#Dataset

CC <- read.csv("Climate Change Methods_CLEAN 3_June 29, 2022.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

Participants

#Number of responses (rows)
nrow(CC)
## [1] 1007
#Age range
range(CC$Dem_Age, na.rm = T)
## [1]   0 236
#Average age
mean(CC$Dem_Age, na.rm = T)
## [1] 45.54855
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)
## [1] 17.3346
#Gender frequencies
table(CC$Dem_Gen)
## 
##   1   2   3 
## 507 488  12
#Ethnicity 
table(CC$Dem_Ethnicity)
## 
##   1   2   3   4   5   6   7 
##  61 129  44   1   4 758  10
CC$Ethnicity <- NA
CC$Ethnicity[CC$Dem_Ethnicity == 1] <- 'Asian'
CC$Ethnicity[CC$Dem_Ethnicity == 2] <- 'Black'
CC$Ethnicity[CC$Dem_Ethnicity == 3] <- 'Hispanic'
CC$Ethnicity[CC$Dem_Ethnicity == 4] <- 'Nat Amer'
CC$Ethnicity[CC$Dem_Ethnicity == 5] <- 'Nat Pac'
CC$Ethnicity[CC$Dem_Ethnicity == 6] <- 'White'
CC$Ethnicity[CC$Dem_Ethnicity == 7] <- 'Other'

describe(CC$Dem_Ethnicity)
## CC$Dem_Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.571    5.058    1.518 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     61   129    44     1     4   758    10
## Proportion 0.061 0.128 0.044 0.001 0.004 0.753 0.010
#Gender
CC$Dem_Gender <- as.numeric(as.character(CC$Dem_Gen))
describe(CC$Dem_Gen)
## CC$Dem_Gen 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        3    0.759    1.508    0.524 
##                             
## Value          1     2     3
## Frequency    507   488    12
## Proportion 0.503 0.485 0.012
#Age
CC$Demograph_Age <- as.numeric(as.character(CC$Dem_Age))
describe(CC$Demograph_Age)
## CC$Demograph_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      999        8       69        1    45.55    19.06       21       24 
##      .25      .50      .75      .90      .95 
##       31       44       59       67       71 
## 
## lowest :   0  18  19  20  21, highest:  81  82  91  93 236
range(CC$Demograph_Age ,na.rm = T)
## [1]   0 236
#Political Orientation
##"Which of the following describes your political orientation?"
CC$polOR <- factor(CC$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(CC$polOR)
## 
##            Strongly Conservative          Moderately Conservative 
##                               62                              102 
##            Slightly Conservative Neither Conservative Nor Liberal 
##                               72                              183 
##                 Slightly Liberal               Moderately Liberal 
##                              125                              239 
##                 Strongly Liberal 
##                              224

Scales

Aversion to Tampering with Nature

#Aversion to Tampering with Nature
#Aversion to Tampering with Nature Item Definitions
CC$ATNS_1 <- as.numeric(as.character(CC$ATNS_1_36))
CC$ATNS_2 <- as.numeric(as.character(CC$ATNS_1_37))
CC$ATNS_3 <- as.numeric(as.character(CC$ATNS_1_38))
CC$ATNS_4 <- as.numeric(as.character(CC$ATNS_1_39))
CC$ATNS_5 <- as.numeric(as.character(CC$ATNS_1_40))

#Recode item 2
CC$ATNS_2R <- (100- CC$ATNS_2)

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
describe(CC$ATNS_1)
## CC$ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.999    49.63    30.88     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.25    50.00    70.00    88.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
sd(CC$ATNS_1)
## [1] NA
range(CC$ATNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_2)
## CC$ATNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.999    42.53     32.5      0.0      2.0 
##      .25      .50      .75      .90      .95 
##     19.5     41.0     63.0     82.0     91.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
sd(CC$ATNS_2)
## [1] 28.28759
range(CC$ATNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_3)
## CC$ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1005        2      101    0.999    49.43     32.8      0.0     10.4 
##      .25      .50      .75      .90      .95 
##     27.0     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_3)
## [1] NA
range(CC$ATNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_4)
## CC$ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.998    61.51     30.6       12       21 
##      .25      .50      .75      .90      .95 
##       45       64       82      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$ATNS_4)
## [1] 26.89782
range(CC$ATNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_5)
## CC$ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      101    0.999    54.71    33.05      3.3     13.0 
##      .25      .50      .75      .90      .95 
##     32.0     57.0     76.0     96.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_5)
## [1] 28.8092
range(CC$ATNS_5, na.rm=TRUE)
## [1]   0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(CC$ATNS_1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(CC$ATNS_2, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(CC$ATNS_3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

hist(CC$ATNS_4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone.')

hist(CC$ATNS_5, main = 'ATNS #5: Altering nature will be our downfall as a species.')

