library(csodata)
library(tidyverse)
library(knitr)
library(kableExtra)
library(ggplot2)
library(lubridate)
library(ggrepel)
LRM01 <- cso_get_data("LRM01")
LRM01_long <- LRM01 %>%
pivot_longer(!1:4, names_to = "yearm")
rm(LRM01)
LRM01_1 <- LRM01_long %>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "All ages")
LRM01_2 <- LRM01_long %>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "25 years and over")
LRM01_3 <- LRM01_long %>%
filter(Sex == "Male" | Sex == "Female") %>%
filter(Age.Group == "25 years and over")
LRM01_1$Month <- as.Date(paste(LRM01_1$yearm, "01", sep = "-"), "%YM%m-%d")
LRM01_1$Year <- year(LRM01_1$Month)
LRM01_3$Month <- as.Date(paste(LRM01_3$yearm, "01", sep = "-"), "%YM%m-%d")
LRM01_3$Year <- year(LRM01_3$Month)
LRM01_1_16 <- LRM01_1 %>%
filter(Year >= "2016")
LRM01_1_21 <- LRM01_1 %>%
filter(Year >= "2021")
LRM01_1_YTD <- LRM01_1 %>%
filter(Year >= "2022")
The latest seasonally adjusted monthly unemployment rate for 15 - 74 years is 4.8% vs 4.7% in the previous period. For 25 - 74 years the figure is 4.7% vs 4.6% in the prior period.
MUM01 <- cso_get_data("MUM01")
MUM01_long <- MUM01 %>%
pivot_longer(!1:3, names_to = "yearm")
rm(MUM01)
Assess the unique descriptive variables to create a subset for analysis
## MUM01_long.Statistic
## 1 Seasonally Adjusted Monthly Unemployment
## 2 Seasonally Adjusted Monthly Unemployment Rate
## MUM01_long.Age.Group
## 1 15 - 24 years
## 2 15 - 74 years
## 3 25 - 74 years
## MUM01_long.Sex
## 1 Both sexes
## 2 Male
## 3 Female
Create subsets:
MUM01_1 <- MUM01_long %>%
filter(Statistic == "Seasonally Adjusted Monthly Unemployment Rate")%>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "15 - 74 years")
MUM01_2 <- MUM01_long %>%
filter(Statistic == "Seasonally Adjusted Monthly Unemployment Rate")%>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "25 - 74 years")
MUM01_3 <- MUM01_long %>%
filter(Statistic == "Seasonally Adjusted Monthly Unemployment Rate")%>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "15 - 74 years" | Age.Group == "25 - 74 years")
tail_1 <- kable(tail(MUM01_1), caption = "Unemployment Rate: All - Latest Entries")
tail_1 %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
row_spec(6, bold = T)%>%
pack_rows("Latest Period", 6, 6, color = "navy")
Statistic | Age.Group | Sex | yearm | value |
---|---|---|---|---|
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M01 | 5.0 |
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M02 | 4.8 |
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M03 | 5.1 |
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M04 | 4.8 |
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M05 | 4.7 |
Latest Period | ||||
Seasonally Adjusted Monthly Unemployment Rate | 15 - 74 years | Both sexes | 2022M06 | 4.8 |
tail_2 <- kable(tail(MUM01_2), caption = "Unemployment Rate: All - 25 to 74 years")
tail_2 %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
row_spec(6, bold = T)%>%
pack_rows("Latest Period", 6, 6, color = "red")
Statistic | Age.Group | Sex | yearm | value |
---|---|---|---|---|
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M01 | 4.2 |
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M02 | 4.2 |
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M03 | 4.8 |
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M04 | 4.7 |
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M05 | 4.6 |
Latest Period | ||||
Seasonally Adjusted Monthly Unemployment Rate | 25 - 74 years | Both sexes | 2022M06 | 4.7 |
MUM01_3$Month <- as.Date(paste(MUM01_3$yearm, "01", sep = "-"), "%YM%m-%d")
MUM01_3$Year <- year(MUM01_3$Month)
Line_Total <- ggplot(data=MUM01_3, aes(x=Month, y=value, group = Age.Group, colour=Age.Group))+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
scale_colour_manual(values=c("navy","red"))+
geom_text_repel(aes(label=value),data = MUM01_3, size = 3)+
labs(title = "Historical Series" ,
subtitle = "January 1998 to date",
y="Unemployment Rate",
x="Month")+
theme(legend.position = "bottom")
MUM01_3_16 <- MUM01_3 %>%
filter(Year >= "2016")
MUM01_3_21 <- MUM01_3 %>%
filter(Year >= "2021")
Line_2016<-ggplot(data=MUM01_3_16, aes(x=Month, y=value, group = Age.Group, colour=Age.Group))+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
scale_colour_manual(values=c("navy","red"))+
labs(title = "Historical Series" ,
subtitle = "January 2016 to date",
y="Unemployment Rate",
x="Month")+
theme(legend.position = "bottom")
Line_2021<-ggplot(data=MUM01_3_21, aes(x=Month, y=value, group = Age.Group, colour=Age.Group))+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
scale_colour_manual(values=c("navy","red"))+
labs(title = "Historical Series" ,
subtitle = "January 2021 to date",
y="Unemployment Rate",
x="Month")+
theme(legend.position = "bottom")
Line_Total
Line_2016
Line_2021
Create subsets, to include “All classes”.
