2020 Hispanic Populations

Tidycensus package (K. Walker and Herman 2021), R package designed to facilitate the process of acquiring and working with US Census Bureau population data in the R environment. The package has two distinct goals: * Data retrieval from Census * Data manipulation and wrangling for analysis

FredR: R Interface package to the Federal Reserve Economic Data API. This package provides an interface to the Federal Reserve Economic Data (FRED) API. FRED covers 240,000 US and international macroeconomic time series from 77 sources (including the World Bank, OECD, and BIS)

Highlights: 2020 Hispanic Demographic Census

  • Three states with largest population : California (15.4 Million), Texas (11.3 Million), Florida (5.5 Million)

  • Three states with highest population percentage: New Mexico (48%), California (39%), Texas (39%)

  • State with largest increase from year 2010: Texas with 2,376,780 increase

  • State with largest decrease from year 2010: Puerto Rico with 504,245 decrease

  • State with larger increase percentage from year 2010: North Dakota with 148% from 13,467 (Year 2010) to 33,412 (year 2020)

2020 Census Decennial Survey _ State level

## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Note: 2020 decennial Census data use differential privacy, a technique that
## introduces errors into data to preserve respondent confidentiality.
## ℹ Small counts should be interpreted with caution.
## ℹ See https://www.census.gov/library/fact-sheets/2021/protecting-the-confidentiality-of-the-2020-census-redistricting-data.html for additional guidance.
## This message is displayed once per session.
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic _ Population
2020 Census
NAME value
California 15579652
Texas 11441717
Florida 5697240
New York 3948032
Illinois 2337410
Arizona 2192253
New Jersey 2002575
Colorado 1263390
Georgia 1123457
North Carolina 1118596
Washington 1059213
Pennsylvania 1049615
New Mexico 1010811
Virginia 908749
Nevada 890257
Massachusetts 887685
Maryland 729745
Connecticut 623293
Oregon 588757
Michigan 564422
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic Percent Population
2020 Census
NAME value percent
New Mexico 1010811 48
California 15579652 39
Texas 11441717 39
Arizona 2192253 31
Nevada 890257 29
Florida 5697240 26
Colorado 1263390 22
New Jersey 2002575 22
New York 3948032 20
Illinois 2337410 18
Connecticut 623293 17
Rhode Island 182101 17
Utah 492912 15
Oregon 588757 14
Washington 1059213 14
Idaho 239407 13
Kansas 382603 13
Massachusetts 887685 13
Maryland 729745 12
Nebraska 234715 12
## Warning in private$zoom == "alaska" || private$zoom == "hawaii": 'length(x) = 51
## > 1' in coercion to 'logical(1)'
## Warning in private$zoom == "alaska" || private$zoom == "hawaii": 'length(x) = 51
## > 1' in coercion to 'logical(1)'

Hispanic Population changes from 2010 to 2020

## Getting data from the 2010 decennial Census
## Using Census Summary File 1
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic Population Changes from 2010 to 2020
Hispanic Population
NAME value year2010 percent
North Dakota 33412 13467 148
South Dakota 38741 22119 75
Louisiana 322549 192560 68
Vermont 15504 9208 68
Tennessee 479187 290059 65
New Hampshire 59454 36704 62
Montana 45199 28565 58
Maine 26609 16935 57
Kentucky 207854 132836 56
West Virginia 34827 22268 56
Maryland 729745 470632 55
South Carolina 352838 235682 50
Ohio 521308 354674 47
Pennsylvania 1049615 719660 46
Virginia 908749 631825 44
Iowa 215986 151544 43
Missouri 303068 212470 43
Alabama 264047 185602 42
Delaware 104290 73221 42
District of Columbia 77652 54749 42
Indiana 554191 389707 42
Oklahoma 471931 332007 42
Massachusetts 887685 627654 41
Nebraska 234715 167405 40
North Carolina 1118596 800120 40
Washington 1059213 755790 40
Rhode Island 182101 130655 39
Arkansas 256847 186050 38
Minnesota 345640 250258 38
Utah 492912 358340 38
Idaho 239407 175901 36
Florida 5697240 4223806 35
Wisconsin 447290 336056 33
Georgia 1123457 853689 32
Oregon 588757 450062 31
Connecticut 623293 479087 30
Michigan 564422 436358 29
Mississippi 105220 81481 29
New Jersey 2002575 1555144 29
Kansas 382603 300042 28
Alaska 49824 39249 27
Nevada 890257 716501 24
Colorado 1263390 1038687 22
Texas 11441717 9460921 21
Wyoming 59046 50231 18
Arizona 2192253 1895149 16
New York 3948032 3416922 16
Hawaii 138923 120842 15
Illinois 2337410 2027578 15
California 15579652 14013719 11
New Mexico 1010811 953403 6
## Warning in private$zoom == "alaska" || private$zoom == "hawaii": 'length(x) = 51
## > 1' in coercion to 'logical(1)'
## Warning in private$zoom == "alaska" || private$zoom == "hawaii": 'length(x) = 51
## > 1' in coercion to 'logical(1)'

