library(readxl)
A5 <- read_excel("AI4OPT/R stats/A5.xlsx")
str(A5)
## tibble [12 × 4] (S3: tbl_df/tbl/data.frame)
##  $ Time  : chr [1:12] "Week 1" "Week 1" "Week 1" "Week 1" ...
##  $ Stock1: num [1:12] 15 15 16 16 16 17 17 17 17 15 ...
##  $ Stock2: num [1:12] 23 22 23 22 23 23 22 23 23 22 ...
##  $ Stock3: num [1:12] 5 5 6 6 7 7 9 9 5 5 ...
A5$Time<-as.factor(A5$Time)
str(A5)
## tibble [12 × 4] (S3: tbl_df/tbl/data.frame)
##  $ Time  : Factor w/ 3 levels "Week 1","Week 2",..: 1 1 1 1 2 2 2 2 3 3 ...
##  $ Stock1: num [1:12] 15 15 16 16 16 17 17 17 17 15 ...
##  $ Stock2: num [1:12] 23 22 23 22 23 23 22 23 23 22 ...
##  $ Stock3: num [1:12] 5 5 6 6 7 7 9 9 5 5 ...
library(mlbench)
library(plyr)
library(plotfunctions)
## Warning: package 'plotfunctions' was built under R version 4.2.1
# Global Mean and Median of first column Stock1
mean(A5$Stock1)
## [1] 16.25
median(A5$Stock1)
## [1] 16
#Global Mean and Median of 3rd column: Stock3
MeanS3<-mean(A5$Stock3)
MedianS3<-median(A5$Stock3)
# Mean and Median of Stock1 per Time values
aggregate(Stock1~Time, A5, each(mean, median))
##     Time Stock1.mean Stock1.median
## 1 Week 1       15.50         15.50
## 2 Week 2       16.75         17.00
## 3 Week 3       16.50         16.00
# Mean and Median of Stock3 per Time values
aggregate(Stock3~Time, A5, each(mean, median))
##     Time Stock3.mean Stock3.median
## 1 Week 1         5.5           5.5
## 2 Week 2         8.0           8.0
## 3 Week 3         3.5           3.5
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
A5 %>%  select(Stock1, Stock3) %>%
  mutate(    difference = Stock1-Stock3)
## # A tibble: 12 × 3
##    Stock1 Stock3 difference
##     <dbl>  <dbl>      <dbl>
##  1     15      5         10
##  2     15      5         10
##  3     16      6         10
##  4     16      6         10
##  5     16      7          9
##  6     17      7         10
##  7     17      9          8
##  8     17      9          8
##  9     17      5         12
## 10     15      5         10
## 11     15      2         13
## 12     19      2         17