dx <- deriv(y ~ x^3, "x"); dx
## expression({
## .value <- x^3
## .grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
## .grad[, "x"] <- 3 * x^2
## attr(.value, "gradient") <- .grad
## .value
## })
mode(dx)
## [1] "expression"
x<-1:2
eval(dx)
## [1] 1 8
## attr(,"gradient")
## x
## [1,] 3
## [2,] 12
dx <- deriv(y ~ sin(x), "x", func= TRUE) ;
mode(dx)
## [1] "function"
dx(c(pi,4*pi))
## [1] 1.224606e-16 -4.898425e-16
## attr(,"gradient")
## x
## [1,] -1
## [2,] 1
a<-2
dx<-deriv(y~a*cos(a*x),"x",func = TRUE)
dx(pi/3)
## [1] -1
## attr(,"gradient")
## x
## [1,] -3.464102
fxy = expression(2*x^2+y+3*x*y^2)
dxy = deriv(fxy, c("x", "y"), func = TRUE)
dxy(1,2)
## [1] 16
## attr(,"gradient")
## x y
## [1,] 16 13
integrate(dnorm, -1.96, 1.96)
## 0.9500042 with absolute error < 1e-11
integrate(dnorm, -Inf, Inf)
## 1 with absolute error < 9.4e-05
integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)
## 3.141593 with absolute error < 2.7e-05
integrand <- function(x) {sin(x)}
integrate(integrand, lower = 0, upper = pi/2)
## 1 with absolute error < 1.1e-14
dnorm(0)# density at a number
## [1] 0.3989423
pnorm(1.28)# cumulative possibility
## [1] 0.8997274
qnorm(0.95)# quantile
## [1] 1.644854
rnorm(10)# random numbers
## [1] 0.1018395 0.5766540 0.2044187 0.1288622 -0.9548175 0.3160764
## [7] 0.8296003 0.9179508 -1.0023496 -0.5275846
using covariance matrix to generate Gaussian multiple variables
library(MASS)
Sigma <- matrix(c(10,3,3,2),2,2)
mvrnorm(n=20, rep(0, 2), Sigma)
## [,1] [,2]
## [1,] 0.7725512 0.005199494
## [2,] -4.9335658 -1.883786811
## [3,] 3.3987614 0.576107559
## [4,] -0.7874838 -0.505896692
## [5,] -0.1228839 0.854528861
## [6,] 1.4781497 1.505112202
## [7,] -2.8267925 -1.075966186
## [8,] -3.5580101 -0.591663438
## [9,] -2.0013537 -0.871950931
## [10,] 1.4059231 0.607912012
## [11,] 5.0534385 2.770152934
## [12,] 1.8848228 2.204973968
## [13,] 1.8880242 0.560264997
## [14,] -2.0926514 -1.822969570
## [15,] 0.4036719 -0.915990167
## [16,] -2.5335928 -1.336582825
## [17,] -3.3074977 -0.130202480
## [18,] 3.0005205 0.999036907
## [19,] -2.4534603 -2.364769769
## [20,] -7.7121698 -1.283683328