U.S. counties with Hispanic Majority ( greater than 50%)

## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
2020 Hispanic Population _ by counties
Over 50% Population
County state pct
Starr Texas 98
Webb Texas 95
Maverick Texas 95
Zapata Texas 94
Hidalgo Texas 92
Zavala Texas 92
Cameron Texas 89
Brooks Texas 88
Jim Hogg Texas 88
Dimmit Texas 87
Willacy Texas 87
Imperial California 85
Reeves Texas 85
El Paso Texas 83
Santa Cruz Arizona 83
Duval Texas 81
Presidio Texas 81
Val Verde Texas 80
Jim Wells Texas 79
Mora New Mexico 79
Frio Texas 77
Guadalupe New Mexico 77
Culberson Texas 75
Deaf Smith Texas 75
Kenedy Texas 75
San Miguel New Mexico 75
La Salle Texas 74
Kleberg Texas 71
Pecos Texas 71
Uvalde Texas 70
Miami-Dade Florida 69
Crane Texas 68
Reagan Texas 67
Doña Ana New Mexico 67
Rio Arriba New Mexico 67
Tulare California 66
Bailey Texas 66
Parmer Texas 66
Luna New Mexico 66
Seward Kansas 66
Castro Texas 65
Yoakum Texas 65
Adams Washington 64
Atascosa Texas 64
Hudspeth Texas 64
Yuma Arizona 64
Colusa California 62
Merced California 62
Bee Texas 62
Crockett Texas 62
Sutton Texas 62
San Benito California 61
Ector Texas 61
Nueces Texas 61
Winkler Texas 61
Lea New Mexico 61
Madera California 60
Monterey California 60
Hale Texas 60
Cochran Texas 60
Valencia New Mexico 60
Bexar Texas 59
Moore Texas 59
Kings California 57
Costilla Colorado 57
Floyd Texas 57
Lamb Texas 57
Chaves New Mexico 57
Hidalgo New Mexico 57
Ford Kansas 57
Hendry Florida 56
Garza Texas 56
San Patricio Texas 56
Terry Texas 56
Andrews Texas 56
Caldwell Texas 56
Kern California 55
Bronx New York 55
Crosby Texas 55
Ochiltree Texas 55
Fresno California 54
San Bernardino California 54
Franklin Washington 54
Osceola Florida 54
Dawson Texas 54
Upton Texas 54
Ward Texas 54
Karnes Texas 53
Grant Kansas 53
Dallam Texas 52
Schleicher Texas 52
Finney Kansas 52
Conejos Colorado 51
Yakima Washington 51
Texas Oklahoma 51
Taos New Mexico 51

