A quick and dirty output for now - cleaner code will be inserted into main paper page later…
## Using StudentID, project, open.bin as id variables
What are the marks for Report 0 and do they differ between open bin categories?
## means SEM
## long 69.7 0.7
## medium 67.7 0.8
## short 65.7 2.5
## unopened 63.6 1.6
## Df Sum Sq Mean Sq F value Pr(>F)
## R0.open[, 6] 3 2404 801.5 5.157 0.00157 **
## Residuals 665 103348 155.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = R0.open[, 2] ~ R0.open[, 6])
##
## $`R0.open[, 6]`
## diff lwr upr p adj
## medium-long -2.061859 -4.746658 0.6229411 0.1973514
## short-long -4.002766 -10.447041 2.4415100 0.3794297
## unopened-long -6.176342 -10.504587 -1.8480974 0.0014621
## short-medium -1.940907 -8.424938 4.5431241 0.8675606
## unopened-medium -4.114484 -8.501701 0.2727336 0.0751509
## unopened-short -2.173577 -9.492608 5.1454545 0.8702356
## Using StudentID, Report0.open.bin as id variables
stat’s for unopened
## means SEM
## Report 0 63.6 1.6
## Report 1 55.0 3.0
## Report 2 65.3 3.7
## Report 3 69.6 3.8
## Df Sum Sq Mean Sq F value Pr(>F)
## dfx[, 3] 3 7518 2506.0 3.825 0.0104 *
## Residuals 264 172948 655.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dfx[, 4] ~ dfx[, 3])
##
## $`dfx[, 3]`
## diff lwr upr p adj
## Report 1-Report 0 -8.567164 -20.000497 2.866169 0.2150092
## Report 2-Report 0 1.776119 -9.657214 13.209452 0.9780384
## Report 3-Report 0 5.985075 -5.448258 17.418408 0.5297859
## Report 2-Report 1 10.343284 -1.090049 21.776617 0.0919324
## Report 3-Report 1 14.552239 3.118906 25.985572 0.0062088
## Report 3-Report 2 4.208955 -7.224378 15.642288 0.7768197
stat’s for short
## means SEM
## Report 0 65.7 2.5
## Report 1 67.1 2.3
## Report 2 71.5 3.5
## Report 3 76.1 4.5
## Df Sum Sq Mean Sq F value Pr(>F)
## dfx[, 3] 3 1802 600.8 2.014 0.117
## Residuals 104 31021 298.3
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dfx[, 4] ~ dfx[, 3])
##
## $`dfx[, 3]`
## diff lwr upr p adj
## Report 1-Report 0 1.333333 -10.939995 13.60666 0.9919949
## Report 2-Report 0 5.777778 -6.495550 18.05111 0.6098289
## Report 3-Report 0 10.407407 -1.865921 22.68074 0.1261768
## Report 2-Report 1 4.444444 -7.828884 16.71777 0.7803678
## Report 3-Report 1 9.074074 -3.199254 21.34740 0.2217547
## Report 3-Report 2 4.629630 -7.643699 16.90296 0.7583392
stat’s for medium
## means SEM
## Report 0 67.7 0.8
## Report 1 69.5 1.1
## Report 2 74.2 1.3
## Report 3 78.0 1.3
## Df Sum Sq Mean Sq F value Pr(>F)
## dfx[, 3] 3 17643 5881 16.43 1.94e-10 ***
## Residuals 1064 380961 358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dfx[, 4] ~ dfx[, 3])
##
## $`dfx[, 3]`
## diff lwr upr p adj
## Report 1-Report 0 1.769663 -2.4442422 5.983568 0.7014900
## Report 2-Report 0 6.526217 2.3123121 10.740122 0.0004185
## Report 3-Report 0 10.363296 6.1493907 14.577201 0.0000000
## Report 2-Report 1 4.756554 0.5426492 8.970459 0.0196209
## Report 3-Report 1 8.593633 4.3797278 12.807538 0.0000011
## Report 3-Report 2 3.837079 -0.3768265 8.050984 0.0891347
stat’s for long
## means SEM
## Report 0 69.7 0.7
## Report 1 76.1 0.9
## Report 2 80.7 1.0
## Report 3 82.4 1.1
## Df Sum Sq Mean Sq F value Pr(>F)
## dfx[, 3] 3 29502 9834 37.02 <2e-16 ***
## Residuals 1228 326179 266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = dfx[, 4] ~ dfx[, 3])
##
## $`dfx[, 3]`
## diff lwr upr p adj
## Report 1-Report 0 6.379870 3.001300 9.758440 0.0000080
## Report 2-Report 0 10.915584 7.537014 14.294154 0.0000000
## Report 3-Report 0 12.659091 9.280521 16.037661 0.0000000
## Report 2-Report 1 4.535714 1.157144 7.914284 0.0032038
## Report 3-Report 1 6.279221 2.900651 9.657791 0.0000116
## Report 3-Report 2 1.743506 -1.635063 5.122076 0.5454696