Problem Statement

To Devise the Package price for the treatment of ailments of economically weaker sections of the society as per the market requirement and competition in the market. The package pricing has to be formed specifically for specific treatments. This package price should also accord the variance of pricing in different states and the concerned local government policies.

The package pricing should also address the perception build in the sector of medical tourism and should take care of that aspect as well.

A comparative study between the traditional an the conventional strategy needs to be done and understood to support the migration to the conventional mode of Package pricing

# Loading the data and loading the necessary packages.
getwd()
library(readxl)
library(dplyr)
library(mice)
library(ggcorrplot)
library(fastDummies)
library(lmtest)
library(lm.beta)
library(car)
library(janitor)
data<- read_excel("Package Pricing at Mission Hospital.xlsx", sheet= "MH-Raw Data")
# Pre-processing of Data
data1 <- clean_names(data)
data1$past_medical_history_code[which(is.na(data1$past_medical_history_code))] <- "None"
data2 <- data1 %>% mutate_if(is.character, as.factor)
data3 <- subset(data2, select = -c(cost_of_implant))
# MICE imputation to convert all NA values 
set.seed(12345)
data4 <- mice(data3)
# From the imputed values, we have chosen the variable 'Creatinine' for mean comparison with the imputed values.
mean(data3$creatinine, na.rm = T)
## [1] 0.7469767
imp.values <- data4$imp$creatinine
mean(imp.values$`1`)
## [1] 0.7393939
mean(imp.values$`2`)
## [1] 0.6
mean(imp.values$`3`)
## [1] 0.6878788
mean(imp.values$`4`)
## [1] 0.6878788
mean(imp.values$`5`)
## [1] 0.7393939
# Since the mean value has most proximity to the 1st imputed value, we are selecting that imputation.
data5 <- complete(data4, 1)
# Pre-processing of data
names(data5)[23] <- "implant_used"
data5$bp_low <- as.numeric(data5$bp_low)
data6 <- subset(data5, select = -c(sl))
# Correlation matrix for creating correlation plot
data6.1 <- data6 %>% select_if(is.numeric)
cor.matrix <- cor(data6.1)

# Creating fast dummies of categorical variables
data7 <- dummy_cols(data6, remove_most_frequent_dummy = T, remove_selected_columns = T)
# Outlier detection and removal from dependent variable
outlier <- boxplot(data7$total_cost_to_hospital)$out

length(outlier)
## [1] 24
outlier.data <- data7[which(data7$total_cost_to_hospital %in% outlier),]
data8 <- data7[-which(data7$total_cost_to_hospital %in% outlier),]
# Linear Regression model with total cost to hospital as dependent variable
model1 <- lm(total_cost_to_hospital ~., data8)
options(scipen = 100)
summary(model1)
## 
## Call:
## lm(formula = total_cost_to_hospital ~ ., data = data8)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -75933 -15840   -848  16058  96540 