Hispanic employment by industry

## Warning: Expecting numeric in C14 / R14C3: got '–'
## Warning: Expecting numeric in D14 / R14C4: got '–'
## Warning: Expecting numeric in E14 / R14C5: got '–'
## Warning: Expecting numeric in F14 / R14C6: got '–'
## Warning: Expecting numeric in G14 / R14C7: got '–'
## Warning: Expecting numeric in C16 / R16C3: got '–'
## Warning: Expecting numeric in D16 / R16C4: got '–'
## Warning: Expecting numeric in E16 / R16C5: got '–'
## Warning: Expecting numeric in F16 / R16C6: got '–'
## Warning: Expecting numeric in G16 / R16C7: got '–'
## Warning: Expecting numeric in C20 / R20C3: got '–'
## Warning: Expecting numeric in D20 / R20C4: got '–'
## Warning: Expecting numeric in E20 / R20C5: got '–'
## Warning: Expecting numeric in F20 / R20C6: got '–'
## Warning: Expecting numeric in G20 / R20C7: got '–'
## Warning: Expecting numeric in C21 / R21C3: got '–'
## Warning: Expecting numeric in D21 / R21C4: got '–'
## Warning: Expecting numeric in E21 / R21C5: got '–'
## Warning: Expecting numeric in F21 / R21C6: got '–'
## Warning: Expecting numeric in G21 / R21C7: got '–'
## Warning: Expecting numeric in C23 / R23C3: got '–'
## Warning: Expecting numeric in D23 / R23C4: got '–'
## Warning: Expecting numeric in E23 / R23C5: got '–'
## Warning: Expecting numeric in F23 / R23C6: got '–'
## Warning: Expecting numeric in G23 / R23C7: got '–'
## Warning: Expecting numeric in C31 / R31C3: got '–'
## Warning: Expecting numeric in D31 / R31C4: got '–'
## Warning: Expecting numeric in E31 / R31C5: got '–'
## Warning: Expecting numeric in F31 / R31C6: got '–'
## Warning: Expecting numeric in G31 / R31C7: got '–'
## Warning: Expecting numeric in C32 / R32C3: got '–'
## Warning: Expecting numeric in D32 / R32C4: got '–'
## Warning: Expecting numeric in E32 / R32C5: got '–'
## Warning: Expecting numeric in F32 / R32C6: got '–'
## Warning: Expecting numeric in G32 / R32C7: got '–'
## Warning: Expecting numeric in C39 / R39C3: got '–'
## Warning: Expecting numeric in D39 / R39C4: got '–'
## Warning: Expecting numeric in E39 / R39C5: got '–'
## Warning: Expecting numeric in F39 / R39C6: got '–'
## Warning: Expecting numeric in G39 / R39C7: got '–'
## Warning: Expecting numeric in C41 / R41C3: got '–'
## Warning: Expecting numeric in D41 / R41C4: got '–'
## Warning: Expecting numeric in E41 / R41C5: got '–'
## Warning: Expecting numeric in F41 / R41C6: got '–'
## Warning: Expecting numeric in G41 / R41C7: got '–'
## Warning: Expecting numeric in C42 / R42C3: got '–'
## Warning: Expecting numeric in D42 / R42C4: got '–'
## Warning: Expecting numeric in E42 / R42C5: got '–'
## Warning: Expecting numeric in F42 / R42C6: got '–'
## Warning: Expecting numeric in G42 / R42C7: got '–'
## Warning: Expecting numeric in C48 / R48C3: got '–'
## Warning: Expecting numeric in D48 / R48C4: got '–'
## Warning: Expecting numeric in E48 / R48C5: got '–'
## Warning: Expecting numeric in F48 / R48C6: got '–'
## Warning: Expecting numeric in G48 / R48C7: got '–'
## Warning: Expecting numeric in C68 / R68C3: got '–'
## Warning: Expecting numeric in D68 / R68C4: got '–'
## Warning: Expecting numeric in E68 / R68C5: got '–'
## Warning: Expecting numeric in F68 / R68C6: got '–'
## Warning: Expecting numeric in G68 / R68C7: got '–'
## Warning: Expecting numeric in C70 / R70C3: got '–'
## Warning: Expecting numeric in D70 / R70C4: got '–'
## Warning: Expecting numeric in E70 / R70C5: got '–'
## Warning: Expecting numeric in F70 / R70C6: got '–'
## Warning: Expecting numeric in G70 / R70C7: got '–'
## Warning: Expecting numeric in C73 / R73C3: got '–'
## Warning: Expecting numeric in D73 / R73C4: got '–'
## Warning: Expecting numeric in E73 / R73C5: got '–'
## Warning: Expecting numeric in F73 / R73C6: got '–'
## Warning: Expecting numeric in G73 / R73C7: got '–'
## Warning: Expecting numeric in C74 / R74C3: got '–'
## Warning: Expecting numeric in D74 / R74C4: got '–'
## Warning: Expecting numeric in E74 / R74C5: got '–'
## Warning: Expecting numeric in F74 / R74C6: got '–'
## Warning: Expecting numeric in G74 / R74C7: got '–'
## Warning: Expecting numeric in C95 / R95C3: got '–'
## Warning: Expecting numeric in D95 / R95C4: got '–'
## Warning: Expecting numeric in E95 / R95C5: got '–'
## Warning: Expecting numeric in F95 / R95C6: got '–'
## Warning: Expecting numeric in G95 / R95C7: got '–'
## Warning: Expecting numeric in C97 / R97C3: got '–'
## Warning: Expecting numeric in D97 / R97C4: got '–'
## Warning: Expecting numeric in E97 / R97C5: got '–'
## Warning: Expecting numeric in F97 / R97C6: got '–'
## Warning: Expecting numeric in G97 / R97C7: got '–'
## Warning: Expecting numeric in C99 / R99C3: got '–'
## Warning: Expecting numeric in D99 / R99C4: got '–'
## Warning: Expecting numeric in E99 / R99C5: got '–'
## Warning: Expecting numeric in F99 / R99C6: got '–'
## Warning: Expecting numeric in G99 / R99C7: got '–'
## Warning: Expecting numeric in C100 / R100C3: got '–'
## Warning: Expecting numeric in D100 / R100C4: got '–'
## Warning: Expecting numeric in E100 / R100C5: got '–'
## Warning: Expecting numeric in F100 / R100C6: got '–'
## Warning: Expecting numeric in G100 / R100C7: got '–'
## Warning: Expecting numeric in C102 / R102C3: got '–'
## Warning: Expecting numeric in D102 / R102C4: got '–'
## Warning: Expecting numeric in E102 / R102C5: got '–'
## Warning: Expecting numeric in F102 / R102C6: got '–'
## Warning: Expecting numeric in G102 / R102C7: got '–'
## Warning: Expecting numeric in C104 / R104C3: got '–'
## Warning: Expecting numeric in D104 / R104C4: got '–'
## Warning: Expecting numeric in E104 / R104C5: got '–'
## Warning: Expecting numeric in F104 / R104C6: got '–'
## Warning: Expecting numeric in G104 / R104C7: got '–'
## Warning: Expecting numeric in C105 / R105C3: got '–'
## Warning: Expecting numeric in D105 / R105C4: got '–'
## Warning: Expecting numeric in E105 / R105C5: got '–'
## Warning: Expecting numeric in F105 / R105C6: got '–'
## Warning: Expecting numeric in G105 / R105C7: got '–'
## Warning: Expecting numeric in C113 / R113C3: got '–'
## Warning: Expecting numeric in D113 / R113C4: got '–'
## Warning: Expecting numeric in E113 / R113C5: got '–'
## Warning: Expecting numeric in F113 / R113C6: got '–'
## Warning: Expecting numeric in G113 / R113C7: got '–'
## Warning: Expecting numeric in C116 / R116C3: got '–'
## Warning: Expecting numeric in D116 / R116C4: got '–'
## Warning: Expecting numeric in E116 / R116C5: got '–'
## Warning: Expecting numeric in F116 / R116C6: got '–'
## Warning: Expecting numeric in G116 / R116C7: got '–'
## Warning: Expecting numeric in C132 / R132C3: got '–'
## Warning: Expecting numeric in D132 / R132C4: got '–'
## Warning: Expecting numeric in E132 / R132C5: got '–'
## Warning: Expecting numeric in F132 / R132C6: got '–'
## Warning: Expecting numeric in G132 / R132C7: got '–'
## Warning: Expecting numeric in C138 / R138C3: got '–'
## Warning: Expecting numeric in D138 / R138C4: got '–'
## Warning: Expecting numeric in E138 / R138C5: got '–'
## Warning: Expecting numeric in F138 / R138C6: got '–'
## Warning: Expecting numeric in G138 / R138C7: got '–'
## Warning: Expecting numeric in C145 / R145C3: got '–'
## Warning: Expecting numeric in D145 / R145C4: got '–'
## Warning: Expecting numeric in E145 / R145C5: got '–'
## Warning: Expecting numeric in F145 / R145C6: got '–'
## Warning: Expecting numeric in G145 / R145C7: got '–'
## Warning: Expecting numeric in C171 / R171C3: got '–'
## Warning: Expecting numeric in D171 / R171C4: got '–'
## Warning: Expecting numeric in E171 / R171C5: got '–'
## Warning: Expecting numeric in F171 / R171C6: got '–'
## Warning: Expecting numeric in G171 / R171C7: got '–'
## Warning: Expecting numeric in C181 / R181C3: got '–'
## Warning: Expecting numeric in D181 / R181C4: got '–'
## Warning: Expecting numeric in E181 / R181C5: got '–'
## Warning: Expecting numeric in F181 / R181C6: got '–'
## Warning: Expecting numeric in G181 / R181C7: got '–'
## Warning: Expecting numeric in C195 / R195C3: got '–'
## Warning: Expecting numeric in D195 / R195C4: got '–'
## Warning: Expecting numeric in E195 / R195C5: got '–'
## Warning: Expecting numeric in F195 / R195C6: got '–'
## Warning: Expecting numeric in G195 / R195C7: got '–'
## Warning: Expecting numeric in C206 / R206C3: got '–'
## Warning: Expecting numeric in D206 / R206C4: got '–'
## Warning: Expecting numeric in E206 / R206C5: got '–'
## Warning: Expecting numeric in F206 / R206C6: got '–'
## Warning: Expecting numeric in G206 / R206C7: got '–'
## Warning: Expecting numeric in C220 / R220C3: got '–'
## Warning: Expecting numeric in D220 / R220C4: got '–'
## Warning: Expecting numeric in E220 / R220C5: got '–'
## Warning: Expecting numeric in F220 / R220C6: got '–'
## Warning: Expecting numeric in G220 / R220C7: got '–'
## Warning: Expecting numeric in C298 / R298C3: got '–'
## Warning: Expecting numeric in D298 / R298C4: got '–'
## Warning: Expecting numeric in E298 / R298C5: got '–'
## Warning: Expecting numeric in F298 / R298C6: got '–'
## Warning: Expecting numeric in G298 / R298C7: got '–'
## New names:
## • `` -> `...1`
## • `` -> `...2`
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
