## formato ancho de los datos, es recomendable usar el formato largo  

tallerfinal2 <- read.delim('clipboard')


(tallerfinal2 = within(tallerfinal2, {
  id <- factor(id)
}))
##    cultivar stress rto60d rto70d rto80d id
## 1        c1      p  24.35  55.99  79.59  1
## 2        c1      p  27.41  63.72  88.76  2
## 3        c1      p  31.04  67.68  90.07  3
## 4        c1      p  32.78  72.73  92.54  4
## 5        c1      p  33.34  73.92  93.10  5
## 6        c1      a  33.44  79.80  93.21  6
## 7        c1      a  36.15  82.88  93.97  7
## 8        c1      a  36.21  84.31  95.30  8
## 9        c1      a  36.98  84.61  95.98  9
## 10       c1      a  39.27  84.84  97.98 10
## 11       c2      p  40.83  86.37  99.04 11
## 12       c2      p  41.23  88.62 102.82 12
## 13       c2      p  44.04  94.21 115.12 13
## 14       c2      p  46.38  91.21 117.42 14
## 15       c2      p  48.24  94.19 121.49 15
## 16       c2      a  48.47  94.23 121.66 16
## 17       c2      a  48.72  97.49 125.47 17
## 18       c2      a  49.98  99.21 126.07 18
## 19       c2      a  51.06  99.43 124.14 19
## 20       c2      a  57.35 100.66 127.63 20
## 21       c1      p  57.88 102.05 128.82 21
## 22       c1      p  58.36 102.51 134.53 22
## 23       c1      p  58.83 105.48 134.59 23
## 24       c1      p  61.28 109.52 138.81 24
## 25       c1      p  67.52 110.11 142.22 25
## 26       c2      a  67.97 111.29 146.67 26
## 27       c2      a  70.23 111.50 147.79 27
## 28       c2      a  73.21 111.76 151.74 28
## 29       c2      a  78.56 112.22 161.42 29
## 30       c2      a  90.13 119.61 180.09 30
par(cex = .6)

unique(tallerfinal2$stress)
## [1] "p" "a"
unique(tallerfinal2$cultivar)
## [1] "c1" "c2"
unique(tallerfinal2$id)
##  [1] 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## [26] 26 27 28 29 30
## 30 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 30
## formato largo 