## 
## Coefficients:
##                                           Estimate Std. Error t value
## (Intercept)                               54750.27   30864.34   1.774
## age                                         169.28     268.14   0.631
## body_weight                                 -26.85     289.19  -0.093
## body_height                                 158.60     109.71   1.446
## hr_pulse                                     81.23     141.11   0.576
## bp_high                                      10.65     126.05   0.084
## bp_low                                      293.45     340.27   0.862
## rr                                        -1240.58     725.12  -1.711
## hb                                         -773.45     763.61  -1.013
## urea                                        -27.06     199.48  -0.136
## creatinine                                20219.81    8849.99   2.285
## total_length_of_stay                        444.89   10240.39   0.043
## length_of_stay_icu                        17674.46   10335.92   1.710
## length_of_stay_ward                        4977.71   10145.10   0.491
## gender_F                                    732.94    4719.94   0.155
## marital_status_MARRIED                    -8416.46   10596.59  -0.794
## key_complaints_code_ACHD                  -5601.42    7930.75  -0.706
## `key_complaints_code_CAD-DVD`              9255.87   10807.93   0.856
## `key_complaints_code_CAD-SVD`            -43194.20   24456.59  -1.766
## `key_complaints_code_CAD-TVD`               -85.25   11194.69  -0.008
## `key_complaints_code_CAD-VSD`            -10271.08   22180.11  -0.463
## `key_complaints_code_OS-ASD`                240.09    8809.88   0.027
## `key_complaints_code_other- respiratory`   3421.12    7967.69   0.429
## `key_complaints_code_other-general`      -39374.88   23354.88  -1.686
## `key_complaints_code_other-nervous`        1187.39   14364.91   0.083
## `key_complaints_code_other-tertalogy`     31663.00    8392.36   3.773
## `key_complaints_code_PM-VSD`              25371.32   13868.09   1.829
## key_complaints_code_RHD                   -4181.06    9791.36  -0.427
## past_medical_history_code_Diabetes1        8471.51   12390.38   0.684
## past_medical_history_code_Diabetes2       46771.15   19210.71   2.435
## past_medical_history_code_hypertension1    2939.12   10837.34   0.271
## past_medical_history_code_Hypertension1  -23568.57   19932.47  -1.182
## past_medical_history_code_hypertension2  -11397.01   10192.43  -1.118
## past_medical_history_code_hypertension3     796.33   17357.20   0.046
## past_medical_history_code_other          -11950.97    8606.25  -1.389
## mode_of_arrival_AMBULANCE                 47526.71   32619.11   1.457
## mode_of_arrival_TRANSFERRED              -30276.07   16215.94  -1.867
## state_at_the_time_of_arrival_CONFUSED     -5647.34   45179.48  -0.125
## type_of_admsn_EMERGENCY                  -65286.02   31980.45  -2.041
## implant_used_Y                            78650.77    8473.03   9.282
##                                                      Pr(>|t|)    
## (Intercept)                                          0.077733 .  
## age                                                  0.528626    
## body_weight                                          0.926126    
## body_height                                          0.149986    
## hr_pulse                                             0.565557    
## bp_high                                              0.932780    
## bp_low                                               0.389598    
## rr                                                   0.088789 .  
## hb                                                   0.312448    
## urea                                                 0.892237    
## creatinine                                           0.023470 *  
## total_length_of_stay                                 0.965394    
## length_of_stay_icu                                   0.088951 .  
## length_of_stay_ward                                  0.624258    
## gender_F                                             0.876766    
## marital_status_MARRIED                               0.428067    
## key_complaints_code_ACHD                             0.480900    
## `key_complaints_code_CAD-DVD`                        0.392892    
## `key_complaints_code_CAD-SVD`                        0.079028 .  
## `key_complaints_code_CAD-TVD`                        0.993932    
## `key_complaints_code_CAD-VSD`                        0.643857    
## `key_complaints_code_OS-ASD`                         0.978288    
## `key_complaints_code_other- respiratory`             0.668153    
## `key_complaints_code_other-general`                  0.093503 .  
## `key_complaints_code_other-nervous`                  0.934212    
## `key_complaints_code_other-tertalogy`                0.000217 ***
## `key_complaints_code_PM-VSD`                         0.068947 .  
## key_complaints_code_RHD                              0.669867    
## past_medical_history_code_Diabetes1                  0.495014    
## past_medical_history_code_Diabetes2                  0.015861 *  
## past_medical_history_code_hypertension1              0.786539    
## past_medical_history_code_Hypertension1              0.238564    
## past_medical_history_code_hypertension2              0.264946    
## past_medical_history_code_hypertension3              0.963457    
## past_medical_history_code_other                      0.166621    
## mode_of_arrival_AMBULANCE                            0.146815    
## mode_of_arrival_TRANSFERRED                          0.063484 .  
## state_at_the_time_of_arrival_CONFUSED                0.900662    
## type_of_admsn_EMERGENCY                              0.042635 *  
## implant_used_Y                           < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29250 on 184 degrees of freedom
## Multiple R-squared:  0.8255, Adjusted R-squared:  0.7886 
## F-statistic: 22.33 on 39 and 184 DF,  p-value: < 0.00000000000000022
# Stepwise regression to identify the significant variables in the model
model2 <- step(model1, trace = 0)
