This is work by Chelsey Arvin and Zach Sibila

Worms were fed OP50 or b.subtilis

WT b subtilis is 3A1T MT b subtilis is IA96

They analyzed cgt-1(tmXXX), cgt-1(okXXX), cgt-2, and cgt-3 worms File found dr chan’s computer - 0.Marian > 0.Data > biofilm

life <- read.csv("lifespan.csv")
str(life)
## 'data.frame':    1598 obs. of  4 variables:
##  $ day     : int  6 7 7 7 7 7 8 8 8 8 ...
##  $ status  : int  1 0 0 0 0 0 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "OP50" "OP50" "OP50" "OP50" ...
library("survival")
library("survminer")
## Loading required package: ggplot2
## Loading required package: ggpubr

survival analysis

OVERALL

surv <- survfit(Surv(day, status) ~ mutant +bacteria, data = life)
surv
## Call: survfit(formula = Surv(day, status) ~ mutant + bacteria, data = life)
## 
##                                         n events median 0.95LCL 0.95UCL
## mutant=cgt-1 (ok), bacteria=B. sub mt 121     88     16      16      16
## mutant=cgt-1 (ok), bacteria=B. sub wt 100    100     16      16      16
## mutant=cgt-1 (ok), bacteria=OP50      120    113     14      12      14
## mutant=cgt-1 (tm), bacteria=B. sub mt 120     87     18      16      18
## mutant=cgt-1 (tm), bacteria=B. sub wt 120    118     14      14      14
## mutant=cgt-1 (tm), bacteria=OP50      120    120     12      12      12
## mutant=cgt-2, bacteria=B. sub mt      120    107     18      16      18
## mutant=cgt-2, bacteria=B. sub wt      119     87     18      18      20
## mutant=cgt-2, bacteria=OP50           120    119     14      14      14
## mutant=cgt-3, bacteria=B. sub mt       97     71     14      14      14
## mutant=cgt-3, bacteria=B. sub wt       60     59     14      14      16
## mutant=cgt-3, bacteria=OP50           121    100     10      10      12
## mutant=N2, bacteria=B. sub mt          80     72     16      14      16
## mutant=N2, bacteria=B. sub wt          60     60     16      16      18
## mutant=N2, bacteria=OP50              120    115     14      14      14
summary(surv)
## Call: survfit(formula = Surv(day, status) ~ mutant + bacteria, data = life)
## 
##                 mutant=cgt-1 (ok), bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    10     88       8   0.9091  0.0306      0.85097       0.9712
##    12     80       6   0.8409  0.0390      0.76786       0.9209
##    14     74      19   0.6250  0.0516      0.53161       0.7348
##    16     55      28   0.3068  0.0492      0.22413       0.4200
##    18     27      16   0.1250  0.0353      0.07192       0.2173
##    20     11      10   0.0114  0.0113      0.00162       0.0798
##    22      1       1   0.0000     NaN           NA           NA
## 
##                 mutant=cgt-1 (ok), bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    100       2     0.98  0.0140      0.95294       1.0000
##     8     98      16     0.82  0.0384      0.74805       0.8989
##    10     82       4     0.78  0.0414      0.70289       0.8656
##    12     78       5     0.73  0.0444      0.64797       0.8224
##    14     73      12     0.61  0.0488      0.52152       0.7135
##    16     61      32     0.29  0.0454      0.21341       0.3941
##    18     29      13     0.16  0.0367      0.10211       0.2507
##    20     16      13     0.03  0.0171      0.00984       0.0914
##    22      3       3     0.00     NaN           NA           NA
## 
##                 mutant=cgt-1 (ok), bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8    113       7   0.9381  0.0227      0.89464       0.9836
##    10    106      26   0.7080  0.0428      0.62890       0.7970
##    12     80      18   0.5487  0.0468      0.46418       0.6485
##    14     62      54   0.0708  0.0241      0.03630       0.1381
##    16      8       2   0.0531  0.0211      0.02437       0.1157
##    18      6       1   0.0442  0.0193      0.01878       0.1042
##    20      5       3   0.0177  0.0124      0.00448       0.0699
##    22      2       2   0.0000     NaN           NA           NA
## 
##                 mutant=cgt-1 (tm), bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    120       1   0.9917  0.0083      0.97553        1.000
##    10     87      11   0.8663  0.0361      0.79840        0.940
##    12     76      10   0.7523  0.0459      0.66746        0.848
##    14     66       9   0.6497  0.0508      0.55736        0.757
##    16     57      10   0.5357  0.0532      0.44102        0.651
##    18     47      19   0.3192  0.0497      0.23515        0.433
##    20     28      23   0.0570  0.0247      0.02433        0.133
##    22      5       4   0.0114  0.0113      0.00162        0.080
## 
##                 mutant=cgt-1 (tm), bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    120       1  0.99167 0.00830      0.97553       1.0000
##     6    119       3  0.96667 0.01639      0.93508       0.9993
##     8    115      16  0.83217 0.03424      0.76770       0.9021
##    10     99      18  0.68087 0.04272      0.60208       0.7700
##    12     81       6  0.63043 0.04424      0.54942       0.7234
##    14     75      30  0.37826 0.04446      0.30043       0.4763
##    16     45      20  0.21014 0.03735      0.14833       0.2977
##    18     25      13  0.10087 0.02761      0.05899       0.1725
##    20     12      10  0.01681 0.01179      0.00425       0.0664
##    22      2       1  0.00841 0.00837      0.00119       0.0592
## 
##                 mutant=cgt-1 (tm), bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    120       1    0.992  0.0083        0.976        1.000
##     8    119      11    0.900  0.0274        0.848        0.955
##    10    108      36    0.600  0.0447        0.518        0.694
##    12     72      32    0.333  0.0430        0.259        0.429
##    14     40      40    0.000     NaN           NA           NA
## 
##                 mutant=cgt-2, bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    120       1   0.9917  0.0083      0.97553       1.0000
##     8    108       2   0.9733  0.0152      0.94391       1.0000
##    10    106      10   0.8815  0.0309      0.82298       0.9441
##    12     96      12   0.7713  0.0402      0.69641       0.8542
##    14     84       8   0.6978  0.0440      0.61678       0.7895
##    16     76      21   0.5050  0.0479      0.41936       0.6082
##    18     55      23   0.2938  0.0436      0.21962       0.3931
##    20     32      24   0.0735  0.0250      0.03770       0.1431
##    22      8       6   0.0184  0.0129      0.00465       0.0725
## 
##                 mutant=cgt-2, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8     90       6   0.9333  0.0263        0.883        0.986
##    10     84       1   0.9222  0.0282        0.869        0.979
##    12     83       2   0.9000  0.0316        0.840        0.964
##    14     81      10   0.7889  0.0430        0.709        0.878
##    16     71      16   0.6111  0.0514        0.518        0.721
##    18     55      18   0.4111  0.0519        0.321        0.526
##    20     37      22   0.1667  0.0393        0.105        0.265
##    22     15      12   0.0333  0.0189        0.011        0.101
## 
##                 mutant=cgt-2, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8    120       6  0.95000  0.0199      0.91179       0.9898
##    10    114       4  0.91667  0.0252      0.86853       0.9675
##    12    110      25  0.70833  0.0415      0.63150       0.7945
##    14     85      67  0.15000  0.0326      0.09798       0.2296
##    16     18       7  0.09167  0.0263      0.05219       0.1610
##    18     11       4  0.05833  0.0214      0.02843       0.1197
##    20      7       5  0.01667  0.0117      0.00422       0.0659
##    22      2       1  0.00833  0.0083      0.00118       0.0587
## 
##                 mutant=cgt-3, bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4     97       1   0.9897  0.0103      0.96979       1.0000
##     8     71       7   0.8921  0.0362      0.82389       0.9660
##    10     64      14   0.6970  0.0541      0.59862       0.8115
##    12     50       6   0.6133  0.0574      0.51059       0.7367
##    14     44      22   0.3067  0.0544      0.21659       0.4342
##    16     22      14   0.1115  0.0372      0.05804       0.2143
##    18      8       3   0.0697  0.0301      0.02993       0.1623
##    20      5       2   0.0418  0.0236      0.01381       0.1266
##    22      3       2   0.0139  0.0138      0.00199       0.0976
## 
##                 mutant=cgt-3, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8     60      13   0.7833  0.0532      0.68573        0.895
##    10     47       3   0.7333  0.0571      0.62956        0.854
##    12     44       3   0.6833  0.0601      0.57521        0.812
##    14     41      16   0.4167  0.0636      0.30886        0.562
##    16     25      19   0.1000  0.0387      0.04681        0.214
##    20      6       2   0.0667  0.0322      0.02587        0.172
##    22      4       3   0.0167  0.0165      0.00239        0.116
## 
##                 mutant=cgt-3, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    121       1    0.992 0.00823      0.97574       1.0000
##     8     99      33    0.661 0.04731      0.57465       0.7607
##    10     66      22    0.441 0.04966      0.35343       0.5497
##    12     44      23    0.210 0.04078      0.14386       0.3076
##    14     21      19    0.020 0.01402      0.00508       0.0790
##    18      2       1    0.010 0.00997      0.00143       0.0704
##    20      1       1    0.000     NaN           NA           NA
## 
##                 mutant=N2, bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    10     72      10   0.8611  0.0408       0.7848        0.945
##    12     62      16   0.6389  0.0566       0.5370        0.760
##    14     46       9   0.5139  0.0589       0.4105        0.643
##    16     37      13   0.3333  0.0556       0.2404        0.462
##    18     24       7   0.2361  0.0501       0.1558        0.358
##    20     17      10   0.0972  0.0349       0.0481        0.197
##    22      7       7   0.0000     NaN           NA           NA
## 
##                 mutant=N2, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6     60       3   0.9500  0.0281      0.89642        1.000
##     8     57       5   0.8667  0.0439      0.78478        0.957
##    10     52       2   0.8333  0.0481      0.74417        0.933
##    12     50       1   0.8167  0.0500      0.72440        0.921
##    14     49       9   0.6667  0.0609      0.55745        0.797
##    16     40      14   0.4333  0.0640      0.32446        0.579
##    18     26      12   0.2333  0.0546      0.14750        0.369
##    20     14      13   0.0167  0.0165      0.00239        0.116
##    22      1       1   0.0000     NaN           NA           NA
## 
##                 mutant=N2, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    120       1   0.9917  0.0083       0.9755       1.0000
##     8    114      14   0.8699  0.0313       0.8106       0.9335
##    10    100       4   0.8351  0.0346       0.7700       0.9057
##    12     96      25   0.6176  0.0453       0.5349       0.7131
##    14     71      29   0.3654  0.0449       0.2871       0.4649
##    16     42      14   0.2436  0.0400       0.1765       0.3361
##    18     28      11   0.1479  0.0331       0.0954       0.2293
##    20     17      13   0.0348  0.0171       0.0133       0.0911
##    22      4       4   0.0000     NaN           NA           NA
summary(surv)$table
##                                       records n.max n.start events   *rmean
## mutant=cgt-1 (ok), bacteria=B. sub mt     121   121     121     88 15.63636
## mutant=cgt-1 (ok), bacteria=B. sub wt     100   100     100    100 14.80000
## mutant=cgt-1 (ok), bacteria=OP50          120   120     120    113 12.76106
## mutant=cgt-1 (tm), bacteria=B. sub mt     120   120     120     87 16.31034
## mutant=cgt-1 (tm), bacteria=B. sub wt     120   120     120    118 13.61580
## mutant=cgt-1 (tm), bacteria=OP50          120   120     120    120 11.65000
## mutant=cgt-2, bacteria=B. sub mt          120   120     120    107 16.37577
## mutant=cgt-2, bacteria=B. sub wt          119   119     119     87 17.46667
## mutant=cgt-2, bacteria=OP50               120   120     120    119 13.78333
## mutant=cgt-3, bacteria=B. sub mt           97    97      97     71 13.42297
## mutant=cgt-3, bacteria=B. sub wt           60    60      60     59 13.76667
## mutant=cgt-3, bacteria=OP50               121   121     121    100 10.69171
## mutant=N2, bacteria=B. sub mt              80    80      80     72 15.36111
## mutant=N2, bacteria=B. sub wt              60    60      60     60 15.63333
## mutant=N2, bacteria=OP50                  120   120     120    115 14.21170
##                                       *se(rmean) median 0.95LCL 0.95UCL
## mutant=cgt-1 (ok), bacteria=B. sub mt  0.3024443     16      16      16
## mutant=cgt-1 (ok), bacteria=B. sub wt  0.4147288     16      16      16
## mutant=cgt-1 (ok), bacteria=OP50       0.2544227     14      12      14
## mutant=cgt-1 (tm), bacteria=B. sub mt  0.4082472     18      16      18
## mutant=cgt-1 (tm), bacteria=B. sub wt  0.3696226     14      14      14
## mutant=cgt-1 (tm), bacteria=OP50       0.1865811     12      12      12
## mutant=cgt-2, bacteria=B. sub mt       0.3605971     18      16      18
## mutant=cgt-2, bacteria=B. sub wt       0.3947808     18      18      20
## mutant=cgt-2, bacteria=OP50            0.2318954     14      14      14
## mutant=cgt-3, bacteria=B. sub mt       0.4183632     14      14      14
## mutant=cgt-3, bacteria=B. sub wt       0.5079188     14      14      16
## mutant=cgt-3, bacteria=OP50            0.2587973     10      10      12
## mutant=N2, bacteria=B. sub mt          0.4527461     16      14      16
## mutant=N2, bacteria=B. sub wt          0.5343567     16      16      18
## mutant=N2, bacteria=OP50               0.3562723     14      14      14

