Read CSV file

library(readr)
g=read.csv("rawdata.csv")

Checking the data

dim(g)
## [1] 1000   31
head(g)
##   id death los age gender cancer cabg crt defib dementia diabetes hypertension
## 1  1     0   2  90      2      0    0   0     0        0        0            0
## 2  2     0  10  74      1      0    0   0     0        0        0            1
## 3  3     0   3  83      2      0    0   0     0        0        0            1
## 4  4     0   1  79      1      0    0   0     0        0        1            1
## 5  5     0  17  94      2      0    0   0     0        0        1            1
## 6  6     0  47  89      1      0    0   0     0        0        0            0
##   ihd mental_health arrhythmias copd obesity pvd renal_disease valvular_disease
## 1   0             0           1    0       0   0             0                1
## 2   1             0           0    0       0   0             1                1
## 3   0             0           1    0       0   0             0                0
## 4   1             0           0    1       0   0             0                0
## 5   0             0           0    0       0   0             0                0
## 6   0             0           0    0       0   1             0                1
##   metastatic_cancer pacemaker pneumonia prior_appts_attended prior_dnas pci
## 1                 0         0         0                    4          0   0
## 2                 0         0         1                    9          1   0
## 3                 0         0         0                    1          0   0
## 4                 0         1         0                    9          2   1
## 5                 0         0         0                    3          0   0
## 6                 0         0         1                    3          0   0
##   stroke senile quintile ethnicgroup fu_time
## 1      0      0        2          NA     416
## 2      0      0        4           1     648
## 3      0      0        3           1     466
## 4      1      0        5           1     441
## 5      0      0        2           1     371
## 6      0      0        3          NA      47
tail(g)
##        id death los age gender cancer cabg crt defib dementia diabetes
## 995   995     1   3  80      1      0    0   0     0        0        0
## 996   996     0   8  73      1      0    0   0     0        0        0
## 997   997     1   5  84      2      0    0   0     0        0        0
## 998   998     0   3  87      1      0    0   0     0        0        0
## 999   999     1  62  86      2      0    0   0     0        0        0
## 1000 1000     1   8  75      1      0    0   0     0        0        0
##      hypertension ihd mental_health arrhythmias copd obesity pvd renal_disease
## 995             1   1             0           1    0       1   1             1
## 996             1   1             0           0    1       0   0             1
## 997             1   1             0           0    1       0   0             1
## 998             1   1             0           0    0       0   1             1
## 999             1   0             0           0    1       0   0             0
## 1000            1   0             0           0    1       0   0             1
##      valvular_disease metastatic_cancer pacemaker pneumonia
## 995                 1                 0         0         1
## 996                 0                 0         0         0
## 997                 0                 0         0         0
## 998                 0                 0         0         0
## 999                 0                 0         0         1
## 1000                0                 0         0         1
##      prior_appts_attended prior_dnas pci stroke senile quintile ethnicgroup
## 995                     5          1   0      0      0        4           1
## 996                     0          0   0      0      0        5           1
## 997                     9          0   0      0      0        3           1
## 998                     3          0   0      0      0        4           1
## 999                     1          0   0      0      0        2           1
## 1000                    5          0   0      0      0        5           1
##      fu_time
## 995      445
## 996      351
## 997     1030
## 998       15
## 999      339
## 1000       8

Library include

library(ggplot2)
library(survival)
library(Rcpp)
library(survminer)
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma

Data conversion

gender=as.factor(g[,"gender"])
fu_time=as.numeric(g[,"fu_time"])
death=as.factor(g[,"death"])