summary(model2)
## 
## Call:
## lm(formula = total_cost_to_hospital ~ body_height + rr + creatinine + 
##     length_of_stay_icu + length_of_stay_ward + `key_complaints_code_CAD-DVD` + 
##     `key_complaints_code_CAD-SVD` + `key_complaints_code_other-general` + 
##     `key_complaints_code_other-tertalogy` + `key_complaints_code_PM-VSD` + 
##     past_medical_history_code_Diabetes2 + past_medical_history_code_Hypertension1 + 
##     past_medical_history_code_other + mode_of_arrival_AMBULANCE + 
##     mode_of_arrival_TRANSFERRED + type_of_admsn_EMERGENCY + implant_used_Y, 
##     data = data8)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -82768 -15295   -533  16037  99595 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                              60894.73   20123.04   3.026
## body_height                                146.17      66.74   2.190
## rr                                       -1277.62     659.11  -1.938
## creatinine                               19466.47    4845.00   4.018
## length_of_stay_icu                       18431.69    1050.34  17.548
## length_of_stay_ward                       5319.80     611.65   8.697
## `key_complaints_code_CAD-DVD`            11315.37    7625.61   1.484
## `key_complaints_code_CAD-SVD`           -39429.64   20902.43  -1.886
## `key_complaints_code_other-general`     -34886.66   21159.77  -1.649
## `key_complaints_code_other-tertalogy`    29709.33    6886.53   4.314
## `key_complaints_code_PM-VSD`             26046.62   12445.49   2.093
## past_medical_history_code_Diabetes2      43754.53   15289.69   2.862
## past_medical_history_code_Hypertension1 -24938.34   17751.26  -1.405
## past_medical_history_code_other         -11872.14    7883.21  -1.506
## mode_of_arrival_AMBULANCE                54838.55   30379.38   1.805
## mode_of_arrival_TRANSFERRED             -31423.99   14729.27  -2.133
## type_of_admsn_EMERGENCY                 -72979.91   29536.34  -2.471
## implant_used_Y                           76820.61    5584.35  13.756
##                                                     Pr(>|t|)    
## (Intercept)                                          0.00279 ** 
## body_height                                          0.02964 *  
## rr                                                   0.05394 .  
## creatinine                               0.00008231642922645 ***
## length_of_stay_icu                      < 0.0000000000000002 ***
## length_of_stay_ward                      0.00000000000000108 ***
## `key_complaints_code_CAD-DVD`                        0.13937    
## `key_complaints_code_CAD-SVD`                        0.06065 .  
## `key_complaints_code_other-general`                  0.10073    
## `key_complaints_code_other-tertalogy`    0.00002485689935067 ***
## `key_complaints_code_PM-VSD`                         0.03759 *  
## past_medical_history_code_Diabetes2                  0.00465 ** 
## past_medical_history_code_Hypertension1              0.16156    
## past_medical_history_code_other                      0.13360    
## mode_of_arrival_AMBULANCE                            0.07252 .  
## mode_of_arrival_TRANSFERRED                          0.03407 *  
## type_of_admsn_EMERGENCY                              0.01429 *  
## implant_used_Y                          < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28140 on 206 degrees of freedom
## Multiple R-squared:  0.8192, Adjusted R-squared:  0.8043 
## F-statistic: 54.91 on 17 and 206 DF,  p-value: < 0.00000000000000022
par(mfrow = c(2,2))
plot(model2)
## Warning: not plotting observations with leverage one:
##   142

# Conducting Bruesh-Pagan test for checking heteroscedasticity
bptest(model2)
## 
##  studentized Breusch-Pagan test
## 
## data:  model2
## BP = 30.557, df = 17, p-value = 0.0226
# Getting the standard normal values of regression coefficients to identify the order of significance 
par(mfrow= c(1,1))
hist(model2$residuals, breaks = 30)

library(lm.beta)
coeff <- lm.beta(model2)
std.coeff <- data.frame(coeff$standardized.coefficients)
std.coeff
##                                         coeff.standardized.coefficients
## (Intercept)                                                          NA
## body_height                                                  0.09025878
## rr                                                          -0.06988629
## creatinine                                                   0.15915995
## length_of_stay_icu                                           0.59033228
## length_of_stay_ward                                          0.27803070
## `key_complaints_code_CAD-DVD`                                0.05411276
## `key_complaints_code_CAD-SVD`                               -0.05843636
## `key_complaints_code_other-general`                         -0.05170347
## `key_complaints_code_other-tertalogy`                        0.13347249
## `key_complaints_code_PM-VSD`                                 0.06625582
## past_medical_history_code_Diabetes2                          0.09129211
## past_medical_history_code_Hypertension1                     -0.04516408
## past_medical_history_code_other                             -0.04675378
## mode_of_arrival_AMBULANCE                                    0.24071796
## mode_of_arrival_TRANSFERRED                                 -0.06556492
## type_of_admsn_EMERGENCY                                     -0.32787041
## implant_used_Y                                               0.45894933
# Checking multicollinearity
vif <- data.frame(vif(model2))
