shared and unique between mouse and pig
# rename GeneName to gene_name to merge data sets and find intersections
mouse_and_pg_df <- merge(mouse_limma_FDRq1.00, pig_brain_FDRq1.00, by = "gene_name")
shared_gene_name <- intersect(mouse_limma_FDRq0.05$gene_name, pig_brain_FDRq0.05$gene_name)
uniqueToMouse_gene_name <- setdiff(mouse_limma_FDRq0.05$gene_name, pig_brain_FDRq0.05$gene_name)
uniqueToPig_gene_name <- setdiff(pig_brain_FDRq0.05$gene_name, mouse_limma_FDRq0.05$gene_name)
shared <- mouse_and_pg_df[mouse_and_pg_df$gene_name %in% shared_gene_name, ]
uniqueToMouse <- mouse_and_pg_df[mouse_and_pg_df$gene_name %in% uniqueToMouse_gene_name, ]
uniqueToPig <- mouse_and_pg_df[mouse_and_pg_df$gene_name %in% uniqueToPig_gene_name, ]
# Venn diagram to see what is gained and lost between the reanalysis
x = list(mouse = mouse_limma_FDRq0.05$gene_name, pig = pig_brain_FDRq0.05$gene_name)
ggvenn(
x,
fill_color = c("#EFC000FF", "purple"),
stroke_size = 2,
set_name_size = 6
)

output tables
#output table
write.table(
shared_gene_name,
"../../mouse_comparison/results/mouse_pig_shared_gene_name.txt",
quote = F,
row.names = F
)
write.table(
uniqueToMouse_gene_name,
"../../mouse_comparison/results/uniqueToMouse_gene_name.txt",
quote = F,
row.names = F
)
write.table(
uniqueToPig_gene_name,
"../../mouse_comparison/results/uniqueToPig_gene_name.txt",
quote = F,
row.names = F
)
correlation
shared DEGs
# Shared DEGs
shared <- shared[!duplicated(shared[,c("gene_name")]),]
# Shapiro-Wilk normality test
shapiro.test(shared$logFC.x)
##
## Shapiro-Wilk normality test
##
## data: shared$logFC.x
## W = 0.89084, p-value = 2.461e-12
shapiro.test(shared$logFC.y)
##
## Shapiro-Wilk normality test
##
## data: shared$logFC.y
## W = 0.95777, p-value = 1.3e-06
# correlation test
res <- cor.test(shared$logFC.x, shared$logFC.y,
method = "spearman")
p_value <- round(res$p.value, 3)
rho_value <- round(res$estimate, 3)
# shared between mouse and pig
p <- ggplot(data = shared, aes(x = logFC.x, y = logFC.y, text = paste(gene_name))) +
annotate(
"rect",
xmin = 0,
xmax = max(shared$logFC.x),
ymin = max(shared$logFC.y),
ymax = 0,
fill = "lightpink3",
alpha = .5
) + annotate(
"rect",
xmin = 0,
xmax = min(shared$logFC.x),
ymin = 0,
ymax = min(shared$logFC.y),
fill = "cadetblue3",
alpha = .5
) +
geom_abline(color = "gray40") +
geom_point(size = 2) +
theme_bw() +
theme(plot.title = element_text(size = 10)) +
theme(legend.position = "none") +
theme(axis.title.x = element_text(size = 10),
axis.text.x = element_text(size = 10)) +
theme(axis.title.y = element_text(size = 10),
axis.text.y = element_text(size = 10)) +
annotate(
"text",
x = -2,
y = 5,
label = paste0("rho = ", rho_value,"\n",
"p = ", p_value),
parse = TRUE,
color = "gray29",
size = 5
) + labs(
title = "Shared DEGs between mouse and pig",
x = "mouse",
y = "pig"
)
ggplotly(p)
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
unique to mouse DEGs