Kuplan-Meir plot

km_fit=survfit(Surv(fu_time,death) ~ 1)
plot(km_fit)

summary(km_fit,times = c(1:7,30.60,90*(1:10)))
## Call: survfit(formula = Surv(fu_time, death) ~ 1)
## 
##   time n.risk n.event P((s0))   P(1)
##    1.0    992      12   0.988 0.0120
##    2.0    973       7   0.981 0.0192
##    3.0    963       5   0.976 0.0242
##    4.0    954       6   0.970 0.0304
##    5.0    945       5   0.964 0.0355
##    6.0    938       1   0.963 0.0365
##    7.0    933       1   0.962 0.0376
##   30.6    863      39   0.921 0.0785
##   90.0    770      52   0.864 0.1356
##  180.0    698      43   0.815 0.1850
##  270.0    653      24   0.787 0.2135
##  360.0    619      21   0.761 0.2391
##  450.0    525      44   0.705 0.2952
##  540.0    429      47   0.639 0.3611
##  630.0    362      32   0.589 0.4108
##  720.0    266      43   0.514 0.4858
##  810.0    190      31   0.448 0.5521
##  900.0    126      26   0.378 0.6222

Kaplan-Meir with gender

Km_gender_fit=survfit(Surv(fu_time,death)~gender)
plot(Km_gender_fit)

### log rank test with gender

survdiff(Surv(fu_time,death)~gender, data = g)
## Call:
## survdiff(formula = Surv(fu_time, death) ~ gender, data = g)
## 
##            N Observed Expected (O-E)^2/E (O-E)^2/V
## gender=1 548      268      271    0.0365     0.082
## gender=2 452      224      221    0.0448     0.082
## 
##  Chisq= 0.1  on 1 degrees of freedom, p= 0.8

summarize data

summary(g)
##        id             death            los             age        
##  Min.   :   1.0   Min.   :0.000   Min.   : 0.00   Min.   : 29.00  
##  1st Qu.: 250.8   1st Qu.:0.000   1st Qu.: 3.00   1st Qu.: 73.00  
##  Median : 500.5   Median :0.000   Median : 7.00   Median : 80.00  
##  Mean   : 500.5   Mean   :0.492   Mean   :10.77   Mean   : 78.73  
##  3rd Qu.: 750.2   3rd Qu.:1.000   3rd Qu.:13.00   3rd Qu.: 87.00  
##  Max.   :1000.0   Max.   :1.000   Max.   :89.00   Max.   :102.00  
##                                                                   
##      gender          cancer           cabg            crt       
##  Min.   :1.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :1.000   Median :0.000   Median :0.000   Median :0.000  
##  Mean   :1.452   Mean   :0.051   Mean   :0.014   Mean   :0.003  
##  3rd Qu.:2.000   3rd Qu.:0.000   3rd Qu.:0.000   3rd Qu.:0.000  
##  Max.   :2.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##                                                                 
##      defib          dementia        diabetes      hypertension  
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.000   Median :0.000   Median :0.000   Median :1.000  
