#abro df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTF86ZlgETQ0kDjF2e2Gye8qNp2w4qQSIhZj3lFMWc6dS-mMDYr3qaXSkQ8lcklRT3VBe3ec8YOk-N5/pub?gid=1492451979&single=true&output=csv") 

#packges

library("tidyverse")

#agrupo

df %>% 
group_by(Sexo, Forma) %>%
  summarise(n=n())
`summarise()` has grouped output by 'Sexo'. You can override using the `.groups` argument.

#grafica

df %>% 
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
group_by(Sexo, Forma) %>%
  summarise(n=n()) %>% 
  ggplot(aes(Forma, n)) +   
  geom_bar(aes(fill = Sexo), position = "dodge", stat="identity")+
  theme_classic()+
  ylab("Frecuencia")+
   theme(axis.title.x = element_text(size=rel(2))) +
    theme(axis.title.y = element_text( size=rel(2))) +
  theme (axis.text.x = element_text(face="bold", colour="black", size=rel(2)),
           axis.text.y = element_text(face="bold", colour="black", size=rel(2))) +
 geom_signif(y_position = c(35), xmin = c(1.8), 
              xmax = c(2.2), annotation = c("*"))
`summarise()` has grouped output by 'Sexo'. You can override using the `.groups` argument.

#Tabla sexo por forma

table(df$Sexo, df$Forma) 
           
            Cilindrica Embudo Huso Reloj
  Femenino          38     32    7    19
  Masculino         19      3    2    12

#diferencias entre sexo y morfologia (tipo)

chisq.test(df$Forma, df$Sexo)
Chi-squared approximation may be incorrect

    Pearson's Chi-squared test

data:  df$Forma and df$Sexo
X-squared = 9.3871, df = 3, p-value = 0.02456

#la tabla a objeto para hacer grafica de mosaico

a <- table(df$Sexo, df$Forma)

#grafica mosaico

LS0tCnRpdGxlOiAiMjAwMl9UZXNpc19CZW5qYSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojYWJybyBkZgpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZURjg2WmxnRVRRMGtEakYyZTJHeWU4cU5wMnc0cVFTSWhaajNsRk1XYzZkUy1tTURZcjNxYVhTa1E4bGNrbFJUM1ZCZTNlYzhZT2stTjUvcHViP2dpZD0xNDkyNDUxOTc5JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKSAKYGBgCiNwYWNrZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKI2FncnVwbwpgYGB7cn0KZGYgJT4lIApncm91cF9ieShTZXhvLCBGb3JtYSkgJT4lCiAgc3VtbWFyaXNlKG49bigpKQpgYGAKI2dyYWZpY2EKYGBge3J9CmRmICU+JSAKZ3JvdXBfYnkoU2V4bywgRm9ybWEpICU+JQogIHN1bW1hcmlzZShuPW4oKSkgJT4lIAogIGdncGxvdChhZXMoRm9ybWEsIG4pKSArICAgCiAgZ2VvbV9iYXIoYWVzKGZpbGwgPSBTZXhvKSwgcG9zaXRpb24gPSAiZG9kZ2UiLCBzdGF0PSJpZGVudGl0eSIpKwogIHRoZW1lX2NsYXNzaWMoKSsKICB5bGFiKCJGcmVjdWVuY2lhIikrCiAgIHRoZW1lKGF4aXMudGl0bGUueCA9IGVsZW1lbnRfdGV4dChzaXplPXJlbCgyKSkpICsKICAgIHRoZW1lKGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dCggc2l6ZT1yZWwoMikpKSArCiAgdGhlbWUgKGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiLCBjb2xvdXI9ImJsYWNrIiwgc2l6ZT1yZWwoMikpLAogICAgICAgICAgIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KGZhY2U9ImJvbGQiLCBjb2xvdXI9ImJsYWNrIiwgc2l6ZT1yZWwoMikpKSArCiBnZW9tX3NpZ25pZih5X3Bvc2l0aW9uID0gYygzNSksIHhtaW4gPSBjKDEuOCksIAogICAgICAgICAgICAgIHhtYXggPSBjKDIuMiksIGFubm90YXRpb24gPSBjKCIqIikpCiAgCmBgYAoKCiNUYWJsYSBzZXhvIHBvciBmb3JtYQpgYGB7cn0KdGFibGUoZGYkU2V4bywgZGYkRm9ybWEpIApgYGAKI2RpZmVyZW5jaWFzIGVudHJlIHNleG8geSBtb3Jmb2xvZ2lhICh0aXBvKQpgYGB7cn0KY2hpc3EudGVzdChkZiRGb3JtYSwgZGYkU2V4bykKYGBgCiNsYSB0YWJsYSBhIG9iamV0byBwYXJhIGhhY2VyIGdyYWZpY2EgZGUgbW9zYWljbyAKYGBge3J9CmEgPC0gdGFibGUoZGYkU2V4bywgZGYkRm9ybWEpCmBgYAojZ3JhZmljYSBtb3NhaWNvCmBgYHtyfQptb3NhaWNwbG90KGEsIHNoYWRlPVQpCmBgYAoKCgoK