library(tidyr)
(tallerfinal3 <- tallerfinal2 %>%
  gather(key = "tiempo_dias", value = "rto", 3:5)) 
##    cultivar stress id tiempo_dias    rto
## 1        c1      p  1      rto60d  24.35
## 2        c1      p  2      rto60d  27.41
## 3        c1      p  3      rto60d  31.04
## 4        c1      p  4      rto60d  32.78
## 5        c1      p  5      rto60d  33.34
## 6        c1      a  6      rto60d  33.44
## 7        c1      a  7      rto60d  36.15
## 8        c1      a  8      rto60d  36.21
## 9        c1      a  9      rto60d  36.98
## 10       c1      a 10      rto60d  39.27
## 11       c2      p 11      rto60d  40.83
## 12       c2      p 12      rto60d  41.23
## 13       c2      p 13      rto60d  44.04
## 14       c2      p 14      rto60d  46.38
## 15       c2      p 15      rto60d  48.24
## 16       c2      a 16      rto60d  48.47
## 17       c2      a 17      rto60d  48.72
## 18       c2      a 18      rto60d  49.98
## 19       c2      a 19      rto60d  51.06
## 20       c2      a 20      rto60d  57.35
## 21       c1      p 21      rto60d  57.88
## 22       c1      p 22      rto60d  58.36
## 23       c1      p 23      rto60d  58.83
## 24       c1      p 24      rto60d  61.28
## 25       c1      p 25      rto60d  67.52
## 26       c2      a 26      rto60d  67.97
## 27       c2      a 27      rto60d  70.23
## 28       c2      a 28      rto60d  73.21
## 29       c2      a 29      rto60d  78.56
## 30       c2      a 30      rto60d  90.13
## 31       c1      p  1      rto70d  55.99
## 32       c1      p  2      rto70d  63.72
## 33       c1      p  3      rto70d  67.68
## 34       c1      p  4      rto70d  72.73
## 35       c1      p  5      rto70d  73.92
## 36       c1      a  6      rto70d  79.80
## 37       c1      a  7      rto70d  82.88
## 38       c1      a  8      rto70d  84.31
## 39       c1      a  9      rto70d  84.61
## 40       c1      a 10      rto70d  84.84
## 41       c2      p 11      rto70d  86.37
## 42       c2      p 12      rto70d  88.62
## 43       c2      p 13      rto70d  94.21
## 44       c2      p 14      rto70d  91.21
## 45       c2      p 15      rto70d  94.19
## 46       c2      a 16      rto70d  94.23
## 47       c2      a 17      rto70d  97.49
## 48       c2      a 18      rto70d  99.21
## 49       c2      a 19      rto70d  99.43
## 50       c2      a 20      rto70d 100.66
## 51       c1      p 21      rto70d 102.05
## 52       c1      p 22      rto70d 102.51
## 53       c1      p 23      rto70d 105.48
## 54       c1      p 24      rto70d 109.52
## 55       c1      p 25      rto70d 110.11
## 56       c2      a 26      rto70d 111.29
## 57       c2      a 27      rto70d 111.50
## 58       c2      a 28      rto70d 111.76
## 59       c2      a 29      rto70d 112.22
## 60       c2      a 30      rto70d 119.61
## 61       c1      p  1      rto80d  79.59
## 62       c1      p  2      rto80d  88.76
## 63       c1      p  3      rto80d  90.07
## 64       c1      p  4      rto80d  92.54
## 65       c1      p  5      rto80d  93.10
## 66       c1      a  6      rto80d  93.21
## 67       c1      a  7      rto80d  93.97
## 68       c1      a  8      rto80d  95.30
## 69       c1      a  9      rto80d  95.98
## 70       c1      a 10      rto80d  97.98
## 71       c2      p 11      rto80d  99.04
## 72       c2      p 12      rto80d 102.82
## 73       c2      p 13      rto80d 115.12
## 74       c2      p 14      rto80d 117.42
## 75       c2      p 15      rto80d 121.49
## 76       c2      a 16      rto80d 121.66
## 77       c2      a 17      rto80d 125.47
## 78       c2      a 18      rto80d 126.07
## 79       c2      a 19      rto80d 124.14
## 80       c2      a 20      rto80d 127.63
## 81       c1      p 21      rto80d 128.82
## 82       c1      p 22      rto80d 134.53
## 83       c1      p 23      rto80d 134.59
## 84       c1      p 24      rto80d 138.81
## 85       c1      p 25      rto80d 142.22
## 86       c2      a 26      rto80d 146.67
## 87       c2      a 27      rto80d 147.79
## 88       c2      a 28      rto80d 151.74
## 89       c2      a 29      rto80d 161.42
## 90       c2      a 30      rto80d 180.09
(tallerfinal3 = within(tallerfinal3, {
   tiempo_dias <- factor(tiempo_dias)
}))
##    cultivar stress id tiempo_dias    rto
## 1        c1      p  1      rto60d  24.35
## 2        c1      p  2      rto60d  27.41
## 3        c1      p  3      rto60d  31.04
## 4        c1      p  4      rto60d  32.78
## 5        c1      p  5      rto60d  33.34
## 6        c1      a  6      rto60d  33.44
## 7        c1      a  7      rto60d  36.15
## 8        c1      a  8      rto60d  36.21
## 9        c1      a  9      rto60d  36.98
## 10       c1      a 10      rto60d  39.27
## 11       c2      p 11      rto60d  40.83
## 12       c2      p 12      rto60d  41.23
## 13       c2      p 13      rto60d  44.04
## 14       c2      p 14      rto60d  46.38
## 15       c2      p 15      rto60d  48.24
## 16       c2      a 16      rto60d  48.47
## 17       c2      a 17      rto60d  48.72
## 18       c2      a 18      rto60d  49.98
## 19       c2      a 19      rto60d  51.06
## 20       c2      a 20      rto60d  57.35
## 21       c1      p 21      rto60d  57.88
## 22       c1      p 22      rto60d  58.36
## 23       c1      p 23      rto60d  58.83
## 24       c1      p 24      rto60d  61.28
## 25       c1      p 25      rto60d  67.52
## 26       c2      a 26      rto60d  67.97
## 27       c2      a 27      rto60d  70.23
## 28       c2      a 28      rto60d  73.21
## 29       c2      a 29      rto60d  78.56
## 30       c2      a 30      rto60d  90.13
## 31       c1      p  1      rto70d  55.99
## 32       c1      p  2      rto70d  63.72
## 33       c1      p  3      rto70d  67.68
## 34       c1      p  4      rto70d  72.73
## 35       c1      p  5      rto70d  73.92
## 36       c1      a  6      rto70d  79.80
## 37       c1      a  7      rto70d  82.88
## 38       c1      a  8      rto70d  84.31
## 39       c1      a  9      rto70d  84.61
## 40       c1      a 10      rto70d  84.84
## 41       c2      p 11      rto70d  86.37
## 42       c2      p 12      rto70d  88.62
## 43       c2      p 13      rto70d  94.21
## 44       c2      p 14      rto70d  91.21
## 45       c2      p 15      rto70d  94.19
## 46       c2      a 16      rto70d  94.23
## 47       c2      a 17      rto70d  97.49
## 48       c2      a 18      rto70d  99.21
## 49       c2      a 19      rto70d  99.43
## 50       c2      a 20      rto70d 100.66
## 51       c1      p 21      rto70d 102.05
## 52       c1      p 22      rto70d 102.51
## 53       c1      p 23      rto70d 105.48
## 54       c1      p 24      rto70d 109.52
## 55       c1      p 25      rto70d 110.11
## 56       c2      a 26      rto70d 111.29
## 57       c2      a 27      rto70d 111.50
## 58       c2      a 28      rto70d 111.76
## 59       c2      a 29      rto70d 112.22
## 60       c2      a 30      rto70d 119.61
## 61       c1      p  1      rto80d  79.59
## 62       c1      p  2      rto80d  88.76
## 63       c1      p  3      rto80d  90.07
## 64       c1      p  4      rto80d  92.54
## 65       c1      p  5      rto80d  93.10
## 66       c1      a  6      rto80d  93.21
## 67       c1      a  7      rto80d  93.97
## 68       c1      a  8      rto80d  95.30
## 69       c1      a  9      rto80d  95.98
## 70       c1      a 10      rto80d  97.98
## 71       c2      p 11      rto80d  99.04
## 72       c2      p 12      rto80d 102.82
## 73       c2      p 13      rto80d 115.12
## 74       c2      p 14      rto80d 117.42
## 75       c2      p 15      rto80d 121.49
## 76       c2      a 16      rto80d 121.66
## 77       c2      a 17      rto80d 125.47
## 78       c2      a 18      rto80d 126.07
## 79       c2      a 19      rto80d 124.14
## 80       c2      a 20      rto80d 127.63
## 81       c1      p 21      rto80d 128.82
## 82       c1      p 22      rto80d 134.53
## 83       c1      p 23      rto80d 134.59
## 84       c1      p 24      rto80d 138.81
## 85       c1      p 25      rto80d 142.22
## 86       c2      a 26      rto80d 146.67
## 87       c2      a 27      rto80d 147.79
## 88       c2      a 28      rto80d 151.74
## 89       c2      a 29      rto80d 161.42
## 90       c2      a 30      rto80d 180.09
par(cex = .6)