##  Mean   :0.006   Mean   :0.045   Mean   :0.283   Mean   :0.621  
##  3rd Qu.:0.000   3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##                                                                 
##       ihd        mental_health    arrhythmias        copd          obesity     
##  Min.   :0.000   Min.   :0.000   Min.   :0.00   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.00   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.000   Median :0.000   Median :0.00   Median :0.000   Median :0.000  
##  Mean   :0.495   Mean   :0.089   Mean   :0.49   Mean   :0.242   Mean   :0.058  
##  3rd Qu.:1.000   3rd Qu.:0.000   3rd Qu.:1.00   3rd Qu.:0.000   3rd Qu.:0.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.00   Max.   :1.000   Max.   :1.000  
##                                                                                
##       pvd      renal_disease   valvular_disease metastatic_cancer
##  Min.   :0.0   Min.   :0.000   Min.   :0.000    Min.   :0.000    
##  1st Qu.:0.0   1st Qu.:0.000   1st Qu.:0.000    1st Qu.:0.000    
##  Median :0.0   Median :0.000   Median :0.000    Median :0.000    
##  Mean   :0.1   Mean   :0.249   Mean   :0.244    Mean   :0.009    
##  3rd Qu.:0.0   3rd Qu.:0.000   3rd Qu.:0.000    3rd Qu.:0.000    
##  Max.   :1.0   Max.   :1.000   Max.   :1.000    Max.   :1.000    
##                                                                  
##    pacemaker       pneumonia     prior_appts_attended   prior_dnas    
##  Min.   :0.000   Min.   :0.000   Min.   : 0.000       Min.   : 0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.: 1.000       1st Qu.: 0.000  
##  Median :0.000   Median :0.000   Median : 3.000       Median : 0.000  
##  Mean   :0.037   Mean   :0.117   Mean   : 5.538       Mean   : 0.501  
##  3rd Qu.:0.000   3rd Qu.:0.000   3rd Qu.: 8.000       3rd Qu.: 1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :62.000       Max.   :10.000  
##                                                                       
##       pci            stroke         senile         quintile     ethnicgroup   
##  Min.   :0.000   Min.   :0.00   Min.   :0.000   Min.   :0.00   Min.   :1.000  
##  1st Qu.:0.000   1st Qu.:0.00   1st Qu.:0.000   1st Qu.:2.00   1st Qu.:1.000  
##  Median :0.000   Median :0.00   Median :0.000   Median :3.00   Median :1.000  
##  Mean   :0.029   Mean   :0.02   Mean   :0.044   Mean   :3.16   Mean   :1.231  
##  3rd Qu.:0.000   3rd Qu.:0.00   3rd Qu.:0.000   3rd Qu.:4.00   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.00   Max.   :1.000   Max.   :5.00   Max.   :9.000  
##                                                 NA's   :6      NA's   :43     
##     fu_time      
##  Min.   :   0.0  
##  1st Qu.: 117.8  
##  Median : 475.0  
##  Mean   : 466.0  
##  3rd Qu.: 743.2  
##  Max.   :1107.0  
## 