#Cronbach's Alpha (4 and 5 reverse coded)
CC$ATNS_Scale <- data.frame(CC$ATNS_1, CC$ATNS_2R, CC$ATNS_3, CC$ATNS_4, CC$ATNS_5)
CC$ATNS_Score <- rowMeans(CC [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(CC$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83    0.81      0.49 4.8 0.0085   55 21     0.52
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.ATNS_1       0.85      0.85    0.81      0.58 5.6   0.0079 0.0053  0.58
## CC.ATNS_2R      0.81      0.81    0.78      0.51 4.2   0.0098 0.0211  0.51
## CC.ATNS_3       0.76      0.76    0.72      0.44 3.2   0.0122 0.0164  0.45
## CC.ATNS_4       0.77      0.77    0.73      0.45 3.3   0.0118 0.0156  0.45
## CC.ATNS_5       0.78      0.78    0.75      0.46 3.5   0.0115 0.0252  0.46
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## CC.ATNS_1  1006  0.62  0.63  0.47   0.43   50 27
## CC.ATNS_2R 1007  0.74  0.74  0.64   0.58   57 28
## CC.ATNS_3  1005  0.84  0.84  0.81   0.73   49 29
## CC.ATNS_4  1007  0.83  0.83  0.80   0.72   62 27
## CC.ATNS_5  1007  0.81  0.81  0.75   0.69   55 29
describe(CC$ATNS_Scale)
## CC$ATNS_Scale 
## 
##  5  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.999    49.63    30.88     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.25    50.00    70.00    88.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.999    57.47     32.5      9.0     18.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     80.5     98.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1005        2      101    0.999    49.43     32.8      0.0     10.4 
##      .25      .50      .75      .90      .95 
##     27.0     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       99    0.998    61.51     30.6       12       21 
##      .25      .50      .75      .90      .95 
##       45       64       82      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      101    0.999    54.71    33.05      3.3     13.0 
##      .25      .50      .75      .90      .95 
##     32.0     57.0     76.0     96.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------

Benefit

# Benefit was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented naturalness perception of the technology rated.

## 1. This is likely to lead to achieving carbon neutral climate goals.

Descriptives

# Define Variables
CC$Ben_AFSCS <- CC$Ben_AFSCS_18
CC$Ben_BIO <- CC$Ben_BIO_18
CC$Ben_BECCS <- CC$Ben_BECCS_18
CC$Ben_DACCS <- CC$Ben_DACCS_18
CC$Ben_EW <- CC$Ben_EW_18
CC$Ben_OF <- CC$Ben_OF_18
CC$Ben_BF <- CC$Ben_BF_18
CC$Ben_NE <- CC$Ben_NE_18
CC$Ben_SE <- CC$Ben_SE_18
CC$Ben_WE <- CC$Ben_WE_18

#Descriptives
describe(CC$Ben_AFSCS)
## CC$Ben_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       80    0.999    68.42    26.15     22.1     37.0 
##      .25      .50      .75      .90      .95 
##     55.5     72.0     85.0     97.0    100.0 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
sd(CC$Ben_AFSCS, na.rm = TRUE)
## [1] 23.72132
hist(CC$Ben_AFSCS)

describe(CC$Ben_BIO)
## CC$Ben_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       85    0.999    53.47    29.28     6.10    20.00 
##      .25      .50      .75      .90      .95 
##    33.00    56.50    72.25    86.00    92.45 
## 
## lowest :   0   1   3   5   7, highest:  95  97  98  99 100
sd(CC$Ben_BIO, na.rm = TRUE)
## [1] 25.6215
hist(CC$Ben_BIO)

describe(CC$Ben_BECCS) 
## CC$Ben_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.999       55    29.13    10.00    18.00 
##      .25      .50      .75      .90      .95 
##    36.00    57.00    74.75    88.00    95.00 
## 
## lowest :   0   1   3   6   7, highest:  94  95  96  97 100
sd(CC$Ben_BECCS, na.rm = TRUE)
## [1] 25.51696
hist(CC$Ben_BECCS)

describe(CC$Ben_DACCS)
## CC$Ben_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       89    0.999    55.35    30.26      3.0     15.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     75.0     90.0     99.4 
## 
## lowest :   0   1   2   3   5, highest:  93  95  96  98 100
sd(CC$Ben_DACCS, na.rm = TRUE)
## [1] 26.63817
hist(CC$Ben_DACCS)

describe(CC$Ben_EW)
## CC$Ben_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.999    52.15    27.98      0.0     13.8 
##      .25      .50      .75      .90      .95 
##     37.0     55.0     70.0     81.2     90.0 
## 
## lowest :   0   3   4   5   6, highest:  95  96  97  99 100
sd(CC$Ben_EW, na.rm = TRUE)
## [1] 24.84342
hist(CC$Ben_EW)