survival of just bacteria

surv_bac <- survfit(Surv(day, status) ~ bacteria, data = life)
surv_bac
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub mt 538    425     16      16      16
## bacteria=B. sub wt 459    424     16      16      16
## bacteria=OP50      601    567     12      12      14
summary(surv_bac)
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life)
## 
##                 bacteria=B. sub mt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    538       2  0.99628 0.00262      0.99115       1.0000
##     6    536       1  0.99442 0.00321      0.98815       1.0000
##     8    426       9  0.97341 0.00761      0.95862       0.9884
##    10    417      53  0.84970 0.01721      0.81662       0.8841
##    12    364      50  0.73298 0.02134      0.69232       0.7760
##    14    314      67  0.57658 0.02385      0.53167       0.6253
##    16    247      86  0.37583 0.02339      0.33266       0.4246
##    18    161      68  0.21709 0.01992      0.18137       0.2599
##    20     93      69  0.05602 0.01111      0.03798       0.0826
##    22     24      20  0.00934 0.00465      0.00352       0.0248
## 
##                 bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    459       1   0.9978 0.00218      0.99357       1.0000
##     6    458       8   0.9804 0.00647      0.96779       0.9932
##     8    420      56   0.8497 0.01720      0.81662       0.8841
##    10    364      28   0.7843 0.01982      0.74641       0.8241
##    12    336      17   0.7446 0.02103      0.70454       0.7870
##    14    319      77   0.5649 0.02393      0.51988       0.6138
##    16    242     101   0.3291 0.02270      0.28752       0.3768
##    18    141      56   0.1984 0.01926      0.16403       0.2400
##    20     85      60   0.0584 0.01133      0.03989       0.0854
##    22     25      20   0.0117 0.00519      0.00488       0.0279
## 
##                 bacteria=OP50 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    601       1  0.99834 0.00166     0.995083       1.0000
##     6    600       2  0.99501 0.00287     0.989390       1.0000
##     8    565      71  0.86997 0.01410     0.842768       0.8981
##    10    494      92  0.70795 0.01908     0.671536       0.7463
##    12    402     123  0.49134 0.02098     0.451900       0.5342
##    14    279     209  0.12328 0.01380     0.098996       0.1535
##    16     70      23  0.08277 0.01156     0.062946       0.1088
##    18     47      17  0.05283 0.00939     0.037295       0.0748
##    20     30      22  0.01409 0.00495     0.007080       0.0280
##    22      8       7  0.00176 0.00176     0.000249       0.0125
summary(surv_bac)$table
##                    records n.max n.start events   *rmean *se(rmean) median
## bacteria=B. sub mt     538   538     538    425 15.54464  0.1801184     16
## bacteria=B. sub wt     459   459     459    424 15.01525  0.2044673     16
## bacteria=OP50          601   601     601    567 12.67115  0.1293176     12
##                    0.95LCL 0.95UCL
## bacteria=B. sub mt      16      16
## bacteria=B. sub wt      16      16
## bacteria=OP50           12      14
### log rank
surv_diff_bac <- survdiff(Surv(day, status) ~ bacteria, data = life)