Age variable

age=g[,"age"]
age=as.numeric(g[,"age"])

Age categorized

age_cat=ifelse(age<=65,"Below 65" ,ifelse(age>65,"Above 65",NA))
table(age_cat)
## age_cat
## Above 65 Below 65 
##      869      131

Kaplan Meir with Age group

Km_age_fit=survfit(Surv(fu_time,death)~age_cat)
plot(Km_age_fit)

summary(Km_age_fit)
## Call: survfit(formula = Surv(fu_time, death) ~ age_cat)
## 
##                 age_cat=Above 65 
##  time n.risk n.event P((s0))    P(1)
##     0    869       3  0.9965 0.00345
##     1    864       9  0.9862 0.01383
##     2    846       7  0.9780 0.02199
##     3    836       5  0.9722 0.02784
##     4    827       6  0.9651 0.03490
##     5    820       5  0.9592 0.04078
##     6    814       1  0.9580 0.04196
##     7    809       1  0.9569 0.04314
##     8    805       4  0.9521 0.04790
##    10    800       1  0.9509 0.04909
##    11    797       4  0.9461 0.05386
##    12    790       3  0.9425 0.05745
##    13    784       3  0.9389 0.06106
##    14    781       3  0.9353 0.06467
##    15    777       1  0.9341 0.06587
##    16    775       1  0.9329 0.06708
##    17    772       2  0.9305 0.06949
##    18    769       1  0.9293 0.07070
##    19    768       3  0.9257 0.07433
##    20    764       1  0.9245 0.07554
##    23    760       3  0.9208 0.07919
##    25    755       1  0.9196 0.08041
##    26    754       3  0.9159 0.08407
##    27    751       1  0.9147 0.08529
##    28    749       1  0.9135 0.08651
##    29    748       1  0.9123 0.08773
##    30    747       1  0.9110 0.08895
##    31    745       3  0.9074 0.09262
##    33    736       2  0.9049 0.09509
##    34    734       1  0.9037 0.09632
##    36    732       1  0.9024 0.09756
##    37    729       1  0.9012 0.09879
##    38    728       2  0.8987 0.10127
##    41    721       2  0.8962 0.10376
##    43    718       1  0.8950 0.10501
##    48    713       3  0.8912 0.10878
##    49    710       1  0.8900 0.11003
##    50    708       1  0.8887 0.11129
##    53    705       1  0.8874 0.11255
##    54    704       2  0.8849 0.11507
##    57    701       3  0.8811 0.11886
##    58    698       1  0.8799 0.12012
##    59    696       2  0.8774 0.12265
##    61    694       2  0.8748 0.12518
##    62    692       1  0.8736 0.12644
##    63    691       1  0.8723 0.12771
##    64    690       1  0.8710 0.12897
##    65    689       1  0.8698 0.13023
##    67    687       1  0.8685 0.13150
##    72    686       1  0.8672 0.13277
##    73    685       1  0.8660 0.13403
##    76    682       1  0.8647 0.13530
##    77    680       1  0.8634 0.13657
##    79    678       2  0.8609 0.13912
##    80    675       2  0.8583 0.14167
##    82    672       1  0.8571 0.14295
##    83    670       1  0.8558 0.14423
##    85    669       1  0.8545 0.14551
##    86    667       3  0.8506 0.14935
##    87    664       2  0.8481 0.15191
##    95    656       1  0.8468 0.15321
##    97    653       2  0.8442 0.15580
##    98    651       1  0.8429 0.15710
##    99    650       1  0.8416 0.15839
##   103    648       1  0.8403 0.15969
##   104    647       1  0.8390 0.16099
##   109    645       1  0.8377 0.16229
##   110    643       1  0.8364 0.16359
##   115    642       1  0.8351 0.16490
##   117    641       1  0.8338 0.16620
##   118    639       1  0.8325 0.16750
##   119    637       1  0.8312 0.16881
##   121    635       1  0.8299 0.17012
##   125    634       1  0.8286 0.17143
##   126    633       1  0.8273 0.17274
##   127    632       1  0.8260 0.17405
##   134    626       1  0.8246 0.17537
##   135    625       2  0.8220 0.17801
##   137    622       1  0.8207 0.17933
##   141    620       1  0.8193 0.18065
##   142    619       2  0.8167 0.18330
##   148    615       1  0.8154 0.18463
##   149    614       1  0.8140 0.18595
##   152    612       1  0.8127 0.18728
##   153    611       1  0.8114 0.18861
##   157    