describe(CC$Ben_OF)
## CC$Ben_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    54.54    28.93      7.6     17.0 
##      .25      .50      .75      .90      .95 
##     36.0     58.0     74.5     86.0     91.7 
## 
## lowest :   0   2   4   5   7, highest:  92  93  95  96 100
sd(CC$Ben_OF, na.rm = TRUE)
## [1] 25.43145
hist(CC$Ben_OF)

describe(CC$Ben_BF)
## CC$Ben_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    51.92    30.47     3.05    10.00 
##      .25      .50      .75      .90      .95 
##    34.00    57.00    70.00    85.00    94.30 
## 
## lowest :   0   1   2   5   6, highest:  93  95  96  97 100
sd(CC$Ben_BF, na.rm = TRUE)
## [1] 26.71672
hist(CC$Ben_BF)

describe(CC$Ben_NE)
## CC$Ben_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.999    60.18    30.92      0.0     19.2 
##      .25      .50      .75      .90      .95 
##     44.0     66.0     80.0     92.4     98.4 
## 
## lowest :   0   6   9  10  11, highest:  94  95  97  98 100
sd(CC$Ben_NE, na.rm = TRUE)
## [1] 27.56813
hist(CC$Ben_NE)

describe(CC$Ben_SE)
## CC$Ben_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.998    66.31    29.55     10.4     25.0 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     86.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
sd(CC$Ben_SE, na.rm = TRUE)
## [1] 26.49281
hist(CC$Ben_SE)

describe(CC$Ben_WE) 
## CC$Ben_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.998    64.88    28.99      9.6     25.0 
##      .25      .50      .75      .90      .95 
##     51.0     68.0     85.0    100.0    100.0 
## 
## lowest :   0   5   6   8  10, highest:  96  97  98  99 100
sd(CC$Ben_WE, na.rm = TRUE)
## [1] 26.12863
hist(CC$Ben_WE)

Score(s) & Scale(s)

# Note: Benefit Scores & scales not present because measure is one item.)

Climate Change Belief

Descriptives

#Climate Change Belief Item Definitions
CC$CCB1 <- as.numeric(as.character(CC$CCB_1_48))
CC$CCB2 <- as.numeric(as.character(CC$CCB_1_49))
CC$CCB3 <- as.numeric(as.character(CC$CCB_1_50))
CC$CCB4 <- as.numeric(as.character(CC$CCB_1_51))

#Climate Change Belief Descriptives
describe(CC$CCB1)
## CC$CCB1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       73    0.859    86.91    19.52    33.25    58.00 
##      .25      .50      .75      .90      .95 
##    83.25   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
range(CC$CCB1, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB1, na.rm=TRUE)
## [1] 21.93689
describe(CC$CCB2)
## CC$CCB2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       87     0.89     83.6    23.83       19       50 
##      .25      .50      .75      .90      .95 
##       79       98      100      100      100 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
range(CC$CCB2, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB2, na.rm=TRUE)
## [1] 25.67106
describe(CC$CCB3)
## CC$CCB3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       89    0.936    79.65    27.61        4       35 
##      .25      .50      .75      .90      .95 
##       70       91      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB3, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB3, na.rm=TRUE)
## [1] 28.29363
describe(CC$CCB4)
## CC$CCB4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       86     0.98    76.35    27.33       15       40 
##      .25      .50      .75      .90      .95 
##       65       85      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB4, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB4, na.rm=TRUE)
## [1] 26.23131
#Climate Change Belief Histograms
hist(CC$CCB1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(CC$CCB2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(CC$CCB3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(CC$CCB4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

Score(s) & Scale(s)