surv_diff_bac
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub mt 538      425      532      21.6      54.2
## bacteria=B. sub wt 459      424      506      13.2      32.4
## bacteria=OP50      601      567      378      94.4     196.8
## 
##  Chisq= 197  on 2 degrees of freedom, p= <2e-16
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life and bacteria 
## 
##           B. sub mt B. sub wt
## B. sub wt 1         -        
## OP50      <2e-16    <2e-16   
## 
## P value adjustment method: bonferroni
ggsurvplot(surv, linetype="bacteria", col = "mutant",
           conf.int = F, palette = "jco",
           pval = F,
           title = "WT and mutants on OP50 and B. subtilis")

# Also make a file that only has OP50 and WT b.s

only OP50 and bs wt

life2 <- read.csv("lifespan_nomt.csv")
str(life2)
## 'data.frame':    1060 obs. of  4 variables:
##  $ day     : int  6 7 7 7 7 7 8 8 8 8 ...
##  $ status  : int  1 0 0 0 0 0 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "OP50" "OP50" "OP50" "OP50" ...
life2$mutant <- factor(life2$mutant, 
                       levels = c("N2", "cgt-1 (ok)", "cgt-1 (tm)", "cgt-2", "cgt-3"))
surv2 <- survfit(Surv(day, status) ~ mutant +bacteria, data = life2)
surv2
## Call: survfit(formula = Surv(day, status) ~ mutant + bacteria, data = life2)
## 
##                                         n events median 0.95LCL 0.95UCL
## mutant=N2, bacteria=B. sub wt          60     60     16      16      18
## mutant=N2, bacteria=OP50              120    115     14      14      14
## mutant=cgt-1 (ok), bacteria=B. sub wt 100    100     16      16      16
## mutant=cgt-1 (ok), bacteria=OP50      120    113     14      12      14
## mutant=cgt-1 (tm), bacteria=B. sub wt 120    118     14      14      14
## mutant=cgt-1 (tm), bacteria=OP50      120    120     12      12      12
## mutant=cgt-2, bacteria=B. sub wt      119     87     18      18      20
## mutant=cgt-2, bacteria=OP50           120    119     14      14      14
## mutant=cgt-3, bacteria=B. sub wt       60     59     14      14      16
## mutant=cgt-3, bacteria=OP50           121    100     10      10      12
summary(surv2)
## Call: survfit(formula = Surv(day, status) ~ mutant + bacteria, data = life2)
## 
##                 mutant=N2, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6     60       3   0.9500  0.0281      0.89642        1.000
##     8     57       5   0.8667  0.0439      0.78478        0.957
##    10     52       2   0.8333  0.0481      0.74417        0.933
##    12     50       1   0.8167  0.0500      0.72440        0.921
##    14     49       9   0.6667  0.0609      0.55745        0.797
##    16     40      14   0.4333  0.0640      0.32446        0.579
##    18     26      12   0.2333  0.0546      0.14750        0.369
##    20     14      13   0.0167  0.0165      0.00239        0.116
##    22      1       1   0.0000     NaN           NA           NA
## 
##                 mutant=N2, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    120       1   0.9917  0.0083       0.9755       1.0000
##     8    114      14   0.8699  0.0313       0.8106       0.9335
##    10    100       4   0.8351  0.0346       0.7700       0.9057
##    12     96      25   0.6176  0.0453       0.5349       0.7131
##    14     71      29   0.3654  0.0449       0.2871       0.4649
##    16     42      14   0.2436  0.0400       0.1765       0.3361
##    18     28      11   0.1479  0.0331       0.0954       0.2293
##    20     17      13   0.0348  0.0171       0.0133       0.0911
##    22      4       4   0.0000     NaN           NA           NA
## 
##                 mutant=cgt-1 (ok), bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    100       2     0.98  0.0140      0.95294       1.0000
##     8     98      16     0.82  0.0384      0.74805       0.8989
##    10     82       4     0.78  0.0414      0.70289       0.8656
##    12     78       5     0.73  0.0444      0.64797       0.8224
##    14     73      12     0.61  0.0488      0.52152       0.7135
##    16     61      32     0.29  0.0454      0.21341       0.3941
##    18     29      13     0.16  0.0367      0.10211       0.2507
##    20     16      13     0.03  0.0171      0.00984       0.0914
##    22      3       3     0.00     NaN           NA           NA
## 
##                 mutant=cgt-1 (ok), bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8    113       7   0.9381  0.0227      0.89464       0.9836
##    10    106      26   0.7080  0.0428      0.62890       0.7970
##    12     80      18   0.5487  0.0468      0.46418       0.6485
##    14     62      54   0.0708  0.0241      0.03630       0.1381
##    16      8       2   0.0531  0.0211      0.02437       0.1157
##    18      6       1   0.0442  0.0193      0.01878       0.1042
##    20      5       3   0.0177  0.0124      0.00448       0.0699
##    22      2       2   0.0000     NaN           NA           NA
## 
##                 mutant=cgt-1 (tm), bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    120       1  0.99167 0.00830      0.97553       1.0000
##     6    119       3  0.96667 0.01639      0.93508       0.9993
##     8    115      16  0.83217 0.03424      0.76770       0.9021
##    10     99      18  0.68087 0.04272      0.60208       0.7700
##    12     81       6  0.63043 0.04424      0.54942       0.7234
##    14     75      30  0.37826 0.04446      0.30043       0.4763
##    16     45      20  0.21014 0.03735      0.14833       0.2977
##    18     25      13  0.10087 0.02761      0.05899       0.1725
##    20     12      10  0.01681 0.01179      0.00425       0.0664
##    22      2       1  0.00841 0.00837      0.00119       0.0592
## 
##                 mutant=cgt-1 (tm), bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6    120       1    0.992  0.0083        0.976        1.000
##     8    119      11    0.900  0.0274        0.848        0.955
##    10    108      36    0.600  0.0447        0.518        0.694
##    12     72      32    0.333  0.0430        0.259        0.429
##    14     40      40    0.000     NaN           NA           NA
## 
##                 mutant=cgt-2, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8     90       6   0.9333  0.0263        0.883        0.986
##    10     84       1   0.9222  0.0282        0.869        0.979
##    12     83       2   0.9000  0.0316        0.840        0.964
##    14     81      10   0.7889  0.0430        0.709        0.878
##    16     71      16   0.6111  0.0514        0.518        0.721
##    18     55      18   0.4111  0.0519        0.321        0.526
##    20     37      22   0.1667  0.0393        0.105        0.265
##    22     15      12   0.0333  0.0189        0.011        0.101
## 
##                 mutant=cgt-2, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8    120       6  0.95000  0.0199      0.91179       0.9898
##    10    114       4  0.91667  0.0252      0.86853       0.9675
##    12    110      25  0.70833  0.0415      0.63150       0.7945
##    14     85      67  0.15000  0.0326      0.09798       0.2296
##    16     18       7  0.09167  0.0263      0.05219       0.1610
##    18     11       4  0.05833  0.0214      0.02843       0.1197
##    20      7       5  0.01667  0.0117      0.00422       0.0659
##    22      2       1  0.00833  0.0083      0.00118       0.0587
## 
##                 mutant=cgt-3, bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     8     60      13   0.7833  0.0532      0.68573        0.895
##    10     47       3   0.7333  0.0571      0.62956        0.854
##    12     44       3   0.6833  0.0601      0.57521        0.812
##    14     41      16   0.4167  0.0636      0.30886        0.562
##    16     25      19   0.1000  0.0387      0.04681        0.214
##    20      6       2   0.0667  0.0322      0.02587        0.172
##    22      4       3   0.0167  0.0165      0.00239        0.116
## 
##                 mutant=cgt-3, bacteria=OP50      
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    121       1    0.992 0.00823      0.97574       1.0000
##     8     99      33    0.661 0.04731      0.57465       0.7607
##    10     66      22    0.441 0.04966      0.35343       0.5497
##    12     44      23    0.210 0.04078      0.14386       0.3076
##    14     21      19    0.020 0.01402      0.00508       0.0790
##    18      2       1    0.010 0.00997      0.00143       0.0704
##    20      1       1    0.000     NaN           NA           NA
summary(surv2)$table
##                                       records n.max n.start events   *rmean
## mutant=N2, bacteria=B. sub wt              60    60      60     60 15.63333
## mutant=N2, bacteria=OP50                  120   120     120    115 14.21170
## mutant=cgt-1 (ok), bacteria=B. sub wt     100   100     100    100 14.80000
## mutant=cgt-1 (ok), bacteria=OP50          120   120     120    113 12.76106
## mutant=cgt-1 (tm), bacteria=B. sub wt     120   120     120    118 13.61580
## mutant=cgt-1 (tm), bacteria=OP50          120   120     120    120 11.65000
## mutant=cgt-2, bacteria=B. sub wt          119   119     119     87 17.46667
## mutant=cgt-2, bacteria=OP50               120   120     120    119 13.78333
## mutant=cgt-3, bacteria=B. sub wt           60    60      60     59 13.76667
## mutant=cgt-3, bacteria=OP50               121   121     121    100 10.69171
##                                       *se(rmean) median 0.95LCL 0.95UCL
## mutant=N2, bacteria=B. sub wt          0.5343567     16      16      18
## mutant=N2, bacteria=OP50               0.3562723     14      14      14
## mutant=cgt-1 (ok), bacteria=B. sub wt  0.4147288     16      16      16
## mutant=cgt-1 (ok), bacteria=OP50       0.2544227     14      12      14
## mutant=cgt-1 (tm), bacteria=B. sub wt  0.3696226     14      14      14
## mutant=cgt-1 (tm), bacteria=OP50       0.1865811     12      12      12
## mutant=cgt-2, bacteria=B. sub wt       0.3947808     18      18      20
## mutant=cgt-2, bacteria=OP50            0.2318954     14      14      14
## mutant=cgt-3, bacteria=B. sub wt       0.5079188     14      14      16
## mutant=cgt-3, bacteria=OP50            0.2587973     10      10      12
surv_bac2 <- survfit(Surv(day, status) ~ bacteria, data = life2)
surv_bac2
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life2)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub wt 459    424     16      16      16
## bacteria=OP50      601    567     12      12      14
summary(surv_bac2)
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life2)
## 
##                 bacteria=B. sub wt 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    459       1   0.9978 0.00218      0.99357       1.0000
##     6    458       8   0.9804 0.00647      0.96779       0.9932
##     8    420      56   0.8497 0.01720      0.81662       0.8841
##    10    364      28   0.7843 0.01982      0.74641       0.8241
##    12    336      17   0.7446 0.02103      0.70454       0.7870
##    14    319      77   0.5649 0.02393      0.51988       0.6138
##    16    242     101   0.3291 0.02270      0.28752       0.3768
##    18    141      56   0.1984 0.01926      0.16403       0.2400
##    20     85      60   0.0584 0.01133      0.03989       0.0854
##    22     25      20   0.0117 0.00519      0.00488       0.0279
## 
##                 bacteria=OP50 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     4    601       1  0.99834 0.00166     0.995083       1.0000
##     6    600       2  0.99501 0.00287     0.989390       1.0000
##     8    565      71  0.86997 0.01410     0.842768       0.8981
##    10    494      92  0.70795 0.01908     0.671536       0.7463
##    12    402     123  0.49134 0.02098     0.451900       0.5342
##    14    279     209  0.12328 0.01380     0.098996       0.1535
##    16     70      23  0.08277 0.01156     0.062946       0.1088
##    18     47      17  0.05283 0.00939     0.037295       0.0748
##    20     30      22  0.01409 0.00495     0.007080       0.0280
##    22      8       7  0.00176 0.00176     0.000249       0.0125
summary(surv_bac2)$table
##                    records n.max n.start events   *rmean *se(rmean) median
## bacteria=B. sub wt     459   459     459    424 15.01525  0.2044673     16
## bacteria=OP50          601   601     601    567 12.67115  0.1293176     12
##                    0.95LCL 0.95UCL
## bacteria=B. sub wt      16      16
## bacteria=OP50           12      14
### log rank
surv_diff_bac2 <- survdiff(Surv(day, status) ~ bacteria, data = life2)