modelo <- aov(rto ~ cultivar * stress + Error(id), data = tallerfinal3)
summary(modelo)
## 
## Error: id
##                 Df Sum Sq Mean Sq F value  Pr(>F)   
## cultivar         1   7517    7517  11.017 0.00268 **
## stress           1    695     695   1.018 0.32218   
## cultivar:stress  1   4836    4836   7.088 0.01313 * 
## Residuals       26  17740     682                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 60  75738    1262
with(tallerfinal3, interaction.plot(cultivar, stress, rto,
  ylim = c(5, 200), lty= c(1, 10), lwd = 3,
  ylab = "mean of rto", xlab = "cultivar", trace.label = "stress"))

Caso A: sin factor

library(ggplot2)
ggplot(tallerfinal3)+
  aes(tiempo_dias, rto)+
    stat_boxplot(geom = "errorbar",  width = 0.2) +
     geom_boxplot(fill=5, outlier.colour = "red")+
     labs(x='Tiempo en dias', y='Rendimiento')+
        stat_summary(fun = "mean", geom = "point", shape = 8,
          size = 2, color = "red")+
              geom_smooth(method='lm', se=F)
## `geom_smooth()` using formula 'y ~ x'

## para este caso, el rendimiento en el peso seco de uchuva es mayor a los 80 dias después del cuajamiento del fruto 

library(ggpubr)
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
modcasoA <- anova_test(data = tallerfinal3, dv = rto, wid = id, within = tiempo_dias)
get_anova_table(modcasoA)
## ANOVA Table (type III tests)
## 
##        Effect  DFn   DFd       F        p p<.05   ges
## 1 tiempo_dias 1.34 38.81 917.162 1.19e-30     * 0.689

caso B: Con el factor Cultivar (C1:dorada-C2:andina)