#Score & Scale
CC$CCB_Score <- rowMeans(CC[, c('CCB1', 'CCB2', 'CCB3','CCB4')], na.rm=T)
describe(CC$CCB_Score)
## CC$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      250    0.987    81.61    23.23    25.00    47.05 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    98.88   100.00   100.00 
## 
## lowest :   0.00   2.00   3.75   4.00   4.75, highest:  99.00  99.25  99.50  99.75 100.00
CC$CCB_Scale <- data.frame(CC$CCB_1_48, CC$CCB_1_49, CC$CCB_1_50, CC$CCB_1_51)
describe(CC$CCB_Scale)
## CC$CCB_Scale 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CCB_1_48 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       73    0.859    86.91    19.52    33.25    58.00 
##      .25      .50      .75      .90      .95 
##    83.25   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_49 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       87     0.89     83.6    23.83       19       50 
##      .25      .50      .75      .90      .95 
##       79       98      100      100      100 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_50 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       89    0.936    79.65    27.61        4       35 
##      .25      .50      .75      .90      .95 
##       70       91      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_51 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       86     0.98    76.35    27.33       15       40 
##      .25      .50      .75      .90      .95 
##       65       85      100      100      100 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Cronbach's Alpha
psych::alpha(CC$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.94      0.94    0.93       0.8  16 0.0031   82 24      0.8
## 
##  lower alpha upper     95% confidence boundaries
## 0.93 0.94 0.95 
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.CCB_1_48      0.93      0.93    0.90      0.82 13.4   0.0038 0.0013  0.82
## CC.CCB_1_49      0.90      0.91    0.87      0.77  9.8   0.0049 0.0033  0.78
## CC.CCB_1_50      0.91      0.92    0.89      0.78 11.0   0.0048 0.0069  0.78
## CC.CCB_1_51      0.93      0.94    0.92      0.83 15.1   0.0036 0.0024  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.CCB_1_48 1006  0.90  0.91  0.87   0.84   87 22
## CC.CCB_1_49 1006  0.95  0.95  0.94   0.91   84 26
## CC.CCB_1_50 1007  0.94  0.93  0.91   0.88   80 28
## CC.CCB_1_51 1007  0.90  0.89  0.84   0.82   76 26
#Correlation CCB 
cor(CC$CCB_Scale, use= "complete.obs")
##             CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51
## CC.CCB_1_48   1.0000000   0.8696179   0.7786829   0.7037607
## CC.CCB_1_49   0.8696179   1.0000000   0.8542424   0.7818553
## CC.CCB_1_50   0.7786829   0.8542424   1.0000000   0.8154086
## CC.CCB_1_51   0.7037607   0.7818553   0.8154086   1.0000000

Connectedness to Nature

Descriptives

#Connectedness to Nature Item Definitions
CC$CNS_1 <- as.numeric(as.character(CC$CNS_1_47))
CC$CNS_2 <- as.numeric(as.character(CC$CNS_1_48))
CC$CNS_3 <- as.numeric(as.character(CC$CNS_1_49))
CC$CNS_4 <- as.numeric(as.character(CC$CNS_1_50))
CC$CNS_5 <- as.numeric(as.character(CC$CNS_1_51))

#Descriptives
describe(CC$CNS_1)
## CC$CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
range(CC$CNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_2)
## CC$CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
range(CC$CNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_3)
## CC$CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_4)
## CC$CNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.996    39.73    36.96     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    33.00    67.75    89.50   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_5)
## CC$CNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       98    0.999    49.45    34.86      0.0      4.6 
##      .25      .50      .75      .90      .95 
##     23.0     51.0     72.5     90.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  95  97  98  99 100
range(CC$CNS_5, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(CC$CNS_1, main = 'I often feel a sense of oneness with the natural world around me.')

hist(CC$CNS_2, main = 'I think of the natural world as a community to which I belong.')

hist(CC$CNS_3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')

hist(CC$CNS_4, main = 'My personal welfare is independent of the welfare of the natural world.')

hist(CC$CNS_5, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')

#Recode items 4 and 5
CC$CNS_4R <- (100 - CC$CNS_4) 
CC$CNS_5R <- (100 - CC$CNS_5)

Score(s) & Scale(s)