2017 Hispanic Employment by Industries
Percent Employment
Industry Hispanic Black Asian
Landscaping services 45.7 7.5 1.3
Services to buildings and dwellings (except cleaning during construction and immediately after construction) 41.2 14.1 2.8
Other services, private households 40.1 8.1 5.0
Barber shops 39.4 17.0 7.7
Cut and sew, and apparel accessories and other apparel manufacturing 39.1 8.8 12.5
Bakeries and tortilla manufacturing, except retail bakeries 38.8 6.6 5.7
Car washes 37.6 14.6 2.8
Not specified food industries 36.3 10.9 6.5
Warehousing and storage 36.0 22.4 5.5
Crop production 33.5 3.3 1.7
Animal slaughtering and processing 33.1 22.4 5.6
Fruit and vegetable preserving and specialty food manufacturing 32.9 9.1 4.7
Apparel, piece goods, and notions merchant wholesalers 32.8 6.3 16.5
Construction 32.6 6.3 2.1
Grocery and related product merchant wholesalers 31.7 12.2 5.4
Not specified manufacturing industries 31.3 17.2 6.8
Administrative and support services 31.1 15.4 3.3
Management, administrative, and waste services 30.2 15.3 3.2
Food manufacturing 29.3 13.4 4.6
Drycleaning and laundry services 28.9 14.0 12.9
Retail bakeries 28.6 12.0 3.4
Furniture and home furnishing merchant wholesalers 28.3 8.1 2.4
Textiles, apparel, and leather manufacturing 27.8 8.9 6.9
Restaurants and other food services 27.8 12.7 7.1
Food services and drinking places 27.5 12.6 7.0
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
2017 Asian Employment by Industries
Percent Employment
Industry Asian Hispanic Black
Nail salons and other personal care services 40.0 12.1 7.7
Computer and peripheral equipment manufacturing 37.4 7.0 5.9
Internet publishing and broadcasting and web search portals 29.9 9.0 9.1
Electronic component and product manufacturing, n.e.c. 23.7 13.3 4.1
Computer systems design and related services 23.7 8.1 7.0
Computers and electronic products manufacturing 22.8 11.4 4.8
Software publishers 21.4 4.1 6.8
Pharmaceutical and medicine manufacturing 19.3 14.8 7.8
Scientific research and development services 19.3 8.8 4.9
Communications, audio, and video equipment manufacturing 19.2 10.1 8.6
Apparel, piece goods, and notions merchant wholesalers 16.5 32.8 6.3
Data processing, hosting, and related services 15.7 14.5 4.5
Taxi and limousine service 14.9 25.6 26.0
Personal and laundry services 14.2 18.3 12.3
Electronic and precision equipment repair and maintenance 13.9 23.1 6.9
Medical equipment and supplies manufacturing 13.4 13.4 7.7
Electronic shopping and mail-order houses 13.1 19.1 20.0
Professional and technical services 13.1 9.9 7.1
Drycleaning and laundry services 12.9 28.9 14.0
Cut and sew, and apparel accessories and other apparel manufacturing 12.5 39.1 8.8
Aerospace products and parts manufacturing 12.3 15.7 3.8
Securities, commodities, funds, trusts, and other financial investments 12.3 7.9 7.2
Wholesale electronic markets and agents and brokers 12.2 21.2 4.0
Beer, wine, and liquor stores 12.1 11.3 9.8
Electric and gas, and other combinations 12.0 9.3 12.0
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
2017 Black Employment by Industries
Percent Employment
Industry Black Hispanic Asian
Bus service and urban transit 32.6 15.3 7.0
Sound recording industries 30.1 5.3 0.0
Tire manufacturing 29.4 2.3 5.8
Postal Service 29.3 10.0 7.7
Investigation and security services 28.2 17.3 3.1
Nursing care facilities (skilled nursing facilities) 27.9 9.4 4.8
Home health care services 27.4 18.6 6.7
Psychiatric and substance abuse hospitals 26.2 9.2 4.8
Taxi and limousine service 26.0 25.6 14.9
Residential care facilities, except skilled nursing facilities 24.2 12.2 4.1
Vocational rehabilitation services 23.0 15.5 0.7
Administration of human resource programs 22.9 15.4 7.7
Animal slaughtering and processing 22.4 33.1 5.6
Warehousing and storage 22.4 36.0 5.5
Couriers and messengers 22.3 20.6 3.7
Community food and housing, and emergency services 21.8 16.6 4.0
Automotive equipment rental and leasing 21.7 15.2 3.6
Transportation and warehousing 21.3 21.5 5.8
Business support services 20.5 16.6 3.2
Rail transportation 20.4 7.7 1.0
Individual and family services 20.1 19.0 6.3
Electronic shopping and mail-order houses 20.0 19.1 13.1
General merchandise stores, including warehouse clubs and supercenters 19.6 19.1 5.0
Transportation and utilities 19.6 20.1 5.5
Employment services 19.3 17.2 5.2