surv_diff_bac2
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life2)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub wt 459      424      559      32.4       123
## bacteria=OP50      601      567      432      41.9       123
## 
##  Chisq= 123  on 1 degrees of freedom, p= <2e-16
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life2 and bacteria 
## 
##      B. sub wt
## OP50 <2e-16   
## 
## P value adjustment method: bonferroni
pairwise_survdiff(Surv(day, status) ~ bacteria+mutant, data = life2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life2 and bacteria + mutant 
## 
##                                       bacteria=B. sub wt, mutant=N2        
## bacteria=B. sub wt, mutant=cgt-1 (ok) 1.0000                               
## bacteria=B. sub wt, mutant=cgt-1 (tm) 0.0874                               
## bacteria=B. sub wt, mutant=cgt-2      0.0558                               
## bacteria=B. sub wt, mutant=cgt-3      0.7384                               
## bacteria=OP50, mutant=N2              1.0000                               
## bacteria=OP50, mutant=cgt-1 (ok)      1.4e-06                              
## bacteria=OP50, mutant=cgt-1 (tm)      1.7e-15                              
## bacteria=OP50, mutant=cgt-2           0.0005                               
## bacteria=OP50, mutant=cgt-3           1.8e-14                              
##                                       bacteria=B. sub wt, mutant=cgt-1 (ok)
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                                    
## bacteria=B. sub wt, mutant=cgt-1 (tm) 1.0000                               
## bacteria=B. sub wt, mutant=cgt-2      7.4e-05                              
## bacteria=B. sub wt, mutant=cgt-3      1.0000                               
## bacteria=OP50, mutant=N2              1.0000                               
## bacteria=OP50, mutant=cgt-1 (ok)      5.0e-06                              
## bacteria=OP50, mutant=cgt-1 (tm)      1.2e-15                              
## bacteria=OP50, mutant=cgt-2           0.0084                               
## bacteria=OP50, mutant=cgt-3           1.2e-15                              
##                                       bacteria=B. sub wt, mutant=cgt-1 (tm)
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                                    
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                                    
## bacteria=B. sub wt, mutant=cgt-2      2.2e-09                              
## bacteria=B. sub wt, mutant=cgt-3      1.0000                               
## bacteria=OP50, mutant=N2              1.0000                               
## bacteria=OP50, mutant=cgt-1 (ok)      0.2674                               
## bacteria=OP50, mutant=cgt-1 (tm)      7.7e-08                              
## bacteria=OP50, mutant=cgt-2           1.0000                               
## bacteria=OP50, mutant=cgt-3           1.8e-09                              
##                                       bacteria=B. sub wt, mutant=cgt-2     
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                                    
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                                    
## bacteria=B. sub wt, mutant=cgt-2      -                                    
## bacteria=B. sub wt, mutant=cgt-3      8.1e-06                              
## bacteria=OP50, mutant=N2              2.9e-07                              
## bacteria=OP50, mutant=cgt-1 (ok)      < 2e-16                              
## bacteria=OP50, mutant=cgt-1 (tm)      < 2e-16                              
## bacteria=OP50, mutant=cgt-2           2.8e-13                              
## bacteria=OP50, mutant=cgt-3           < 2e-16                              
##                                       bacteria=B. sub wt, mutant=cgt-3     
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                                    
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                                    
## bacteria=B. sub wt, mutant=cgt-2      -                                    
## bacteria=B. sub wt, mutant=cgt-3      -                                    
## bacteria=OP50, mutant=N2              1.0000                               
## bacteria=OP50, mutant=cgt-1 (ok)      0.0665                               
## bacteria=OP50, mutant=cgt-1 (tm)      2.7e-07                              
## bacteria=OP50, mutant=cgt-2           1.0000                               
## bacteria=OP50, mutant=cgt-3           1.7e-08                              
##                                       bacteria=OP50, mutant=N2        
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                               
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                               
## bacteria=B. sub wt, mutant=cgt-2      -                               
## bacteria=B. sub wt, mutant=cgt-3      -                               
## bacteria=OP50, mutant=N2              -                               
## bacteria=OP50, mutant=cgt-1 (ok)      0.0517                          
## bacteria=OP50, mutant=cgt-1 (tm)      1.3e-09                         
## bacteria=OP50, mutant=cgt-2           1.0000                          
## bacteria=OP50, mutant=cgt-3           4.9e-12                         
##                                       bacteria=OP50, mutant=cgt-1 (ok)
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                               
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                               
## bacteria=B. sub wt, mutant=cgt-2      -                               
## bacteria=B. sub wt, mutant=cgt-3      -                               
## bacteria=OP50, mutant=N2              -                               
## bacteria=OP50, mutant=cgt-1 (ok)      -                               
## bacteria=OP50, mutant=cgt-1 (tm)      0.0124                          
## bacteria=OP50, mutant=cgt-2           0.3233                          
## bacteria=OP50, mutant=cgt-3           1.6e-06                         
##                                       bacteria=OP50, mutant=cgt-1 (tm)
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                               
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                               
## bacteria=B. sub wt, mutant=cgt-2      -                               
## bacteria=B. sub wt, mutant=cgt-3      -                               
## bacteria=OP50, mutant=N2              -                               
## bacteria=OP50, mutant=cgt-1 (ok)      -                               
## bacteria=OP50, mutant=cgt-1 (tm)      -                               
## bacteria=OP50, mutant=cgt-2           2.0e-10                         
## bacteria=OP50, mutant=cgt-3           0.2852                          
##                                       bacteria=OP50, mutant=cgt-2     
## bacteria=B. sub wt, mutant=cgt-1 (ok) -                               
## bacteria=B. sub wt, mutant=cgt-1 (tm) -                               
## bacteria=B. sub wt, mutant=cgt-2      -                               
## bacteria=B. sub wt, mutant=cgt-3      -                               
## bacteria=OP50, mutant=N2              -                               
## bacteria=OP50, mutant=cgt-1 (ok)      -                               
## bacteria=OP50, mutant=cgt-1 (tm)      -                               
## bacteria=OP50, mutant=cgt-2           -                               
## bacteria=OP50, mutant=cgt-3           3.5e-14                         
## 
## P value adjustment method: bonferroni
ggsurvplot(surv2, linetype="bacteria", col = "mutant",
           conf.int = F, palette = "jco",
           pval = F,
           title = "WT and mutants on OP50 and B. subtilis")