LRM01_1 <- LRM01_long %>%
filter(Social.Welfare.Scheme=="All classes")%>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "All ages")
LRM01_2 <- LRM01_long %>%
filter(Social.Welfare.Scheme=="All classes")%>%
filter(Sex == "Both sexes") %>%
filter(Age.Group == "25 years and over")
LRM01_3 <- LRM01_long %>%
filter(Social.Welfare.Scheme=="All classes")%>%
filter(Sex == "Male" | Sex == "Female") %>%
filter(Age.Group == "25 years and over")
tail_LR <- kable(tail(LRM01_1), caption = "Live Register: All - Latest Entries")
tail_LR %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
row_spec(6, bold = T)%>%
pack_rows("Latest Period", 6, 6, color = "blue")
STATISTIC | Age.Group | Sex | Social.Welfare.Scheme | yearm | value |
---|---|---|---|---|---|
Persons on Live Register | All ages | Both sexes | All classes | 2022M01 | 162578 |
Persons on Live Register | All ages | Both sexes | All classes | 2022M02 | 163248 |
Persons on Live Register | All ages | Both sexes | All classes | 2022M03 | 178996 |
Persons on Live Register | All ages | Both sexes | All classes | 2022M04 | 177004 |
Persons on Live Register | All ages | Both sexes | All classes | 2022M05 | 171903 |
Latest Period | |||||
Persons on Live Register | All ages | Both sexes | All classes | 2022M06 | 186819 |
LRM01_1$Month <- as.Date(paste(LRM01_1$yearm, "01", sep = "-"), "%YM%m-%d")
LRM01_1$Year <- year(LRM01_1$Month)
LRM01_3$Month <- as.Date(paste(LRM01_3$yearm, "01", sep = "-"), "%YM%m-%d")
LRM01_3$Year <- year(LRM01_3$Month)
LRM01_1_16 <- LRM01_1 %>%
filter(Year >= "2016")
LRM01_1_21 <- LRM01_1 %>%
filter(Year >= "2021")
LRM01_1_YTD <- LRM01_1 %>%
filter(Year >= "2022")
Line_Total_LR <- ggplot(data=LRM01_1, aes(x=Month, y=value), colour="purple")+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
labs(title = "Historical Series" ,
subtitle = "January 1967 to date",
y="Live Register Nr.",
x="Month")+
scale_y_continuous(labels = scales::comma)+
theme(legend.position = "bottom")
Line_Total_LR_16 <- ggplot(data=LRM01_1_16, aes(x=Month, y=value), colour="purple")+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
labs(title = "Historical Series" ,
subtitle = "January 2016 to date",
y="Live Register Nr.",
x="Month")+
scale_y_continuous(labels = scales::comma)+
theme(legend.position = "bottom")
Line_Total_LR_21 <- ggplot(data=LRM01_1_21, aes(x=Month, y=value), colour="purple")+
geom_line(linejoin="mitre",size = 1.25, linetype = 1,alpha = 0.5)+
labs(title = "Historical Series" ,
subtitle = "January 2021 to date",
y="Live Register Nr.",
x="Month")+
scale_y_continuous(labels = scales::comma)+
theme(legend.position = "bottom")
Line_Total_LR
Line_Total_LR_16
Line_Total_LR_21