Hispanic Populations in California

## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic County Population_California
2020 Census percent
NAME value percent
Imperial County 153027 85
Tulare County 309895 66
Colusa County 13476 62
Merced County 173857 62
San Benito County 39241 61
Madera County 93178 60
Monterey County 265321 60
Kings County 86607 57
Kern County 499158 55
Fresno County 540743 54
San Bernardino County 1170913 54
Riverside County 1202295 50
Los Angeles County 4804763 48
Stanislaus County 265978 48
Santa Barbara County 210584 47
Glenn County 12541 43
Ventura County 365285 43
San Joaquin County 325725 42
Napa County 48829 35
Santa Cruz County 94299 35
Orange County 1086834 34
San Diego County 1119629 34
Yolo County 71700 33
Sutter County 31568 32
Sonoma County 141438 29
Yuba County 23520 29
Solano County 128155 28
Contra Costa County 314900 27
Mono County 3507 27
Tehama County 17938 27
Mendocino County 23933 26
San Mateo County 191386 25
Santa Clara County 487357 25
Sacramento County 374434 24
San Luis Obispo County 67921 24
Alameda County 393749 23
Inyo County 4399 23
Lake County 15442 23
Lassen County 7531 23
Butte County 40112 19
Del Norte County 5321 19
Marin County 49410 19
San Francisco County 136761 16
Amador County 6014 15
Placer County 60628 15
El Dorado County 26459 14
Humboldt County 18535 14
Modoc County 1259 14
Calaveras County 5865 13
Siskiyou County 5527 13
Tuolumne County 7124 13
Mariposa County 2140 12
Sierra County 377 12
Shasta County 19730 11
Nevada County 10416 10
Plumas County 1897 10
Alpine County 84 7
Trinity County 937 6