608       1  0.8101 0.18995
##   158    607       2  0.8074 0.19262
##   160    605       1  0.8060 0.19395
##   165    603       1  0.8047 0.19529
##   167    601       1  0.8034 0.19663
##   170    600       2  0.8007 0.19931
##   177    597       1  0.7994 0.20065
##   178    596       1  0.7980 0.20199
##   180    593       2  0.7953 0.20468
##   186    590       1  0.7940 0.20603
##   192    588       1  0.7926 0.20738
##   193    587       1  0.7913 0.20873
##   194    586       1  0.7899 0.21008
##   195    585       2  0.7872 0.21278
##   197    583       1  0.7859 0.21413
##   199    581       1  0.7845 0.21548
##   201    580       1  0.7832 0.21683
##   206    579       1  0.7818 0.21819
##   212    577       1  0.7805 0.21954
##   213    576       1  0.7791 0.22090
##   214    575       1  0.7777 0.22225
##   217    574       1  0.7764 0.22361
##   220    573       1  0.7750 0.22496
##   229    570       1  0.7737 0.22632
##   231    568       1  0.7723 0.22768
##   237    566       1  0.7710 0.22905
##   238    564       1  0.7696 0.23042
##   249    561       1  0.7682 0.23179
##   252    560       1  0.7668 0.23316
##   256    559       1  0.7655 0.23453
##   261    556       1  0.7641 0.23591
##   264    555       1  0.7627 0.23728
##   277    551       1  0.7613 0.23867
##   287    549       1  0.7599 0.24006
##   291    547       1  0.7586 0.24144
##   294    545       1  0.7572 0.24284
##   295    544       1  0.7558 0.24423
##   296    542       1  0.7544 0.24562
##   297    541       1  0.7530 0.24702
##   300    539       1  0.7516 0.24841
##   307    538       1  0.7502 0.24981
##   308    537       1  0.7488 0.25121
##   310    536       1  0.7474 0.25260
##   314    534       1  0.7460 0.25400
##   316    533       1  0.7446 0.25540
##   320    532       1  0.7432 0.25680
##   321    531       1  0.7418 0.25820
##   324    530       1  0.7404 0.25960
##   339    528       1  0.7390 0.26101
##   343    527       1  0.7376 0.26241
##   354    524       1  0.7362 0.26382
##   357    522       1  0.7348 0.26523
##   359    521       1  0.7334 0.26664
##   362    520       1  0.7320 0.26805
##   363    519       1  0.7305 0.26946
##   364    518       1  0.7291 0.27087
##   370    517       1  0.7277 0.27228
##   372    515       1  0.7263 0.27369
##   374    514       1  0.7249 0.27510
##   379    511       1  0.7235 0.27652
##   380    510       2  0.7206 0.27936
##   387    506       1  0.7192 0.28078
##   388    504       2  0.7164 0.28364
##   389    501       3  0.7121 0.28793
##   391    497       1  0.7106 0.28936
##   392    496       1  0.7092 0.29079
##   393    495       1  0.7078 0.29222
##   394    494       1  0.7063 0.29366
##   402    492       1  0.7049 0.29509
##   403    491       1  0.7035 0.29653
##   406    487       1  0.7020 0.29797
##   407    485       1  0.7006 0.29942
##   416    478       1  0.6991 0.30089
##   420    473       1  0.6976 0.30236
##   421    472       3  0.6932 0.30680
##   425    468       1  0.6917 0.30828
##   429    466       1  0.6902 0.30976
##   435    460       1  0.6887 0.31126
##   440    458       1  0.6872 0.31277
##   441    457       1  0.6857 0.31427
##   442    455       3  0.6812 0.31879
##   443    451       1  0.6797 0.32030
##   444    450       1  0.6782 0.32181
##   445    449       1  0.6767 0.32332
##   447    446       1  0.6752 0.32484
##   449    445       2  0.6721 0.32788
##   451    441       2  0.6691 0.33092
##   452    439       1  0.6676 0.33245
##   455    438       2  0.6645 0.33550
##   459    434       1  0.6630 0.33703
##   463    433       1  0.6614 0.33856
##   464    432       1  0.6599 0.34009
##   465    431       1  0.6584 0.34162
##   466    429       1  0.6568 0.34316
##   468    427       1  0.6553 0.34469
##   472    424       1  0.6538 0.34624
##   474    421       1  0.6522 0.34779
##   477    