#Score & Scale
CC$CNS_Score <- rowMeans(CC [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(CC$CNS_Score)
## CC$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0      322        1    63.36    18.72    35.00    43.12 
##      .25      .50      .75      .90      .95 
##    52.90    63.00    74.60    84.88    91.80 
## 
## lowest :   0.0   8.6  10.0  12.8  16.0, highest:  97.8  98.2  98.6  99.6 100.0
CC$CNS_Scale2 <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3, CC$CNS_4R, CC$CNS_5R)
psych::alpha(CC$CNS_Scale2)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale2)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.54      0.59    0.63      0.22 1.4 0.024   63 17    0.081
## 
##  lower alpha upper     95% confidence boundaries
## 0.5 0.54 0.59 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.CNS_1       0.38      0.41    0.44      0.15 0.70    0.032 0.045 0.081
## CC.CNS_2       0.39      0.41    0.45      0.15 0.70    0.032 0.053 0.071
## CC.CNS_3       0.42      0.46    0.51      0.17 0.85    0.031 0.066 0.068
## CC.CNS_4R      0.63      0.66    0.67      0.33 1.93    0.020 0.092 0.314
## CC.CNS_5R      0.58      0.64    0.66      0.30 1.75    0.023 0.108 0.311
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1  1007  0.70  0.75  0.75  0.494   67 25
## CC.CNS_2  1007  0.70  0.75  0.74  0.511   73 23
## CC.CNS_3  1006  0.68  0.70  0.63  0.411   66 29
## CC.CNS_4R 1006  0.47  0.41  0.13  0.096   60 33
## CC.CNS_5R 1007  0.50  0.45  0.18  0.157   51 30
describe(CC$CNS_Scale2)
## CC$CNS_Scale2 
## 
##  5  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_4R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1      100    0.996    60.27    36.96     0.00    10.50 
##      .25      .50      .75      .90      .95 
##    32.25    67.00    86.00   100.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_5R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       98    0.999    50.55    34.86      0.0     10.0 
##      .25      .50      .75      .90      .95 
##     27.5     49.0     77.0     95.4    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## Drop reverse coded items 
CC$CNS_Scale <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3)
psych::alpha(CC$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.81      0.82    0.76       0.6 4.5 0.01   69 22     0.58
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.81 0.83 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.CNS_1      0.69      0.70    0.54      0.54 2.4    0.019    NA  0.54
## CC.CNS_2      0.73      0.73    0.58      0.58 2.7    0.017    NA  0.58
## CC.CNS_3      0.80      0.80    0.67      0.67 4.1    0.012    NA  0.67
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1 1007  0.87  0.88  0.79   0.70   67 25
## CC.CNS_2 1007  0.84  0.86  0.77   0.68   73 23
## CC.CNS_3 1006  0.85  0.83  0.67   0.61   66 29
describe(CC$CNS_Scale)
## CC$CNS_Scale 
## 
##  3  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       97    0.998    66.82    27.67       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       94    0.995    73.34    24.81     25.0     43.6 
##      .25      .50      .75      .90      .95 
##     62.0     78.0     90.5    100.0    100.0 
## 
## lowest :   0   5   7   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1006        1       98    0.996    65.79    32.06        0       17 
##      .25      .50      .75      .90      .95 
##       51       70       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Correlation CCB 
cor(CC$CNS_Scale, use= "complete.obs")
##           CC.CNS_1  CC.CNS_2  CC.CNS_3
## CC.CNS_1 1.0000000 0.6736904 0.5782495
## CC.CNS_2 0.6736904 1.0000000 0.5437057
## CC.CNS_3 0.5782495 0.5437057 1.0000000

Control

# Control was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented perception of control over the technology rated.

## 1. We have control over the processes in this method.

Descriptives

# Define Variables
CC$Control_AFSCS <- CC$Risk_AFSCS_34
CC$Control_BIO <- CC$Risk_BIO_34
CC$Control_BECCS <- CC$Risk_BECCS_34
CC$Control_DACCS <- CC$Risk_DACCS_34
CC$Control_EW <- CC$Risk_EW_34
CC$Control_OF <- CC$Risk_OF_34
CC$Control_BF <- CC$Risk_BF_34
CC$Control_NE <- CC$Risk_NE_34
CC$Control_SE <- CC$Risk_SE_34
CC$Control_WE <- CC$Risk_WE_34

# Descriptives
describe(CC$Control_AFSCS)
## CC$Control_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       71    0.997    74.48     22.1     36.0     50.2 
##      .25      .50      .75      .90      .95 
##     65.0     77.0     88.0    100.0    100.0 
## 
## lowest :   0   5   7   8  20, highest:  96  97  98  99 100
sd(CC$Control_AFSCS, na.rm = TRUE)
## [1] 20.53265
hist(CC$Control_AFSCS)

describe(CC$Control_BIO)
## CC$Control_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    68.99    24.04    29.55    41.10 
##      .25      .50      .75      .90      .95 
##    54.00    71.50    85.00    96.00   100.00 
## 
## lowest :   0   5   9  14  16, highest:  95  96  98  99 100
sd(CC$Control_BIO, na.rm = TRUE)
## [1] 21.35812
hist(CC$Control_BIO)

describe(CC$Control_BECCS)
## CC$Control_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       79    0.999    62.23    26.17       20       30 
##      .25      .50      .75      .90      .95 
##       47       65       78       90      100 
## 
## lowest :   0  10  12  13  15, highest:  95  96  98  99 100
sd(CC$Control_BECCS, na.rm = TRUE)
## [1] 23.21631
hist(CC$Control_BECCS)

describe(CC$Control_DACCS)
## CC$Control_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       87    0.999     56.9     28.7     14.0     21.6 
##      .25      .50      .75      .90      .95 
##     40.0     57.0     75.0     90.4    100.0 
## 
## lowest :   0   1   8   9  10, highest:  94  95  97  99 100
sd(CC$Control_DACCS, na.rm = TRUE)
## [1] 25.17765
hist(CC$Control_DACCS)

describe(CC$Control_EW) 
## CC$Control_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       82    0.999    54.69     26.2     14.0     25.0 
##      .25      .50      .75      .90      .95 
##     39.0     55.0     71.0     85.6     92.0 
## 
## lowest :   0   9  10  12  13, highest:  92  94  95  99 100
sd(CC$Control_EW, na.rm = TRUE)
## [1] 23.03235
hist(CC$Control_EW) 