ggsurvplot_facet(surv2, life2, facet.by = "mutant",
                palette = "jco", pval = TRUE,
                surv.median.line = "hv")
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## Please use `as_tibble()` instead.
## The signature and semantics have changed, see `?as_tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
## Warning: `select_()` was deprecated in dplyr 0.7.0.
## Please use `select()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

Looking at lifespan by particular breakdowns

First, just the mutants on OP50

life_OP50 <- life[life$bacteria=="OP50",]
str(life_OP50)
## 'data.frame':    601 obs. of  4 variables:
##  $ day     : int  6 7 7 7 7 7 8 8 8 8 ...
##  $ status  : int  1 0 0 0 0 0 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "OP50" "OP50" "OP50" "OP50" ...

graph only N2 and mutants on OP50

surv_op <- survfit(Surv(day, status) ~ mutant +bacteria, data = life_OP50)

ggsurvplot(surv_op, 
           #linetype="bacteria", 
           col = "mutant",
           conf.int = F, palette = "jco",
           pval = T, size=2
          #title = "N2 and mutants worms on OP50" 
          )

ggsave("plotOP50.jpg")
## Saving 7 x 5 in image

graph looking at N2 on OP50 and bs wild type only

life2_n2 <- life2[life2$mutant=="N2",]
# View(life2_n2)
surv_op2 <- survfit(Surv(day, status) ~ bacteria, data = life2_n2)
surv_op2
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life2_n2)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub wt  60     60     16      16      18
## bacteria=OP50      120    115     14      14      14
ggsurvplot(surv_op2, 
           linetype="bacteria", 
           #col = "mutant",
           conf.int = F, palette = "jco",
           pval = T,
          title = "N2 and mutants worms on OP50")

The above figure is good. I think put this figure next to a graph or table (probably a table), with the median lifespans. This is an alternative graph with risk. probably not needed

ggsurvplot(surv_op,
           #pval = TRUE, conf.int = F,
           risk.table = TRUE, # Add risk table
           #risk.table.col = "strata", # Change risk table color by groups
           #linetype = "strata", # Change line type by groups
           #surv.median.line = "hv", # Specify median survival
           ggtheme = theme_bw(), # Change ggplot2 theme
           size=2,
           title = "N2 and mutants worms on OP50")

Stats for N2 and mutants on OP50

### log rank
surv_diff2 <- survdiff(Surv(day, status) ~ mutant, data = life_OP50)
surv_fit2 <- survfit(Surv(day, status) ~ mutant, data = life_OP50)

surv_diff2
## Call:
## survdiff(formula = Surv(day, status) ~ mutant, data = life_OP50)
## 
##                     N Observed Expected (O-E)^2/E (O-E)^2/V
## mutant=cgt-1 (ok) 120      113    115.7     0.062     0.144
## mutant=cgt-1 (tm) 120      120     87.7    11.930    24.504
## mutant=cgt-2      120      119    151.0     6.788    17.490
## mutant=cgt-3      121      100     56.6    33.191    60.183
## mutant=N2         120      115    156.0    10.777    29.852
## 
##  Chisq= 113  on 4 degrees of freedom, p= <2e-16
surv_fit2
## Call: survfit(formula = Surv(day, status) ~ mutant, data = life_OP50)
## 
##                     n events median 0.95LCL 0.95UCL
## mutant=cgt-1 (ok) 120    113     14      12      14
## mutant=cgt-1 (tm) 120    120     12      12      12
## mutant=cgt-2      120    119     14      14      14
## mutant=cgt-3      121    100     10      10      12
## mutant=N2         120    115     14      14      14
### posthoc
pairwise_survdiff(Surv(day, status) ~ mutant, data = life_OP50, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life_OP50 and mutant 
## 
##            cgt-1 (ok) cgt-1 (tm) cgt-2   cgt-3  
## cgt-1 (tm) 0.0028     -          -       -      
## cgt-2      0.0718     4.4e-11    -       -      
## cgt-3      3.5e-07    0.0634     7.7e-15 -      
## N2         0.0115     2.9e-10    1.0000  1.1e-12
## 
## P value adjustment method: bonferroni

I think you can just use the above table next to the graph.