(tallerfinal4 = within(tallerfinal3, {
  stress <- factor(stress)
    cultivar <- factor(cultivar)
}))
##    cultivar stress id tiempo_dias    rto
## 1        c1      p  1      rto60d  24.35
## 2        c1      p  2      rto60d  27.41
## 3        c1      p  3      rto60d  31.04
## 4        c1      p  4      rto60d  32.78
## 5        c1      p  5      rto60d  33.34
## 6        c1      a  6      rto60d  33.44
## 7        c1      a  7      rto60d  36.15
## 8        c1      a  8      rto60d  36.21
## 9        c1      a  9      rto60d  36.98
## 10       c1      a 10      rto60d  39.27
## 11       c2      p 11      rto60d  40.83
## 12       c2      p 12      rto60d  41.23
## 13       c2      p 13      rto60d  44.04
## 14       c2      p 14      rto60d  46.38
## 15       c2      p 15      rto60d  48.24
## 16       c2      a 16      rto60d  48.47
## 17       c2      a 17      rto60d  48.72
## 18       c2      a 18      rto60d  49.98
## 19       c2      a 19      rto60d  51.06
## 20       c2      a 20      rto60d  57.35
## 21       c1      p 21      rto60d  57.88
## 22       c1      p 22      rto60d  58.36
## 23       c1      p 23      rto60d  58.83
## 24       c1      p 24      rto60d  61.28
## 25       c1      p 25      rto60d  67.52
## 26       c2      a 26      rto60d  67.97
## 27       c2      a 27      rto60d  70.23
## 28       c2      a 28      rto60d  73.21
## 29       c2      a 29      rto60d  78.56
## 30       c2      a 30      rto60d  90.13
## 31       c1      p  1      rto70d  55.99
## 32       c1      p  2      rto70d  63.72
## 33       c1      p  3      rto70d  67.68
## 34       c1      p  4      rto70d  72.73
## 35       c1      p  5      rto70d  73.92
## 36       c1      a  6      rto70d  79.80
## 37       c1      a  7      rto70d  82.88
## 38       c1      a  8      rto70d  84.31
## 39       c1      a  9      rto70d  84.61
## 40       c1      a 10      rto70d  84.84
## 41       c2      p 11      rto70d  86.37
## 42       c2      p 12      rto70d  88.62
## 43       c2      p 13      rto70d  94.21
## 44       c2      p 14      rto70d  91.21
## 45       c2      p 15      rto70d  94.19
## 46       c2      a 16      rto70d  94.23
## 47       c2      a 17      rto70d  97.49
## 48       c2      a 18      rto70d  99.21
## 49       c2      a 19      rto70d  99.43
## 50       c2      a 20      rto70d 100.66
## 51       c1      p 21      rto70d 102.05
## 52       c1      p 22      rto70d 102.51
## 53       c1      p 23      rto70d 105.48
## 54       c1      p 24      rto70d 109.52
## 55       c1      p 25      rto70d 110.11
## 56       c2      a 26      rto70d 111.29
## 57       c2      a 27      rto70d 111.50
## 58       c2      a 28      rto70d 111.76
## 59       c2      a 29      rto70d 112.22
## 60       c2      a 30      rto70d 119.61
## 61       c1      p  1      rto80d  79.59
## 62       c1      p  2      rto80d  88.76
## 63       c1      p  3      rto80d  90.07
## 64       c1      p  4      rto80d  92.54
## 65       c1      p  5      rto80d  93.10
## 66       c1      a  6      rto80d  93.21
## 67       c1      a  7      rto80d  93.97
## 68       c1      a  8      rto80d  95.30
## 69       c1      a  9      rto80d  95.98
## 70       c1      a 10      rto80d  97.98
## 71       c2      p 11      rto80d  99.04
## 72       c2      p 12      rto80d 102.82
## 73       c2      p 13      rto80d 115.12
## 74       c2      p 14      rto80d 117.42
## 75       c2      p 15      rto80d 121.49
## 76       c2      a 16      rto80d 121.66
## 77       c2      a 17      rto80d 125.47
## 78       c2      a 18      rto80d 126.07
## 79       c2      a 19      rto80d 124.14
## 80       c2      a 20      rto80d 127.63
## 81       c1      p 21      rto80d 128.82
## 82       c1      p 22      rto80d 134.53
## 83       c1      p 23      rto80d 134.59
## 84       c1      p 24      rto80d 138.81
## 85       c1      p 25      rto80d 142.22
## 86       c2      a 26      rto80d 146.67
## 87       c2      a 27      rto80d 147.79
## 88       c2      a 28      rto80d 151.74
## 89       c2      a 29      rto80d 161.42
## 90       c2      a 30      rto80d 180.09
library(ggplot2)
ggplot(tallerfinal4,
  aes(tiempo_dias, rto))+
     geom_boxplot(aes(fill=cultivar, outlier.colour = "red"))+
     labs(x='Tiempo en dias', y='Rendimiento')+
        stat_summary(fun = "cultivar", geom = "point", shape = 8,
          size = 2, color = "red")+
              geom_smooth(method='lm', se=F)
## Warning: Ignoring unknown aesthetics: outlier.colour
## Warning: Computation failed in `stat_summary()`:
## el objeto 'cultivar' de modo 'function' no fue encontrado
## `geom_smooth()` using formula 'y ~ x'

## Grafico de interacción entre las dos especies 

interaction.plot(tallerfinal4$tiempo_dias, tallerfinal4$cultivar, tallerfinal4$rto, xlab = "Tiempo (días)", ylab = "Rendimiento", col = c("red",  "blue"), trace.label = "especie")