describe(CC$Control_OF)
## CC$Control_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88        1    47.47    30.01      5.0     12.0 
##      .25      .50      .75      .90      .95 
##     27.5     47.0     67.5     82.0     91.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  98  99 100
sd(CC$Control_OF, na.rm = TRUE)
## [1] 26.10864
hist(CC$Control_OF)

describe(CC$Control_BF)
## CC$Control_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.996    77.06    21.54    36.70    50.70 
##      .25      .50      .75      .90      .95 
##    68.75    80.00    94.00   100.00   100.00 
## 
## lowest :   0   5  15  25  29, highest:  96  97  98  99 100
sd(CC$Control_BF, na.rm = TRUE)
## [1] 19.74781
hist(CC$Control_BF)

describe(CC$Control_NE)
## CC$Control_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       73    0.999    66.94    27.69       20       33 
##      .25      .50      .75      .90      .95 
##       51       71       86       98      100 
## 
## lowest :   0   5   7   9  10, highest:  95  96  98  99 100
sd(CC$Control_NE, na.rm = TRUE)
## [1] 24.68996
hist(CC$Control_NE)

describe(CC$Control_SE)
## CC$Control_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       67    0.992    76.01    25.42     28.4     39.4 
##      .25      .50      .75      .90      .95 
##     63.0     82.0     95.0    100.0    100.0 
## 
## lowest :   0   7   9  10  13, highest:  96  97  98  99 100
sd(CC$Control_SE, na.rm = TRUE)
## [1] 23.73107
hist(CC$Control_SE)

describe(CC$Control_WE)
## CC$Control_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       68    0.997    71.25    27.61     20.8     34.6 
##      .25      .50      .75      .90      .95 
##     58.0     79.0     90.0    100.0    100.0 
## 
## lowest :   0   4  10  12  15, highest:  96  97  98  99 100
sd(CC$Control_WE, na.rm = TRUE)
## [1] 25.13561
hist(CC$Control_WE)

Score(s) & Scale(s)

# Note: Control scores & scales not present because measure is one item.)

Familiarity

# Familiarity was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant familiarity with the technology rated.

## 1. This is familiar.

Descriptives

#Define Variables
CC$Familiar_AFSCS <- CC$Risk_AFSCS_31
CC$Familiar_BIO <- CC$Risk_BIO_31
CC$Familiar_BECCS <- CC$Risk_BECCS_31
CC$Familiar_DACCS <- CC$Risk_DACCS_31
CC$Familiar_EW <- CC$Risk_EW_31
CC$Familiar_OF <- CC$Risk_OF_31
CC$Familiar_BF <- CC$Risk_BF_31
CC$Familiar_NE <- CC$Risk_NE_31
CC$Familiar_SE <- CC$Risk_SE_31
CC$Familiar_WE <- CC$Risk_WE_31

# Descriptives
describe(CC$Familiar_AFSCS)
## CC$Familiar_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       91    0.997     62.7    34.53        3       12 
##      .25      .50      .75      .90      .95 
##       42       67       89      100      100 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$Familiar_AFSCS, na.rm = TRUE)
## [1] 30.60777
hist(CC$Familiar_AFSCS)

describe(CC$Familiar_BIO)
## CC$Familiar_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       81    0.993    27.79    29.57     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.75    20.00    44.00    68.90    82.00 
## 
## lowest :   0   1   2   3   4, highest:  92  93  94  95 100
sd(CC$Familiar_BIO, na.rm = TRUE)
## [1] 27.00687
hist(CC$Familiar_BIO)

describe(CC$Familiar_BECCS)
## CC$Familiar_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.994    29.64    30.74     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    21.00    50.00    73.00    83.55 
## 
## lowest :   0   1   2   3   4, highest:  91  92  94  98 100
sd(CC$Familiar_BECCS, na.rm = TRUE)
## [1] 27.82
hist(CC$Familiar_BECCS)

describe(CC$Familiar_DACCS)
## CC$Familiar_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.992    26.05    27.55      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.5     20.0     42.0     65.0     75.0 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  99 100
sd(CC$Familiar_DACCS, na.rm = TRUE)
## [1] 25.08586
hist(CC$Familiar_DACCS)

describe(CC$Familiar_EW)
## CC$Familiar_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       76     0.98     22.5    25.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     35.5     60.0     70.0 
## 
## lowest :  0  1  2  3  4, highest: 79 80 87 90 91
sd(CC$Familiar_EW, na.rm = TRUE)
## [1] 23.20217
hist(CC$Familiar_EW)