# uniqueToMouse DEGs
shapiro.test(uniqueToMouse$logFC.x)
##
## Shapiro-Wilk normality test
##
## data: uniqueToMouse$logFC.x
## W = 0.84471, p-value < 2.2e-16
shapiro.test(uniqueToMouse$logFC.y)
##
## Shapiro-Wilk normality test
##
## data: uniqueToMouse$logFC.y
## W = 0.9611, p-value < 2.2e-16
# correlation test
res <- cor.test(uniqueToMouse$logFC.x, uniqueToMouse$logFC.y,
method = "spearman")
## Warning in cor.test.default(uniqueToMouse$logFC.x, uniqueToMouse$logFC.y, :
## Cannot compute exact p-value with ties
p_value <- round(res$p.value, 3)
rho_value <- round(res$estimate, 3)
# uniqueToMouse between mouse and pig
p <- ggplot(data = uniqueToMouse, aes(x = logFC.x, y = logFC.y, text = paste(gene_name))) +
annotate(
"rect",
xmin = 0,
xmax = max(uniqueToMouse$logFC.x),
ymin = max(uniqueToMouse$logFC.y),
ymax = 0,
fill = "lightpink3",
alpha = .5
) + annotate(
"rect",
xmin = 0,
xmax = min(uniqueToMouse$logFC.x),
ymin = 0,
ymax = min(uniqueToMouse$logFC.y),
fill = "cadetblue3",
alpha = .5
) +
geom_abline(color = "gray40") +
geom_point(size = 2) +
theme_bw() +
theme(plot.title = element_text(size = 10)) +
theme(legend.position = "none") +
theme(axis.title.x = element_text(size = 10),
axis.text.x = element_text(size = 10)) +
theme(axis.title.y = element_text(size = 10),
axis.text.y = element_text(size = 10)) +
annotate(
"text",
x = -2,
y = 1.25,
label = paste0("rho = ", rho_value,"\n",
"p = ", p_value),
parse = TRUE,
color = "gray29",
size = 5
) + labs(
title = "DEGs unique to mouse",
x = "mouse",
y = "pig"
)
ggplotly(p)
unique to pig DEGs
# uniqueToPig DEGs
shapiro.test(uniqueToPig$logFC.x)
##
## Shapiro-Wilk normality test
##
## data: uniqueToPig$logFC.x
## W = 0.98562, p-value = 0.2758
shapiro.test(uniqueToPig$logFC.y)
##
## Shapiro-Wilk normality test
##
## data: uniqueToPig$logFC.y
## W = 0.90463, p-value = 7.243e-07
# correlation test
res <- cor.test(uniqueToPig$logFC.x, uniqueToPig$logFC.y,
method = "spearman")
p_value <- round(res$p.value, 3)
rho_value <- round(res$estimate, 3)
# uniqueToPig between mouse and pig
p <- ggplot(data = uniqueToPig, aes(x = logFC.x, y = logFC.y, text = paste(gene_name))) +
annotate(
"rect",
xmin = 0,
xmax = max(uniqueToPig$logFC.x),
ymin = max(uniqueToPig$logFC.y),
ymax = 0,
fill = "lightpink3",
alpha = .5
) + annotate(
"rect",
xmin = 0,
xmax = min(uniqueToPig$logFC.x),
ymin = 0,
ymax = min(uniqueToPig$logFC.y),
fill = "cadetblue3",
alpha = .5
) +
geom_abline(color = "gray40") +
geom_point(size = 2) +
theme_bw() +
theme(plot.title = element_text(size = 10)) +
theme(legend.position = "none") +
theme(axis.title.x = element_text(size = 10),
axis.text.x = element_text(size = 10)) +
theme(axis.title.y = element_text(size = 10),
axis.text.y = element_text(size = 10)) +
annotate(
"text",
x = -.17,
y = 1.5,
label = paste0("rho = ", rho_value,"\n",
"p = ", p_value),
parse = TRUE,
color = "gray29",
size = 5
) + labs(
title = "DEGs unique to pig",
x = "mouse",
y = "pig"
)
ggplotly(p)