2020 Hispanic Population in Texas

## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Texas Counties with Hispanic Majority
Counties with 10,000+ population only
NAME value summary_value percent
Starr County 64393 65920 98
Maverick County 54936 57887 95
Webb County 254354 267114 95
Zapata County 12999 13889 94
Hidalgo County 800001 870781 92
Cameron County 376680 421017 89
Willacy County 17611 20164 87
Reeves County 12510 14748 85
El Paso County 715351 865657 83
Val Verde County 38207 47586 80
Jim Wells County 30835 38891 79
Frio County 14171 18385 77
Deaf Smith County 13925 18583 75
Kleberg County 21920 31040 71
Pecos County 10845 15193 71
Uvalde County 17317 24564 70
Atascosa County 31178 48981 64
Bee County 19392 31047 62
Ector County 100051 165171 61
Nueces County 217052 353178 61
Hale County 19489 32522 60
Bexar County 1190958 2009324 59
Moore County 12647 21358 59
Lamb County 7449 13045 57
Andrews County 10400 18610 56
Caldwell County 25468 45883 56
San Patricio County 38220 68755 56
Terry County 6569 11831 56
Ochiltree County 5470 10015 55
Dawson County 6767 12456 54
Ward County 6325 11644 54
Karnes County 7734 14710 53

New Mexico Hispanic Population

## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic _ New Mexico County Population Percentage
County population
NAME value summary_value percent
Mora County, New Mexico 3301 4189 79
Guadalupe County, New Mexico 3436 4452 77
San Miguel County, New Mexico 20490 27201 75
Doña Ana County, New Mexico 147672 219561 67
Rio Arriba County, New Mexico 27159 40363 67
Luna County, New Mexico 16670 25427 66
Lea County, New Mexico 45193 74455 61
Valencia County, New Mexico 45775 76205 60
Chaves County, New Mexico 37097 65157 57
Hidalgo County, New Mexico 2390 4178 57
Taos County, New Mexico 17430 34489 51
Eddy County, New Mexico 31307 62314 50
Socorro County, New Mexico 8353 16595 50
Bernalillo County, New Mexico 329481 676444 49
Grant County, New Mexico 13466 28185 48
Santa Fe County, New Mexico 74377 154823 48
Colfax County, New Mexico 5878 12387 47
Curry County, New Mexico 21796 48430 45
Quay County, New Mexico 3848 8746 44
Roosevelt County, New Mexico 8397 19191 44
Harding County, New Mexico 282 657 43
Torrance County, New Mexico 6265 15045 42
De Baca County, New Mexico 654 1698 39
Otero County, New Mexico 26152 67839 39
Sandoval County, New Mexico 57617 148834 39
Union County, New Mexico 1596 4079 39
Cibola County, New Mexico 8644 27172 32
Lincoln County, New Mexico 6496 20269 32
Sierra County, New Mexico 3311 11576 29
San Juan County, New Mexico 23630 121661 19
Los Alamos County, New Mexico 3435 19419 18
Catron County, New Mexico 602 3579 17
McKinley County, New Mexico 8611 72902 12

EDUCATIONAL ATTAINMENT FOR THE POPULATION 25 YEARS AND OVER (HISPANIC OR LATINO)

## Getting data from the 2016-2020 5-year ACS
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Hispanic with Bachelor Degree Education
Top California County
NAME Population percent
San Francisco 93563 36
Marin 24187 29
Placer 32293 27
El Dorado 14225 24
San Mateo 114592 22
Alameda 222731 21
San Diego 658263 19
Santa Clara 285206 19
Contra Costa 171879 18
Sacramento 201810 18
San Luis Obispo 35164 18
Yolo 37189 18
Orange 627514 17
Santa Cruz 49568 16
Shasta 10272 16
Butte 19529 15
Napa 27135 15
Sonoma 75986 15
Imperial 89306 14
Los Angeles 2978256 14
Solano 67453 14
Ventura 210226 14
Yuba 11350 14
Riverside 679870 12
San Bernardino 657234 12
Santa Barbara 107668 12
Fresno 286676 11
San Benito 21510 11
Mendocino 11689 10
Monterey 140157 10
Madera 48718 9
Sutter 16039 9
Kern 254399 8
Kings 45506 8
San Joaquin 169213 8
Stanislaus 137888 8
Tulare 157381 8
Merced 86827 7