vif
##                                         vif.model2.
## body_height                                1.935469
## rr                                         1.481242
## creatinine                                 1.788177
## length_of_stay_icu                         1.289602
## length_of_stay_ward                        1.164468
## `key_complaints_code_CAD-DVD`              1.515444
## `key_complaints_code_CAD-SVD`              1.093562
## `key_complaints_code_other-general`        1.120655
## `key_complaints_code_other-tertalogy`      1.090756
## `key_complaints_code_PM-VSD`               1.142085
## past_medical_history_code_Diabetes2        1.159703
## past_medical_history_code_Hypertension1    1.177712
## past_medical_history_code_other            1.098273
## mode_of_arrival_AMBULANCE                 20.264324
## mode_of_arrival_TRANSFERRED                1.076247
## type_of_admsn_EMERGENCY                   20.065060
## implant_used_Y                             1.268380
# Creating Training and test data
index <- sample(1:nrow(data8), 0.80*(nrow(data8)))
train_data <- data8[index,]
test_data <- data8[-index,]
# Creating model using training data
model3 <- lm(total_cost_to_hospital ~., train_data)
summary(model3)
## 
## Call:
## lm(formula = total_cost_to_hospital ~ ., data = train_data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -74361 -16277  -1021  16750  98322 
## 
## Coefficients:
##                                           Estimate Std. Error t value
## (Intercept)                               63658.99   37427.60   1.701
## age                                         179.00     331.45   0.540
## body_weight                                 112.12     342.78   0.327
## body_height                                 134.46     135.38   0.993
## hr_pulse                                    120.41     165.49   0.728
## bp_high                                      84.75     161.20   0.526
## bp_low                                      149.15     428.55   0.348
## rr                                        -2112.67     899.73  -2.348
## hb                                         -743.55     903.77  -0.823
## urea                                        -40.22     238.80  -0.168
## creatinine                                20591.93   11018.67   1.869
## total_length_of_stay                       1801.76   11095.76   0.162
## length_of_stay_icu                        16019.11   11266.66   1.422
## length_of_stay_ward                        4091.76   10991.51   0.372
## gender_F                                   -425.35    5733.43  -0.074
## marital_status_MARRIED                   -15808.27   13072.06  -1.209
## key_complaints_code_ACHD                  -2888.34    9608.64  -0.301
## `key_complaints_code_CAD-DVD`             12171.25   12967.32   0.939
## `key_complaints_code_CAD-SVD`            -48579.52   26482.56  -1.834
## `key_complaints_code_CAD-TVD`              1866.71   13541.02   0.138
## `key_complaints_code_CAD-VSD`            -11804.45   23759.70  -0.497
## `key_complaints_code_OS-ASD`              -3623.44   10449.68  -0.347
## `key_complaints_code_other- respiratory`   3953.95    9988.24   0.396
## `key_complaints_code_other-general`      -35389.31   25279.64  -1.400
## `key_complaints_code_other-nervous`        1482.35   16901.96   0.088
## `key_complaints_code_other-tertalogy`     32526.94   10070.20   3.230
## `key_complaints_code_PM-VSD`              30238.11   18038.72   1.676
## key_complaints_code_RHD                   -5806.00   11711.22  -0.496
## past_medical_history_code_Diabetes1       -1283.97   16255.29  -0.079
## past_medical_history_code_Diabetes2       58785.13   24715.09   2.379
## past_medical_history_code_hypertension1    3732.02   12800.26   0.292
## past_medical_history_code_Hypertension1  -24411.24   22023.71  -1.108
## past_medical_history_code_hypertension2  -14788.93   13160.41  -1.124
## past_medical_history_code_hypertension3      77.17   18868.69   0.004
## past_medical_history_code_other          -12209.15    9754.71  -1.252
## mode_of_arrival_AMBULANCE                 55586.89   35531.88   1.564
## mode_of_arrival_TRANSFERRED              -44336.48   24991.05  -1.774
## state_at_the_time_of_arrival_CONFUSED    -16002.21   52088.37  -0.307
## type_of_admsn_EMERGENCY                  -74634.31   34485.79  -2.164
## implant_used_Y                            81968.11    9973.07   8.219
##                                                   Pr(>|t|)    
## (Intercept)                                        0.09121 .  