describe(CC$Familiar_OF)
## CC$Familiar_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       76    0.992    25.62    27.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     18.0     40.5     62.8     76.0 
## 
## lowest :   0   1   2   3   4, highest:  85  86  87  89 100
sd(CC$Familiar_OF, na.rm = TRUE)
## [1] 25.34433
hist(CC$Familiar_OF)

describe(CC$Familiar_BF)
## CC$Familiar_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       87    0.999    57.92    32.61      0.0     18.0 
##      .25      .50      .75      .90      .95 
##     36.0     61.0     81.0     93.3    100.0 
## 
## lowest :   0   1   5   6   8, highest:  95  96  98  99 100
sd(CC$Familiar_BF, na.rm = TRUE)
## [1] 28.59492
hist(CC$Familiar_BF)

describe(CC$Familiar_NE)
## CC$Familiar_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       82    0.998    69.17     29.4     14.8     30.6 
##      .25      .50      .75      .90      .95 
##     53.0     75.0     90.0    100.0    100.0 
## 
## lowest :   0   2   3   4   6, highest:  95  97  98  99 100
sd(CC$Familiar_NE, na.rm = TRUE)
## [1] 26.59004
hist(CC$Familiar_NE)

describe(CC$Familiar_SE)
## CC$Familiar_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       49    0.941    87.95    15.68     52.2     65.2 
##      .25      .50      .75      .90      .95 
##     82.0     94.0    100.0    100.0    100.0 
## 
## lowest :   0  18  35  41  45, highest:  96  97  98  99 100
sd(CC$Familiar_SE, na.rm = TRUE)
## [1] 16.02333
hist(CC$Familiar_SE)

describe(CC$Familiar_WE)
## CC$Familiar_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       61    0.982    81.79     20.9     41.6     55.0 
##      .25      .50      .75      .90      .95 
##     75.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   3  13  19, highest:  96  97  98  99 100
sd(CC$Familiar_WE, na.rm = TRUE)
## [1] 20.79082
hist(CC$Familiar_WE)

Score(s) & Scale(s)

# Note: Familiarity scores & scales not present because measure is one item.)

Ideology

Descriptives

Score(s) & Scale(s)

#Political Orientation
##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

describe(CC$PI_Orientation)
## CC$PI_Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.966    4.807    2.078 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     62   102    72   183   125   239   224
## Proportion 0.062 0.101 0.071 0.182 0.124 0.237 0.222
CC$Orientation = as.numeric(recode_factor(CC$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
                                          '4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(CC$Orientation)
## CC$Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1007        0        7    0.966    4.807    2.078 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     62   102    72   183   125   239   224
## Proportion 0.062 0.101 0.071 0.182 0.124 0.237 0.222
hist(CC$Orientation , main = 'Political Orientation (Liberal to Conservative)')

#Political Party Identification
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)

describe(CC$PP_Party)
## CC$PP_Party 
##        n  missing distinct     Info     Mean      Gmd 
##     1006        1        5    0.854    2.252   0.9154 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    176   497   272    25    36
## Proportion 0.175 0.494 0.270 0.025 0.036
CC$Party <- as.numeric(as.character(CC$PP_Party))
CC$DemStrength <- as.numeric(as.character(CC$PP_DemStrength))
CC$RepStrength <- as.numeric(as.character(CC$PP_RepStrength))
CC$PartyClose <- as.numeric(as.character(CC$PP_CloserTo))

# Recode Party

CC$PartyFull <- NA
CC$PartyFull[CC$DemStrength == 1] <- -3
CC$PartyFull[CC$DemStrength == 2] <- -2
CC$PartyFull[CC$PartyClose == 1] <- -1
CC$PartyFull[CC$PartyClose == 3] <- 0
CC$PartyFull[CC$PartyClose == 2] <- 1
CC$PartyFull[CC$RepStrength == 2] <- 2
CC$PartyFull[CC$RepStrength == 1] <- 3

describe(CC$PartyFull)
## CC$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##     1006        1        7    0.956  -0.9284    2.211 
## 
## lowest : -3 -2 -1  0  1, highest: -1  0  1  2  3
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    317   180   122   148    63    92    84
## Proportion 0.315 0.179 0.121 0.147 0.063 0.091 0.083
hist(CC$PartyFull , main = 'Party Identification')

CC$PartyID <- NA
CC$PartyID[CC$PartyFull < 0] <- -0.5
CC$PartyID[CC$PartyFull == 0] <- 0
CC$PartyID[CC$PartyFull > 0] <- 0.5

#New Variable: Ideology
CC$Ideology <-  rowMeans(CC[, c('PartyFull', 'Orientation')], na.rm=T)
describe(CC$Ideology)
## CC$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1007        0       12    0.868    1.943   0.5671      1.0      1.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.0      2.5      3.0 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  2.5  3.0  3.5  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   5.0
## Frequency      1     4     4    11    53   236   492   131    62    11     1
## Proportion 0.001 0.004 0.004 0.011 0.053 0.234 0.489 0.130 0.062 0.011 0.001
##                 
## Value        6.0
## Frequency      1
## Proportion 0.001
hist(CC$Ideology)

Individualism/Collectivism

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').