Now, let’s look at each mutant on the different bacteria

i did N2 and all cgts separately. I think you have space for all of it, but the priority order would be: N2 cgt-3 cgt-1(tm) cgt-1(ok) cgt-2

life_N2 <- life[life$mutant=="N2",]
str(life_N2)
## 'data.frame':    260 obs. of  4 variables:
##  $ day     : int  6 7 7 7 7 7 8 8 8 8 ...
##  $ status  : int  1 0 0 0 0 0 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "OP50" "OP50" "OP50" "OP50" ...

graph of only N2 on the different bacteria

surv_N2 <- survfit(Surv(day, status) ~ bacteria, data = life2)

ggsurvplot(surv_N2, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T,
           title = "N2")

ggsurvplot_facet(surv_N2, life2, facet.by = "mutant",
                palette = "jco", pval = TRUE,
                surv.median.line = "hv")

Stats for N2

### log rank
?survdiff()
surv_diff <- survdiff(Surv(day, status) ~ bacteria, data = life_N2)
surv_fit <- survfit(Surv(day, status) ~ bacteria, data = life_N2)

surv_diff
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life_N2)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub mt  80       72     79.3     0.668      1.58
## bacteria=B. sub wt  60       60     68.3     1.019      2.19
## bacteria=OP50      120      115     99.4     2.455      6.37
## 
##  Chisq= 6.4  on 2 degrees of freedom, p= 0.04
surv_fit
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life_N2)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub mt  80     72     16      14      16
## bacteria=B. sub wt  60     60     16      16      18
## bacteria=OP50      120    115     14      14      14
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life_N2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life_N2 and bacteria 
## 
##           B. sub mt B. sub wt
## B. sub wt 1.00      -        
## OP50      0.18      0.07     
## 
## P value adjustment method: bonferroni

stats for N2 on OP50 and bs WT only

### log rank
?survdiff()
surv_diff3 <- survdiff(Surv(day, status) ~ bacteria, data = life2_n2)
surv_fit3 <- survfit(Surv(day, status) ~ bacteria, data = life2_n2 )

surv_diff3
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life2_n2)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub wt  60       60     71.6      1.88      5.14
## bacteria=OP50      120      115    103.4      1.30      5.14
## 
##  Chisq= 5.1  on 1 degrees of freedom, p= 0.02
surv_fit3
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life2_n2)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub wt  60     60     16      16      18
## bacteria=OP50      120    115     14      14      14
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life2_n2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life2_n2 and bacteria 
## 
##      B. sub wt
## OP50 0.023    
## 
## P value adjustment method: bonferroni

graph of only cgt-1(tm)

life_tm <- life[life$mutant=="cgt-1 (tm)",]
surv_tm <- survfit(Surv(day, status) ~ bacteria, data = life_tm)

ggsurvplot(surv_tm, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T,
           title = "cgt-1 (tm)")

stats for cgt-1(tm)

### log rank
?survdiff()
surv_difftm <- survdiff(Surv(day, status) ~ bacteria, data = life_tm)
surv_fittm <- survfit(Surv(day, status) ~ bacteria, data = life_tm)

surv_difftm
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life_tm)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub mt 120       87    137.6  18.61358   54.9986
## bacteria=B. sub wt 120      118    118.9   0.00751    0.0183
## bacteria=OP50      120      120     68.4  38.83371   76.2877
## 
##  Chisq= 94.4  on 2 degrees of freedom, p= <2e-16
surv_fittm
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life_tm)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub mt 120     87     18      16      18
## bacteria=B. sub wt 120    118     14      14      14
## bacteria=OP50      120    120     12      12      12
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life_tm, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life_tm and bacteria 
## 
##           B. sub mt B. sub wt
## B. sub wt 1.3e-05   -        
## OP50      < 2e-16   5.1e-09  
## 
## P value adjustment method: bonferroni

graph of only cgt-1(ok)

life_ok <- life[life$mutant=="cgt-1 (ok)",]
surv_ok <- survfit(Surv(day, status) ~ bacteria, data = life_ok)

ggsurvplot(surv_ok, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T,
           title = "cgt-1 (ok)")

stats for cgt-1 (ok)

### log rank
?survdiff()
surv_diffok <- survdiff(Surv(day, status) ~ bacteria, data = life_ok)
surv_fitok <- survfit(Surv(day, status) ~ bacteria, data = life_ok)

surv_diffok
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life_ok)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub mt 121       88    109.9      4.38      11.5
## bacteria=B. sub wt 100      100    119.1      3.07       8.7
## bacteria=OP50      120      113     71.9     23.47      50.5
## 
##  Chisq= 50.5  on 2 degrees of freedom, p= 1e-11
surv_fitok
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life_ok)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub mt 121     88     16      16      16
## bacteria=B. sub wt 100    100     16      16      16
## bacteria=OP50      120    113     14      12      14
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life_ok, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life_ok and bacteria 
## 
##           B. sub mt B. sub wt
## B. sub wt 1         -        
## OP50      6.7e-10   3.3e-07  
## 
## P value adjustment method: bonferroni

graph of only cgt-2

life_2 <- life[life$mutant=="cgt-2",]
surv_2 <- survfit(Surv(day, status) ~ bacteria, data = life_2)

ggsurvplot(surv_2, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "cgt-2")

stats for cgt-2

### log rank
?survdiff()
surv_diff2 <- survdiff(Surv(day, status) ~ bacteria, data = life_2)
surv_fit2 <- survfit(Surv(day, status) ~ bacteria, data = life_2)

surv_diff2
## Call:
## survdiff(formula = Surv(day, status) ~ bacteria, data = life_2)
## 
##                      N Observed Expected (O-E)^2/E (O-E)^2/V
## bacteria=B. sub mt 120      107    120.1      1.43      3.67
## bacteria=B. sub wt 119       87    122.8     10.43     28.17
## bacteria=OP50      120      119     70.1     34.12     69.06
## 
##  Chisq= 73.1  on 2 degrees of freedom, p= <2e-16
surv_fit2
## Call: survfit(formula = Surv(day, status) ~ bacteria, data = life_2)
## 
##                      n events median 0.95LCL 0.95UCL
## bacteria=B. sub mt 120    107     18      16      18
## bacteria=B. sub wt 119     87     18      18      20
## bacteria=OP50      120    119     14      14      14
### posthoc
pairwise_survdiff(Surv(day, status) ~ bacteria, data = life_2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  life_2 and bacteria 
## 
##           B. sub mt B. sub wt
## B. sub wt 0.083     -        
## OP50      5.8e-09   1.8e-14  
## 
## P value adjustment method: bonferroni

graph of only cgt-3

life_3 <- life[life$mutant=="cgt-3",]
surv_3 <- survfit(Surv(day, status) ~ bacteria, data = life_3)

ggsurvplot(surv_3, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "cgt-3")

stats for cgt-3

THis is the start of paraquat

first, do the one day data

para1 <- read.csv("paraquatassayD1_nomt.csv")
para1_2 <- para1[para1$bacteria=="OP50",]
str(para1)
## 'data.frame':    670 obs. of  5 variables:
##  $ hour    : num  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 1 ...
##  $ status  : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" ...
##  $ day     : int  1 1 1 1 1 1 1 1 1 1 ...

graph for 1 day

surv_para1 <- survfit(Surv(hour, status) ~ mutant, data = para1_2)


ggsurvplot(surv_para1, 
           #linetype="bacteria", 
           col = "mutant",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "1 day animals on paraquat")

stats for 1 day

### log rank
?survdiff()
surv_diff_para1 <- survdiff(Surv(hour, status) ~ mutant, data = para1_2)
surv_fit_para1 <- survfit(Surv(hour, status) ~ mutant, data = para1_2)

surv_diff_para1
## Call:
## survdiff(formula = Surv(hour, status) ~ mutant, data = para1_2)
## 
##                    N Observed Expected (O-E)^2/E (O-E)^2/V
## mutant=cgt-1 (ok) 58       41     58.6    5.2700    8.3647
## mutant=cgt-1 (tm) 71       64     59.4    0.3611    0.5663
## mutant=cgt-2      69       61     52.7    1.3018    1.9979
## mutant=cgt-3      62       49     50.7    0.0593    0.0888
## mutant=N2         75       65     58.6    0.6965    1.0846
## 
##  Chisq= 9.6  on 4 degrees of freedom, p= 0.05
surv_fit_para1 
## Call: survfit(formula = Surv(hour, status) ~ mutant, data = para1_2)
## 
##                    n events median 0.95LCL 0.95UCL
## mutant=cgt-1 (ok) 58     41    4.5     4.0     5.0
## mutant=cgt-1 (tm) 71     64    3.5     3.0     4.5
## mutant=cgt-2      69     61    3.0     1.5     4.5
## mutant=cgt-3      62     49    3.5     3.5     4.0
## mutant=N2         75     65    4.0     3.0     4.5
### posthoc
pairwise_survdiff(Surv(hour, status) ~ mutant, data = para1_2, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  para1_2 and mutant 
## 
##            cgt-1 (ok) cgt-1 (tm) cgt-2 cgt-3
## cgt-1 (tm) 0.128      -          -     -    
## cgt-2      0.073      1.000      -     -    
## cgt-3      1.000      1.000      1.000 -    
## N2         0.112      1.000      1.000 1.000
## 
## P value adjustment method: bonferroni

we observe no significant differences between survival of any of the genotypes on OP50