## age                                                0.59001    
## body_weight                                        0.74409    
## body_height                                        0.32234    
## hr_pulse                                           0.46809    
## bp_high                                            0.59989    
## bp_low                                             0.72834    
## rr                                                 0.02028 *  
## hb                                                 0.41207    
## urea                                               0.86648    
## creatinine                                         0.06375 .  
## total_length_of_stay                               0.87124    
## length_of_stay_icu                                 0.15732    
## length_of_stay_ward                                0.71026    
## gender_F                                           0.94097    
## marital_status_MARRIED                             0.22859    
## key_complaints_code_ACHD                           0.76417    
## `key_complaints_code_CAD-DVD`                      0.34956    
## `key_complaints_code_CAD-SVD`                      0.06873 .  
## `key_complaints_code_CAD-TVD`                      0.89055    
## `key_complaints_code_CAD-VSD`                      0.62010    
## `key_complaints_code_OS-ASD`                       0.72930    
## `key_complaints_code_other- respiratory`           0.69281    
## `key_complaints_code_other-general`                0.16377    
## `key_complaints_code_other-nervous`                0.93024    
## `key_complaints_code_other-tertalogy`              0.00155 ** 
## `key_complaints_code_PM-VSD`                       0.09593 .  
## key_complaints_code_RHD                            0.62084    
## past_medical_history_code_Diabetes1                0.93716    
## past_medical_history_code_Diabetes2                0.01874 *  
## past_medical_history_code_hypertension1            0.77106    
## past_medical_history_code_Hypertension1            0.26960    
## past_medical_history_code_hypertension2            0.26306    
## past_medical_history_code_hypertension3            0.99674    
## past_medical_history_code_other                    0.21281    
## mode_of_arrival_AMBULANCE                          0.11999    
## mode_of_arrival_TRANSFERRED                        0.07824 .  
## state_at_the_time_of_arrival_CONFUSED              0.75914    
## type_of_admsn_EMERGENCY                            0.03216 *  
## implant_used_Y                           0.000000000000129 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30810 on 139 degrees of freedom
## Multiple R-squared:  0.8239, Adjusted R-squared:  0.7745 
## F-statistic: 16.68 on 39 and 139 DF,  p-value: < 0.00000000000000022
model4 <- step(model3, trace = 0)
summary(model4)
## 
## Call:
## lm(formula = total_cost_to_hospital ~ body_height + rr + creatinine + 
##     length_of_stay_icu + length_of_stay_ward + `key_complaints_code_CAD-SVD` + 
##     `key_complaints_code_other-general` + `key_complaints_code_other-tertalogy` + 
##     `key_complaints_code_PM-VSD` + past_medical_history_code_Diabetes2 + 
##     mode_of_arrival_AMBULANCE + mode_of_arrival_TRANSFERRED + 
##     type_of_admsn_EMERGENCY + implant_used_Y, data = train_data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -82997 -15521   -685  16433  98960 
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                            77505.98   23332.76   3.322
