对于正态分布的两组数据的均值比较使用Student’s t检验,多组正态数据的均值比较使用方差检验,对于非正态数据的比较使用Mann-Whitney U 检验,多组非正态数据的比较使用Kruskal-Wallis rank sum检验,两组或多组数据样本比率比较使用卡方检验。所有数据统计和数据可视化使用R 语言版本3.6.3实现。以生存时间中位数为分界点,将样本分为转阴时间长组和短组。以转阴时间长短分组为因变量,以性别,年龄,诊断,民族,是否接种疫苗,是否加强针,有无并发症为自变量,建立logistic 回归模型,使用stepwise方法进行变量选择。
## 04220423042404250426042704280429043005010502050305040505050605070508050905100511051205130514051505160517
(0,10] (10,20] (20,27] 879 667 36
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max. 13.31 28.31 32.17 34.34 45.00 45.00
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max. 11.06 29.05 33.07 35.33 45.00 45.00
612523199501142719 这个人按照提供文件转阴时间<=10, 但是从4.24-5.10共14天,均 有CT值
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max. 12.57 29.41 35.05 36.33 45.00 45.00
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.08933 29.74679 37.01500 36.88297 45.00000 45.00000
Wilcoxon rank sum test with continuity correction
data: N.CT_all_less10_ml\(N.CT and N.CT_all_large20_ml\)N.CT W = 1545572, p-value = 1.499e-08 alternative hypothesis: true location shift is not equal to 0
Wilcoxon rank sum test with continuity correction
data: O.CT_all_less10_ml\(O.CT and O.CT_all_large20_ml\)O.CT W = 1282990, p-value = 1.75e-05 alternative hypothesis: true location shift is not equal to 0
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.071 28.355 32.973 34.781 45.000 45.000
png
2
Min. 1st Qu. Median Mean 3rd Qu. Max. 1.37 28.94 33.78 35.60 45.00 45.00
Kruskal-Wallis rank sum test
data: list(N.CT_all_less10_ml\(N.CT, N.CT_all_large20_ml\)N.CT, N.CT_all_10to20_ml$N.CT) Kruskal-Wallis chi-squared = 86.704, df = 2, p-value < 2.2e-16
Kruskal-Wallis rank sum test
data: list(O.CT_all_less10_ml\(O.CT, O.CT_all_large20_ml\)O.CT, O.CT_all_10to20_ml$O.CT) Kruskal-Wallis chi-squared = 55.247, df = 2, p-value = 1.007e-12
##
## 女 男
## 46 44
[1] 10
Long Short 836 748