Lets do the 5 day data

para5 <- read.csv("paraquatassayD5_nomt.csv")
para5_2 <- para5[para5$bacteria=="OP50",]
str(para5)
## 'data.frame':    565 obs. of  5 variables:
##  $ hour    : num  0.5 0.5 0.5 0.5 1 1 1 1 1 1 ...
##  $ status  : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" ...
##  $ day     : int  5 5 5 5 5 5 5 5 5 5 ...

graph for 5 day

surv_para5 <- survfit(Surv(hour, status) ~ mutant, data = para5_2)


ggsurvplot(surv_para5, 
           #linetype="bacteria", 
           col = "mutant",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "5 day animals on paraquat")

Lets do the 5 day data

para10 <- read.csv("paraquatassayD10_nomt.csv")
para10_2 <- para10[para10$bacteria=="OP50",]
str(para10)
## 'data.frame':    609 obs. of  5 variables:
##  $ hour    : num  0.5 0.5 0.5 0.5 0.5 1 1 1 1 1 ...
##  $ status  : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mutant  : chr  "N2" "N2" "N2" "N2" ...
##  $ bacteria: chr  "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" "3AIT (wt)" ...
##  $ day     : int  10 10 10 10 10 10 10 10 10 10 ...

graph for 10 day

surv_para10 <- survfit(Surv(hour, status) ~ mutant, data = para10_2)


ggsurvplot(surv_para10, 
           #linetype="bacteria", 
           col = "mutant",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "10 day animals on paraquat")

this is looking at all genotypes on OP50

paraALL <- read.csv("paraquatassayALL_nomt.csv")
paraALL$mutant <- factor(paraALL$mutant, levels = c("N2", "cgt-1 (ok)", "cgt-1 (tm)", "cgt-2", "cgt-3"))
paraALL$day <- factor(paraALL$day, levels = c("1", "5", "10"))

paraALL2 <- paraALL[paraALL$bacteria=="OP50",]

surv_paraALL2 <- survfit(Surv(hour, status) ~ mutant, data = paraALL2)


# ggsurvplot(surv_para1_N2, 
           #linetype="bacteria", 
           # col = "bacteria",
           #conf.int = F, palette = "hue",
           #pval = T, 
           # title = "Oxidative stress response of 1 day animals on different bacteria")

ggsurvplot_facet(surv_paraALL2, paraALL, facet.by = "day",
                palette = "jco", pval = TRUE,
                nrow = 1, ncol = 3)

### log rank
?survdiff()
surv_diff_paraALL <- survdiff(Surv(hour, status) ~ mutant+day, data = paraALL)
surv_fit_paraALL <- survfit(Surv(hour, status) ~ mutant+day, data = paraALL)