419       1  0.6507 0.34935
##   488    416       1  0.6491 0.35091
##   489    413       3  0.6444 0.35563
##   490    410       1  0.6428 0.35720
##   492    405       1  0.6412 0.35879
##   494    404       1  0.6396 0.36037
##   499    399       1  0.6380 0.36198
##   501    395       1  0.6364 0.36359
##   506    391       1  0.6348 0.36522
##   508    389       3  0.6299 0.37012
##   509    386       3  0.6250 0.37501
##   510    383       1  0.6234 0.37664
##   512    382       2  0.6201 0.37991
##   514    379       1  0.6185 0.38154
##   517    377       2  0.6152 0.38482
##   518    374       1  0.6135 0.38647
##   521    373       2  0.6102 0.38976
##   525    371       1  0.6086 0.39140
##   529    369       1  0.6069 0.39305
##   530    368       1  0.6053 0.39470
##   544    358       1  0.6036 0.39639
##   545    357       2  0.6002 0.39977
##   553    352       1  0.5985 0.40148
##   555    351       2  0.5951 0.40489
##   558    348       1  0.5934 0.40660
##   560    346       1  0.5917 0.40831
##   563    344       1  0.5900 0.41003
##   565    342       1  0.5882 0.41176
##   566    341       2  0.5848 0.41521
##   567    339       1  0.5831 0.41694
##   570    337       1  0.5813 0.41867
##   571    336       2  0.5779 0.42213
##   580    329       1  0.5761 0.42388
##   581    328       1  0.5744 0.42564
##   588    323       1  0.5726 0.42742
##   589    322       1  0.5708 0.42919
##   593    318       1  0.5690 0.43099
##   594    317       1  0.5672 0.43278
##   599    315       1  0.5654 0.43459
##   608    311       1  0.5636 0.43640
##   611    310       1  0.5618 0.43822
##   612    309       1  0.5600 0.44004
##   621    306       2  0.5563 0.44370
##   625    303       1  0.5545 0.44554
##   628    301       1  0.5526 0.44738
##   630    300       1  0.5508 0.44922
##   631    299       2  0.5471 0.45290
##   632    297       2  0.5434 0.45659
##   634    292       1  0.5416 0.45845
##   638    291       1  0.5397 0.46031
##   640    290       1  0.5378 0.46217
##   643    289       1  0.5360 0.46403
##   644    288       2  0.5322 0.46775
##   649    285       1  0.5304 0.46962
##   650    283       1  0.5285 0.47150
##   651    282       1  0.5266 0.47337
##   653    279       1  0.5247 0.47526
##   654    278       1  0.5229 0.47714
##   656    277       1  0.5210 0.47903
##   658    276       1  0.5191 0.48092
##   659    274       1  0.5172 0.48281
##   663    272       1  0.5153 0.48472
##   665    266       1  0.5133 0.48665
##   668    263       2  0.5094 0.49056
##   669    259       1  0.5075 0.49252
##   670    258       1  0.5055 0.49449
##   674    255       1  0.5035 0.49647
##   675    254       1  0.5015 0.49846
##   677    253       3  0.4956 0.50440
##   684    249       1  0.4936 0.50639
##   685    246       1  0.4916 0.50840
##   687    245       2  0.4876 0.51241
##   693    241       2  0.4835 0.51646
##   696    238       1  0.4815 0.51849
##   699    233       1  0.4794 0.52056
##   701    231       1  0.4774 0.52263
##   703    229       1  0.4753 0.52472
##   709    228       1  0.4732 0.52680
##   714    227       1  0.4711 0.52889
##   719    221       1  0.4690 0.53102
##   734    213       1  0.4668 0.53322
##   739    212       2  0.4624 0.53762
##   740    209       3  0.4557 0.54426
##   749    199       1  0.4534 0.54655
##   751    198       1  0.4512 0.54884
##   752    197       1  0.4489 0.55113
##   757    195       1  0.4466 0.55343
##   758    192       1  0.4442 0.55576
##   764    191       1  0.4419 0.55808
##   765    190       1  0.4396 0.56041
##   767    189       1  0.4373 0.56274
##   768    185       1  0.4349 0.56510
##   771    182       2  0.4301 0.56988
##   773    179       2  0.4253 0.57468
##   778    174       1  0.4229 0.57713
##   787    173       1  0.4204 0.57957
##   791    172       1  0.4180 0.58202
##   