## body_height                              180.91      74.66   2.423
## rr                                     -2273.86     764.80  -2.973
## creatinine                             18362.56    5444.29   3.373
## length_of_stay_icu                     18482.24    1209.90  15.276
## length_of_stay_ward                     5692.97     687.81   8.277
## `key_complaints_code_CAD-SVD`         -47367.06   21820.58  -2.171
## `key_complaints_code_other-general`   -35057.81   22131.67  -1.584
## `key_complaints_code_other-tertalogy`  30585.50    8150.25   3.753
## `key_complaints_code_PM-VSD`           32859.88   15969.00   2.058
## past_medical_history_code_Diabetes2    54088.27   18379.04   2.943
## mode_of_arrival_AMBULANCE              55114.65   31645.29   1.742
## mode_of_arrival_TRANSFERRED           -43879.89   22437.95  -1.956
## type_of_admsn_EMERGENCY               -74398.91   30758.42  -2.419
## implant_used_Y                         77777.92    6288.27  12.369
##                                                   Pr(>|t|)    
## (Intercept)                                       0.001103 ** 
## body_height                                       0.016471 *  
## rr                                                0.003392 ** 
## creatinine                                        0.000928 ***
## length_of_stay_icu                    < 0.0000000000000002 ***
## length_of_stay_ward                     0.0000000000000419 ***
## `key_complaints_code_CAD-SVD`                     0.031388 *  
## `key_complaints_code_other-general`               0.115107    
## `key_complaints_code_other-tertalogy`             0.000242 ***
## `key_complaints_code_PM-VSD`                      0.041199 *  
## past_medical_history_code_Diabetes2               0.003723 ** 
## mode_of_arrival_AMBULANCE                         0.083447 .  
## mode_of_arrival_TRANSFERRED                       0.052210 .  
## type_of_admsn_EMERGENCY                           0.016665 *  
## implant_used_Y                        < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 29320 on 164 degrees of freedom
## Multiple R-squared:  0.8119, Adjusted R-squared:  0.7959 
## F-statistic: 50.57 on 14 and 164 DF,  p-value: < 0.00000000000000022
# Using the model to predict values of test data and comparing the results
test_data$Predicted <- predict(model4, test_data)
comparison <- data.frame(Actual_cost =test_data$total_cost_to_hospital, Predicted_cost= test_data$Predicted)
comparison
##    Actual_cost Predicted_cost
## 1     341109.0      273140.85
## 2     144037.2      126197.74
## 3     164962.0      107180.31
## 4     120131.0      133664.99
## 5     138923.0      156152.22
## 6     122892.0      111192.02
## 7     142552.0      134051.78
## 8     109085.8      106938.44
## 9     125643.0      118862.96
## 10    128196.0       95529.98
## 11    109085.8      106938.44
## 12    125643.0      120518.31
## 13    294615.9      296296.33
## 14    156576.9      154020.51
## 15    109575.6      167453.97
## 16    201219.0      202625.43
## 17    214679.0      270628.50
## 18    189701.5      178381.03
## 19    139723.0      152435.75
## 20    119685.6      117874.87
## 21    276458.0      260702.84
## 22    150337.0      130609.74
## 23    139067.0      146234.87
## 24    127899.0      110775.28
## 25    146355.0      170204.38
## 26     97060.8      119870.27
## 27    106070.0      111186.56
## 28    140372.0      155320.25
## 29    138769.4      128346.19
## 30     77241.0       74704.68
## 31     49700.0       73587.04
## 32    137273.0      100162.45
## 33    193543.0      228469.83
## 34    191102.0      234498.35
## 35    132585.0      160565.91
## 36    170654.0      162985.88
## 37    174074.0      128594.76
## 38    210622.0      210393.38
## 39     46093.0       50167.98
## 40    188824.0      196148.22
## 41    146700.0      144152.96
## 42    149462.0      158009.78
## 43    186450.0      227407.55
## 44    132997.0      132721.96
## 45    248112.0      265147.35
# Checking the validity of model using MAPE and RMSE
mape <- mean(abs(comparison$Actual_cost- comparison$Predicted_cost)/comparison$Actual_cost)
mape
## [1] 0.1253493
1-mape
## [1] 0.8746507
rmse <- sqrt(mean(comparison$Actual_cost- comparison$Predicted_cost)^2)
rmse
## [1] 1226.584