHNpbXBseSBYWFgNCihhIHBsYWNlaG9sZGVyKS4NCg0KYGBge3J9DQpnZ3Bsb3QoZCwgYWVzKHggPSBUaW1lU3BlbnQsIHkgPSBGaW5hbEdyYWRlQ0VNUykpICsNCiAgZ2VvbV9wb2ludCgpDQpgYGANCg0KIyMgNC4gTU9ERUwNCg0KIk1vZGVsIiBpcyBvbmUgb2YgdGhvc2UgdGVybXMgdGhhdCBoYXMgbWFueSBkaWZmZXJlbnQgbWVhbmluZ3MuIEZvciBvdXINCnB1cnBvc2UsIHdlIHJlZmVyIHRvIHRoZSBwcm9jZXNzIG9mIHNpbXBsaWZ5aW5nIGFuZCBzdW1tYXJpemluZyBvdXINCmRhdGEuIFRodXMsIG1vZGVscyBjYW4gdGFrZSBtYW55IGZvcm1zOyBjYWxjdWxhdGluZyBtZWFucyByZXByZXNlbnRzIGENCmxlZ2l0aW1hdGUgZm9ybSBvZiBtb2RlbGluZyBkYXRhLCBhcyBkb2VzIGVzdGltYXRpbmcgbW9yZSBjb21wbGV4DQptb2RlbHMsIGluY2x1ZGluZyBsaW5lYXIgcmVncmVzc2lvbnMsIGFuZCBtb2RlbHMgYW5kIGFsZ29yaXRobXMNCmFzc29jaWF0ZWQgd2l0aCBtYWNoaW5lIGxlYXJuaW5nIHRhc2tzLiBGb3Igbm93LCB3ZSdsbCBydW4gYSBsaW5lYXINCnJlZ3Jlc3Npb24gdG8gcHJlZGljdCBzdHVkZW50cycgZmluYWwgZ3JhZGVzLg0KDQpCZWxvdywgd2UgcHJlZGljdCBzdHVkZW50cycgZmluYWwgZ3JhZGVzIChgRmluYUdyYWRlQ0VNU2AsIHdoaWNoIGlzIG9uIGENCjAtMTAwIHBvaW50IHNjYWxlKSBvbiB0aGUgYmFzaXMgb2YgdGhlIHRpbWUgdGhleSBzcGVudCBvbiB0aGUgY291cnNlDQoobWVhc3VyZWQgdGhyb3VnaCB0aGVpciBsZWFybmluZyBtYW5hZ2VtZW50IHN5c3RlbSBpbiBtaW51dGVzLA0KYFRpbWVTcGVudGAsIGFuZCB0aGUgc3ViamVjdCAob25lIG9mIGZpdmUpIG9mIHRoZWlyIHNwZWNpZmljIGNvdXJzZS4NCg0KYGBge3J9DQptMSA8LSBsbShGaW5hbEdyYWRlQ0VNUyB+IFRpbWVTcGVudCArIHN1YmplY3QsIGRhdGEgPSBkKQ0Kc3VtbWFyeShtMSkNCmBgYA0KDQojIyMjIFsqKllvdXIgVHVybioqXXtzdHlsZT0iY29sb3I6IGdyZWVuOyJ9ICoq4qS1KioNCg0KTm90aWNlIGhvdyBhYm92ZSB0aGUgdmFyaWFibGVzIGFyZSBzZXBhcmF0ZWQgYnkgYSArIHN5bWJvbC4gQmVsb3csIGFkZA0KKmFub3RoZXIqIC0gYSB0aGlyZCAtIHZhcmlhYmxlIHRvIHRoZSByZWdyZXNzaW9uIG1vZGVsLiBTcGVjaWZpY2FsbHksDQphZGQgYSB2YXJpYWJsZSBzdHVkZW50cycgaW5pdGlhbCwgc2VsZi1yZXBvcnRlZCBpbnRlcmVzdCBpbiBzY2llbmNlLA0KYGludGAgLSBhbmQgYW55IG90aGVyIHZhcmlhYmxlKHMpIHlvdSBsaWtlISBXaGF0IGRvIHlvdSBub3RpY2UgYWJvdXQgdGhlDQpyZXN1bHRzPyBXZSdyZSBnb2luZyB0byBkaXZlIGludG8gdGhpcyAqbXVjaCogbW9yZTogaWYgeW91IGhhdmUgbWFueQ0KcXVlc3Rpb25zIG5vdywgeW91J3JlIGluIHRoZSByaWdodCBzcG90IQ0KDQpgYGB7cn0NCm0yIDwtIGxtKEZpbmFsR3JhZGVDRU1TIH4gVGltZVNwZW50ICsgc2VtZXN0ZXIsIGRhdGEgPSBkKQ0Kc3VtbWFyeShtMikNCmBgYA0KDQojIyA1LiBDT01NVU5JQ0FURQ0KDQpHcmVhdCBqb2IhIE9uY2UgeW91J3ZlIGZpbmlzaGVkIHlvdXIgd29yaywgVXBvbiBkb2luZyBzbywgeW91IHNob3VsZCBzZWUNCmEgbmV3IGBsYXNlci1vcmllbnRhdGlvbi1iYWRnZS5odG1sYC4NCg0KQ29uZ3JhdHVsYXRpb25zLCB5b3UndmUgY29tcGxldGVkIHlvdXIgTW9kZWxzICYgSW5mZXJlbmNlIEJhZGdlIQ0KQ29tcGxldGUgdGhlIGZvbGxvd2luZyBzdGVwcyB0byBzdWJtaXQgeW91ciB3b3JrIGZvciByZXZpZXcgYnkNCg0KMS4gIENoYW5nZSB0aGUgbmFtZSBvZiB0aGUgYGF1dGhvcjpgIGluIHRoZSBbWUFNTA0KICAgIGhlYWRlcl0oaHR0cHM6Ly9tb25hc2hkYXRhZmx1ZW5jeS5naXRodWIuaW8vci1yZXAtcmVzL3lhbWwtaGVhZGVyLmh0bWwpDQogICAgYXQgdGhlIHZlcnkgdG9wIG9mIHRoaXMgZG9jdW1lbnQgdG8geW91ciBuYW1lLiBBcyBub3RlZCBpbg0KICAgIFtSZXByb2R1Y2libGUgUmVzZWFyY2ggaW4NCiAgICBSXShodHRwczovL21vbmFzaGRhdGFmbHVlbmN5LmdpdGh1Yi5pby9yLXJlcC1yZXMvaW5kZXguaHRtbCksIFRoZQ0KICAgIFlBTUwgaGVhZGVyIGNvbnRyb2xzIHRoZSBzdHlsZSBhbmQgZmVlbCBmb3Iga25pdHRlZCBkb2N1bWVudCBidXQNCiAgICBkb2Vzbid0IGFjdHVhbGx5IGRpc3BsYXkgaW4gdGhlIGZpbmFsIG91dHB1dC4NCg0KMi4gIENsaWNrIHRoZSB5YXJuIGljb24gYWJvdmUgdG8gImtuaXQiIHlvdXIgZGF0YSBwcm9kdWN0IHRvIGENCiAgICBbSFRNTF0oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duL2h0bWwtZG9jdW1lbnQuaHRtbCkgZmlsZQ0KICAgIHRoYXQgd2lsbCBiZSBzYXZlZCBpbiB5b3VyIFIgUHJvamVjdCBmb2xkZXIuDQoNCjMuICBDb21taXQgeW91ciBjaGFuZ2VzIGluIEdpdEh1YiBEZXNrdG9wIGFuZCBwdXNoIHRoZW0gdG8geW91ciBvbmxpbmUNCiAgICBHaXRIdWIgcmVwb3NpdG9yeS4NCg0KNC4gIFB1Ymxpc2ggeW91ciBIVE1MIHBhZ2UgdGhlIHdlYiB1c2luZyBvbmUgb2YgdGhlIGZvbGxvd2luZw0KICAgIFtwdWJsaXNoaW5nIG1ldGhvZHNdKGh0dHBzOi8vcnB1YnMuY29tL2NhdGh5ZGF0YXNjaWVuY2UvNTE4NjkyKToNCg0KICAgIC0gICBQdWJsaXNoIG9uIFtSUHVic10oaHR0cHM6Ly9ycHVicy5jb20pIGJ5IGNsaWNraW5nIHRoZSAiUHVibGlzaCINCiAgICAgICAgYnV0dG9uIGxvY2F0ZWQgaW4gdGhlIFZpZXdlciBQYW5lIHdoZW4geW91IGtuaXQgeW91ciBkb2N1bWVudC4NCiAgICAgICAgTm90ZSwgeW91IHdpbGwgbmVlZCB0byBxdWlja2x5IGNyZWF0ZSBhIFJQdWJzIGFjY291bnQuDQoNCiAgICAtICAgUHVibGlzaGluZyBvbiBHaXRIdWIgdXNpbmcgZWl0aGVyIFtHaXRIdWINCiAgICAgICAgUGFnZXNdKGh0dHBzOi8vcGFnZXMuZ2l0aHViLmNvbSkgb3IgdGhlIFtIVE1MDQogICAgICAgIHByZXZpZXdlcl0oaHR0cDovL2h0bWxwcmV2aWV3LmdpdGh1Yi5pbykuDQoNCjUuICBQb3N0IGEgbmV3IGRpc2N1c3Npb24gb24gR2l0SHViIHRvIG91ciBbRm91bmRhdGlvbnMgQmFkZ2VzDQogICAgZm9ydW1dKGh0dHBzOi8vZ2l0aHViLmNvbS9vcmdzL2xhc2VyLWluc3RpdHV0ZS90ZWFtcy9mb3VuZGF0aW9ucy9kaXNjdXNzaW9ucy8yKS4NCiAgICBJbiB5b3VyIHBvc3QsIGluY2x1ZGUgYSBsaW5rIHRvIHlvdXIgcHVibGlzaGVkIHdlYiBwYWdlIGFuZCBhIHNob3J0DQogICAgcmVmbGVjdGlvbiBoaWdobGlnaHRpbmcgb25lIHRoaW5nIHlvdSBsZWFybmVkIGZyb20gdGhpcyBsYWIgYW5kIG9uZQ0KICAgIHRoaW5nIHlvdSdkIGxpa2UgdG8gZXhwbG9yZSBmdXJ0aGVyLg0K