793    171       1  0.4155 0.58446
##   795    170       1  0.4131 0.58691
##   796    169       1  0.4106 0.58935
##   802    164       2  0.4056 0.59436
##   810    157       1  0.4031 0.59694
##   814    156       1  0.4005 0.59953
##   815    155       1  0.3979 0.60211
##   819    154       1  0.3953 0.60469
##   822    152       1  0.3927 0.60729
##   830    148       1  0.3901 0.60995
##   833    146       1  0.3874 0.61262
##   834    145       1  0.3847 0.61529
##   837    144       1  0.3820 0.61796
##   845    139       1  0.3793 0.62071
##   846    138       1  0.3765 0.62346
##   858    134       1  0.3737 0.62627
##   863    132       1  0.3709 0.62910
##   865    129       1  0.3680 0.63198
##   867    127       1  0.3651 0.63487
##   870    126       1  0.3622 0.63777
##   876    123       1  0.3593 0.64072
##   877    122       1  0.3563 0.64366
##   878    120       1  0.3534 0.64663
##   884    117       1  0.3503 0.64965
##   889    113       1  0.3472 0.65275
##   892    112       1  0.3441 0.65585
##   893    111       1  0.3410 0.65895
##   894    109       2  0.3348 0.66521
##   895    107       1  0.3317 0.66834
##   901    106       1  0.3285 0.67147
##   908    103       1  0.3253 0.67466
##   912    100       1  0.3221 0.67791
##   913     99       1  0.3188 0.68116
##   915     98       1  0.3156 0.68442
##   918     97       1  0.3123 0.68767
##   922     95       2  0.3058 0.69425
##   931     92       1  0.3024 0.69757
##   937     88       1  0.2990 0.70101
##   939     87       1  0.2956 0.70444
##   950     81       2  0.2883 0.71174
##   955     79       1  0.2846 0.71539
##   957     77       1  0.2809 0.71909
##   960     75       1  0.2772 0.72283
##   971     72       1  0.2733 0.72668
##   975     71       1  0.2695 0.73053
##   983     66       1  0.2654 0.73461
##   984     63       1  0.2612 0.73883
##   994     58       1  0.2567 0.74333
##   995     57       1  0.2522 0.74783
##  1004     54       1  0.2475 0.75250
##  1006     53       1  0.2428 0.75717
##  1013     51       1  0.2381 0.76193
##  1020     47       1  0.2330 0.76700
##  1028     45       2  0.2226 0.77735
##  1029     43       1  0.2175 0.78253
##  1030     42       1  0.2123 0.78771
##  1040     39       1  0.2068 0.79315
##  1043     36       2  0.1954 0.80464
##  1045     34       1  0.1896 0.81039
##  1047     33       1  0.1839 0.81614
##  1048     31       2  0.1720 0.82800
##  1052     27       1  0.1656 0.83437
##  1057     26       1  0.1593 0.84074
##  1059     24       1  0.1526 0.84737
##  1062     22       1  0.1457 0.85431
##  1063     19       1  0.1380 0.86198
##  1067     16       1  0.1294 0.87061
##  1072     14       1  0.1202 0.87985
##  1080     12       1  0.1101 0.88986
##  1085     10       1  0.0991 0.90088
##  1086      9       1  0.0881 0.91189
##  1100      3       1  0.0587 0.94126
##  1107      1       1  0.0000 1.00000
## 
##                 age_cat=Below 65 
##  time n.risk n.event P((s0))    P(1)
##    18    123       1   0.992 0.00813
##    32    118       1   0.983 0.01654
##    63    115       1   0.975 0.02509
##   149    110       1   0.966 0.03395
##   156    109       1   0.957 0.04281
##   161    108       1   0.948 0.05168
##   383     99       2   0.929 0.07083
##   452     84       1   0.918 0.08190
##   460     82       1   0.907 0.09309
##   510     77       1   0.895 0.10487
##   515     75       1   0.883 0.11681
##   533     71       1   0.871 0.12924
##   562     67       1   0.858 0.14224
##   705     52       1   0.841 0.15874
##   730     48       1   0.824 0.17626
##   790     36       1   0.801 0.19914
##   793     35       1   0.778 0.22203
##   841     27       1   0.749 0.25084
##   989     14       1   0.696 0.30435
##  1019     10       1   0.626 0.37392
##  1041      7       1   0.537 0.46336
##  1085      3       1   0.358 0.64224