surv_diff_paraALL
## Call:
## survdiff(formula = Surv(hour, status) ~ mutant + day, data = paraALL)
## 
##                             N Observed Expected (O-E)^2/E (O-E)^2/V
## mutant=N2, day=1          139      128    101.8    6.7315     8.500
## mutant=N2, day=5           85       66     64.3    0.0436     0.054
## mutant=N2, day=10         119       99     92.1    0.5181     0.652
## mutant=cgt-1 (ok), day=1  125       88    123.2   10.0810    13.147
## mutant=cgt-1 (ok), day=5  131      102     93.6    0.7462     0.947
## mutant=cgt-1 (ok), day=10 130      102    112.2    0.9196     1.180
## mutant=cgt-1 (tm), day=1  152      145    105.7   14.6444    18.461
## mutant=cgt-1 (tm), day=5  120       86     98.6    1.6007     2.054
## mutant=cgt-1 (tm), day=10 124       99    103.0    0.1575     0.201
## mutant=cgt-2, day=1       121      104     94.5    0.9494     1.205
## mutant=cgt-2, day=5       118       83     99.5    2.7473     3.525
## mutant=cgt-2, day=10      123      101    103.9    0.0796     0.101
## mutant=cgt-3, day=1       133       98    124.7    5.7331     7.427
## mutant=cgt-3, day=5       111       87     82.9    0.2031     0.255
## mutant=cgt-3, day=10      113       98     85.9    1.7085     2.137
## 
##  Chisq= 55.7  on 14 degrees of freedom, p= 7e-07
surv_fit_paraALL
## Call: survfit(formula = Surv(hour, status) ~ mutant + day, data = paraALL)
## 
##                             n events median 0.95LCL 0.95UCL
## mutant=N2, day=1          139    128    3.5     3.0     4.0
## mutant=N2, day=5           85     66    3.0     2.0     4.0
## mutant=N2, day=10         119     99    3.5     2.5     4.0
## mutant=cgt-1 (ok), day=1  125     88    4.5     4.0     4.5
## mutant=cgt-1 (ok), day=5  131    102    2.5     2.0     3.5
## mutant=cgt-1 (ok), day=10 130    102    4.0     3.5     4.0
## mutant=cgt-1 (tm), day=1  152    145    3.0     3.0     3.5
## mutant=cgt-1 (tm), day=5  120     86    3.5     2.5     4.5
## mutant=cgt-1 (tm), day=10 124     99    3.5     3.0     4.0
## mutant=cgt-2, day=1       121    104    3.0     2.0     4.5
## mutant=cgt-2, day=5       118     83    3.5     2.5     4.5
## mutant=cgt-2, day=10      123    101    4.0     3.5     4.0
## mutant=cgt-3, day=1       133     98    4.0     3.5     4.5
## mutant=cgt-3, day=5       111     87    3.0     2.5     3.5
## mutant=cgt-3, day=10      113     98    3.5     3.0     4.0
### posthoc
pairwise_survdiff(Surv(hour, status) ~ mutant+day, data = paraALL, 
                  p.adjust.method = "bonferroni",
                  rho = 0)
## 
##  Pairwise comparisons using Log-Rank test 
## 
## data:  paraALL and mutant + day 
## 
##                           mutant=N2, day=1  mutant=N2, day=5  mutant=N2, day=10
## mutant=N2, day=5          1.0000            -                 -                
## mutant=N2, day=10         1.0000            1.0000            -                
## mutant=cgt-1 (ok), day=1  9.9e-05           1.0000            0.1660           
## mutant=cgt-1 (ok), day=5  1.0000            1.0000            1.0000           
## mutant=cgt-1 (ok), day=10 0.4549            1.0000            1.0000           
## mutant=cgt-1 (tm), day=1  1.0000            1.0000            1.0000           
## mutant=cgt-1 (tm), day=5  0.3301            1.0000            1.0000           
## mutant=cgt-1 (tm), day=10 1.0000            1.0000            1.0000           
## mutant=cgt-2, day=1       1.0000            1.0000            1.0000           
## mutant=cgt-2, day=5       0.1092            1.0000            1.0000           
## mutant=cgt-2, day=10      1.0000            1.0000            1.0000           
## mutant=cgt-3, day=1       0.0046            1.0000            1.0000           
## mutant=cgt-3, day=5       1.0000            1.0000            1.0000           
## mutant=cgt-3, day=10      1.0000            1.0000            1.0000           
##                           mutant=cgt-1 (ok), day=1  mutant=cgt-1 (ok), day=5 
## mutant=N2, day=5          -                         -                        
## mutant=N2, day=10         -                         -                        
## mutant=cgt-1 (ok), day=1  -                         -                        
## mutant=cgt-1 (ok), day=5  0.3777                    -                        
## mutant=cgt-1 (ok), day=10 1.0000                    1.0000                   
## mutant=cgt-1 (tm), day=1  2.1e-07                   1.0000                   
## mutant=cgt-1 (tm), day=5  1.0000                    1.0000                   
## mutant=cgt-1 (tm), day=10 1.0000                    1.0000                   
## mutant=cgt-2, day=1       0.1085                    1.0000                   
## mutant=cgt-2, day=5       1.0000                    1.0000                   
## mutant=cgt-2, day=10      1.0000                    1.0000                   
## mutant=cgt-3, day=1       1.0000                    1.0000                   
## mutant=cgt-3, day=5       0.7774                    1.0000                   
## mutant=cgt-3, day=10      0.0234                    1.0000                   
##                           mutant=cgt-1 (ok), day=10 mutant=cgt-1 (tm), day=1 
## mutant=N2, day=5          -                         -                        
## mutant=N2, day=10         -                         -                        
## mutant=cgt-1 (ok), day=1  -                         -                        
## mutant=cgt-1 (ok), day=5  -                         -                        
## mutant=cgt-1 (ok), day=10 -                         -                        
## mutant=cgt-1 (tm), day=1  0.0098                    -                        
## mutant=cgt-1 (tm), day=5  1.0000                    0.0255                   
## mutant=cgt-1 (tm), day=10 1.0000                    0.1004                   
## mutant=cgt-2, day=1       1.0000                    1.0000                   
## mutant=cgt-2, day=5       1.0000                    0.0071                   
## mutant=cgt-2, day=10      1.0000                    0.0784                   
## mutant=cgt-3, day=1       1.0000                    9.3e-06                  
## mutant=cgt-3, day=5       1.0000                    1.0000                   
## mutant=cgt-3, day=10      1.0000                    1.0000                   
##                           mutant=cgt-1 (tm), day=5  mutant=cgt-1 (tm), day=10
## mutant=N2, day=5          -                         -                        
## mutant=N2, day=10         -                         -                        
## mutant=cgt-1 (ok), day=1  -                         -                        
## mutant=cgt-1 (ok), day=5  -                         -                        
## mutant=cgt-1 (ok), day=10 -                         -                        
## mutant=cgt-1 (tm), day=1  -                         -                        
## mutant=cgt-1 (tm), day=5  -                         -                        
## mutant=cgt-1 (tm), day=10 1.0000                    -                        
## mutant=cgt-2, day=1       1.0000                    1.0000                   
## mutant=cgt-2, day=5       1.0000                    1.0000                   
## mutant=cgt-2, day=10      1.0000                    1.0000                   
## mutant=cgt-3, day=1       1.0000                    1.0000                   
## mutant=cgt-3, day=5       1.0000                    1.0000                   
## mutant=cgt-3, day=10      1.0000                    1.0000                   
##                           mutant=cgt-2, day=1  mutant=cgt-2, day=5 
## mutant=N2, day=5          -                    -                   
## mutant=N2, day=10         -                    -                   
## mutant=cgt-1 (ok), day=1  -                    -                   
## mutant=cgt-1 (ok), day=5  -                    -                   
## mutant=cgt-1 (ok), day=10 -                    -                   
## mutant=cgt-1 (tm), day=1  -                    -                   
## mutant=cgt-1 (tm), day=5  -                    -                   
## mutant=cgt-1 (tm), day=10 -                    -                   
## mutant=cgt-2, day=1       -                    -                   
## mutant=cgt-2, day=5       1.0000               -                   
## mutant=cgt-2, day=10      1.0000               1.0000              
## mutant=cgt-3, day=1       0.7713               1.0000              
## mutant=cgt-3, day=5       1.0000               1.0000              
## mutant=cgt-3, day=10      1.0000               1.0000              
##                           mutant=cgt-2, day=10 mutant=cgt-3, day=1 
## mutant=N2, day=5          -                    -                   
## mutant=N2, day=10         -                    -                   
## mutant=cgt-1 (ok), day=1  -                    -                   
## mutant=cgt-1 (ok), day=5  -                    -                   
## mutant=cgt-1 (ok), day=10 -                    -                   
## mutant=cgt-1 (tm), day=1  -                    -                   
## mutant=cgt-1 (tm), day=5  -                    -                   
## mutant=cgt-1 (tm), day=10 -                    -                   
## mutant=cgt-2, day=1       -                    -                   
## mutant=cgt-2, day=5       -                    -                   
## mutant=cgt-2, day=10      -                    -                   
## mutant=cgt-3, day=1       1.0000               -                   
## mutant=cgt-3, day=5       1.0000               1.0000              
## mutant=cgt-3, day=10      1.0000               0.2629              
##                           mutant=cgt-3, day=5 
## mutant=N2, day=5          -                   
## mutant=N2, day=10         -                   
## mutant=cgt-1 (ok), day=1  -                   
## mutant=cgt-1 (ok), day=5  -                   
## mutant=cgt-1 (ok), day=10 -                   
## mutant=cgt-1 (tm), day=1  -                   
## mutant=cgt-1 (tm), day=5  -                   
## mutant=cgt-1 (tm), day=10 -                   
## mutant=cgt-2, day=1       -                   
## mutant=cgt-2, day=5       -                   
## mutant=cgt-2, day=10      -                   
## mutant=cgt-3, day=1       -                   
## mutant=cgt-3, day=5       -                   
## mutant=cgt-3, day=10      1.0000              
## 
## P value adjustment method: bonferroni

let’s look at the results by genotype

para1_N2 <- para1[para1$mutant=="N2",]
surv_para1 <- survfit(Surv(hour, status) ~ bacteria, data = para1)


ggsurvplot(surv_para1, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "Oxidative stress response of 1 day animals on different bacteria")

let’s look at the results by genotype

Link to facet https://rpkgs.datanovia.com/survminer/reference/ggsurvplot_facet.html

para1$mutant <- factor(para1$mutant, levels = c("N2", "cgt-1 (ok)", "cgt-1 (tm)", "cgt-2", "cgt-3"))

surv_para1fit <- survfit(Surv(hour, status) ~ bacteria, data = para1)


# ggsurvplot(surv_para1_N2, 
           #linetype="bacteria", 
           # col = "bacteria",
           # conf.int = F, palette = "hue",
           # pval = T, 
           # title = "Oxidative stress response of 1 day animals on different bacteria")

ggsurvplot_facet(surv_para1fit, para1, facet.by = "mutant",
                palette = "jco", pval = TRUE,
                nrow = 5, ncol = 1)

para5$mutant <- factor(para5$mutant, levels = c("N2", "cgt-1 (ok)", "cgt-1 (tm)", "cgt-2", "cgt-3"))
para10$mutant <- factor(para10$mutant, levels = c("N2", "cgt-1 (ok)", "cgt-1 (tm)", "cgt-2", "cgt-3"))

surv_para5fit <- survfit(Surv(hour, status) ~ bacteria, data = para5)

ggsurvplot_facet(surv_para5fit, para5, facet.by = "mutant",
                palette = "jco", pval = TRUE,
                nrow = 5, ncol = 1)

surv_para10fit <- survfit(Surv(hour, status) ~ bacteria, data = para10)

ggsurvplot_facet(surv_para10fit, para10, facet.by = "mutant",
                palette = "jco", pval = TRUE,
                nrow = 5, ncol = 1)

let’s look at the results by genotype - N2

para10_N2 <- para10[para10$mutant=="N2",]
surv_para10_N2 <- survfit(Surv(hour, status) ~ bacteria, data = para10_N2)


ggsurvplot(surv_para10_N2, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "Oxidative stress response of 10 day animals on different bacteria")

# let’s look at the results by genotype - cgt-3

para10_cgt3 <- para10[para10$mutant=="cgt-3",]
surv_para10_cgt3 <- survfit(Surv(hour, status) ~ bacteria, data = para10_cgt3)


ggsurvplot(surv_para10_cgt3, 
           #linetype="bacteria", 
           col = "bacteria",
           conf.int = F, palette = "hue",
           pval = T, 
           title = "Oxidative stress response of 10 day cgt-3 animals on different bacteria")

# GREAT JOB TEAM!!