Texas Hipanic Population with Bachelor Degree or higher

## Getting data from the 2016-2020 5-year ACS
## Warning: Domain not specified, defaulting to observed range within each
## specified column.
Bachelor Degree Education
2020 Top Texas Counties
NAME Population percent
Collin 85911 30
Travis 249562 28
Denton 92684 26
Fort Bend 112746 26
Williamson 80320 25
Comal 24529 22
Montgomery 77031 22
El Paso 416844 20
Hays 47726 20
Bexar 719541 18
Brazos 28539 18
Galveston 48608 18
Kleberg 12010 18
Randall 16552 18
Webb 144506 18
Brazoria 64498 17
Hidalgo 435085 17
Bell 47137 16
Tarrant 323406 16
Wilson 12459 16
Cameron 215013 15
Guadalupe 36904 15
Harris 1138885 15
Lubbock 58986 15
Maverick 31438 15
Val Verde 23567 15
Nueces 142267 14
Uvalde 11135 14
Johnson 19868 13
Taylor 17759 13
Tom Green 27574 13
Wichita 13588 13
Dallas 569220 12
Jim Wells 19981 12
Kaufman 14915 12
Midland 42840 12
Ector 54026 11
Starr 35151 11
Medina 16303 10
Smith 22604 10
Ellis 25318 9
McLennan 34217 9
Atascosa 19322 8
Bastrop 17508 8
Liberty 11501 8
San Patricio 23016 8
Victoria 25249 8
Willacy 11674 8
Gregg 11234 7
Jefferson 29335 7
Caldwell 13030 6
Potter 24623 6
Bee 11741 5
Hale 11077 5
## Warning in self$bind(): The following regions were missing and are being set to
## NA: 48301

Federal Reserve Data Depository:

FredR: R Interface package to the Federal Reserve Economic Data API. This package provides an interface to the Federal Reserve Economic Data (FRED) API. FRED covers 240,000 US and international macroeconomic time series from 77 sources (including the World Bank, OECD, and BIS).

Starr County, TX has highest Hispanic Population

  • Total Population in Starr County, TX (TXSTAR7POP)

Per Capita Personal Income in Starr County, TX (PCPI48427)

Number of Private Establishments for All Industries in Starr County, TX (ENU4842720510)

An establishment is an economic unit, such as a factory, mine, store, or office that produces goods or services. It generally is at a single location and is engaged predominantly in one type of economic activity. Where a single location encompasses two or more distinct activities, these are treated as separate establishments, if separate payroll records are available, and the various activities are classified under different industry codes.

Unemployment Rate in Starr County, TX (TXSTAR7URN)

Premature Death Rate for Starr County, TX (CDC20N2U048427)

The crude death rate is the number of deaths reported each calendar year divided by the population, multiplied by 100,000. Premature death rate includes all deaths where the deceased is younger than 75 years of age. 75 years of age is the standard consideration of a premature death according to the CDC’s definition of Years of Potential Life Loss.

Premature Death Rate for Maverick County, TX (CDC20N2U048323)

Premature Death Rate for Riverside County, CA (CDC20N2U006065)

Premature Death Rate for Orange County, CA (CDC20N2U006059)

Highlights: 2020 Hispanic Demographic Census

  • Three states with largest population : California (15.4 Million), Texas (11.3 Million), Florida (5.5 Million)

  • Three states with highest population percentage: New Mexico (48%), California (39%), Texas (39%)

  • State with largest increase from year 2010: Texas with 2,376,780 increase

  • State with largest decrease from year 2010: Puerto Rico with 504,245 decrease

  • State with larger increase percentage from year 2010: North Dakota with 148% from 13,467 (Year 2010) to 33,412 (year 2020)

  • Three nationwide counties with highest population percentage: Starr_Texas (98%), Webb_Texas (95%), Maverick_Texas (95%)

  • Three California counties with highest percentage: Imperial County (85%), Tulare County (66%), Colusa County(62%)

Conclusion: more questions than answers