Log rank test with age group

survdiff(Surv(fu_time,death)~age_cat,data = g)
## Call:
## survdiff(formula = Surv(fu_time, death) ~ age_cat, data = g)
## 
##                    N Observed Expected (O-E)^2/E (O-E)^2/V
## age_cat=Above 65 869      469    415.4       6.9      44.6
## age_cat=Below 65 131       23     76.6      37.5      44.6
## 
##  Chisq= 44.6  on 1 degrees of freedom, p= 2e-11

Scientific notation removal

format(2e-11 , scientific=F, digits=3)
## [1] "0.00000000002"

COX survival analysis

library(survival)
library(ggplot2)
library(ggpubr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.7     v dplyr   1.0.9
## v tidyr   1.2.0     v stringr 1.4.0
## v purrr   0.3.4     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(survminer)
cox=coxph(Surv(fu_time,death)~age, data = g)
summary(cox)
## Call:
## coxph(formula = Surv(fu_time, death) ~ age, data = g)
## 
##   n= 1000, number of events= 492 
## 
##         coef exp(coef) se(coef)     z Pr(>|z|)    
## age 0.056005  1.057602 0.005193 10.78   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##     exp(coef) exp(-coef) lower .95 upper .95
## age     1.058     0.9455     1.047     1.068
## 
## Concordance= 0.651  (se = 0.013 )
## Likelihood ratio test= 138  on 1 df,   p=<2e-16
## Wald test            = 116.3  on 1 df,   p=<2e-16
## Score (logrank) test = 115.7  on 1 df,   p=<2e-16
head(g)
##   id death los age gender cancer cabg crt defib dementia diabetes hypertension
## 1  1     0   2  90      2      0    0   0     0        0        0            0
## 2  2     0  10  74      1      0    0   0     0        0        0            1
## 3  3     0   3  83      2      0    0   0     0        0        0            1
## 4  4     0   1  79      1      0    0   0     0        0        1            1
## 5  5     0  17  94      2      0    0   0     0        0        1            1
## 6  6     0  47  89      1      0    0   0     0        0        0            0
##   ihd mental_health arrhythmias copd obesity pvd renal_disease valvular_disease
## 1   0             0           1    0       0   0             0                1
## 2   1             0           0    0       0   0             1                1
## 3   0             0           1    0       0   0             0                0
## 4   1             0           0    1       0   0             0                0
## 5   0             0           0    0       0   0             0                0
## 6   0             0           0    0       0   1             0                1
##   metastatic_cancer pacemaker pneumonia prior_appts_attended prior_dnas pci
## 1                 0         0         0                    4          0   0
## 2                 0         0         1                    9          1   0
## 3                 0         0         0                    1          0   0
## 4                 0         1         0                    9          2   1
## 5                 0         0         0                    3          0   0
## 6                 0         0         1                    3          0   0
##   stroke senile quintile ethnicgroup fu_time
## 1      0      0        2          NA     416
## 2      0      0        4           1     648
## 3      0      0        3           1     466
## 4      1      0        5           1     441
## 5      0      0        2           1     371
## 6      0      0        3          NA      47
ethnicgroup=as.factor(g[,"ethnicgroup"])

Cox regression with ethnicgroup

cox_ethnicgroup=coxph(Surv(fu_time,death)~ethnicgroup, data = g)
summary(cox_ethnicgroup)
## Call:
## coxph(formula = Surv(fu_time, death) ~ ethnicgroup, data = g)
## 
##   n= 957, number of events= 471 
##    (43 observations deleted due to missingness)
## 
##                 coef exp(coef) se(coef)      z Pr(>|z|)
## ethnicgroup -0.04555   0.95547  0.05069 -0.899    0.369
## 
##             exp(coef) exp(-coef) lower .95 upper .95
## ethnicgroup    0.9555      1.047    0.8651     1.055
## 
## Concordance= 0.514  (se = 0.006 )
## Likelihood ratio test= 0.89  on 1 df,   p=0.3
## Wald test            = 0.81  on 1 df,   p=0.4
## Score (logrank) test = 0.81  on 1 df,   p=0.4