##Collectivism Items
###Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. 
###Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
###Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. 
###Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

##Individualism Items 
###Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. 
###Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.  
###Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. 
###Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism (Items 1,2,5,6)
CC$Ind_1 <- as.numeric(as.character(CC$Individualism_54))
CC$Ind_2 <- as.numeric(as.character(CC$Individualism_55))
CC$Ind_5 <- as.numeric(as.character(CC$Individualism_58))
CC$Ind_6 <- as.numeric(as.character(CC$Individualism_59))
CC$Individualism_Score <- rowMeans(CC[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
CC$Ind_3 <- as.numeric(as.character(CC$Individualism_56))
CC$Ind_4 <- as.numeric(as.character(CC$Individualism_57))
CC$Ind_7 <- as.numeric(as.character(CC$Individualism_60))
CC$Ind_8 <- as.numeric(as.character(CC$Individualism_69))
CC$Collectivism_Score <- rowMeans(CC[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5,CC$Ind_6))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.015   71 17     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.72 0.75 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.47      0.30 1.3    0.024 0.010  0.31
## CC.Ind_2      0.75      0.75    0.69      0.50 3.0    0.014 0.015  0.48
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.022 0.021  0.36
## CC.Ind_6      0.69      0.70    0.64      0.44 2.3    0.017 0.031  0.36
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1007  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1007  0.64  0.63  0.41   0.35   67 23
## CC.Ind_5 1007  0.78  0.79  0.72   0.59   72 22
## CC.Ind_6 1007  0.70  0.70  0.53   0.45   70 23
hist(CC$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.8 0.0089   54 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.51 3.1    0.014 0.0156  0.44
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2    0.013 0.0070  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5    0.010 0.0037  0.62
## CC.Ind_8      0.79      0.79    0.73      0.55 3.7    0.011 0.0095  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1007  0.86  0.85  0.78   0.71   44 32
## CC.Ind_4 1007  0.83  0.84  0.77   0.69   62 29
## CC.Ind_7 1006  0.76  0.76  0.63   0.57   53 28
## CC.Ind_8 1007  0.80  0.80  0.71   0.64   58 28
hist(CC$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism and Collectivism scales
CC$IndScale <- data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6)
psych::alpha(CC$IndScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$IndScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.015   71 17     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.72 0.75 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.47      0.30 1.3    0.024 0.010  0.31
## CC.Ind_2      0.75      0.75    0.69      0.50 3.0    0.014 0.015  0.48
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.022 0.021  0.36
## CC.Ind_6      0.69      0.70    0.64      0.44 2.3    0.017 0.031  0.36
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1007  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1007  0.64  0.63  0.41   0.35   67 23
## CC.Ind_5 1007  0.78  0.79  0.72   0.59   72 22
## CC.Ind_6 1007  0.70  0.70  0.53   0.45   70 23
CC$CollScale <- data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8)
psych::alpha(CC$CollScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CollScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.8 0.0089   54 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.51 3.1    0.014 0.0156  0.44
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2    0.013 0.0070  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5    0.010 0.0037  0.62
## CC.Ind_8      0.79      0.79    0.73      0.55 3.7    0.011 0.0095  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1007  0.86  0.85  0.78   0.71   44 32
## CC.Ind_4 1007  0.83  0.84  0.77   0.69   62 29
## CC.Ind_7 1006  0.76  0.76  0.63   0.57   53 28
## CC.Ind_8 1007  0.80  0.80  0.71   0.64   58 28

Naturalness

# Naturalness was rated on a four item scale (0 = Strongly disagree to 100 = Strongly agree)  and a mean score was calculated to represent naturalness perception of the technology rated.

## 1. This is natural
## 2. This involves humans altering naturally occurring processes (Reverse code)
## 3. This relies on science-based technology (Reverse code)
## 4. This is artificial (Reverse code)

Descriptives

#Define Variables
CC$Nat_1_AFSCS <- CC$Naturalness_AFSCS_30
CC$Nat_2R_AFSCS <- (100-CC$Naturalness_AFSCS_31)
CC$Nat_3R_AFSCS <- (100-CC$Naturalness_AFSCS_35)
CC$Nat_4R_AFSCS <- (100-CC$Naturalness_AFSCS_36)

CC$Nat_1_BIO <- CC$Naturalness_BIO_30
CC$Nat_2R_BIO <- (100-CC$Naturalness_BIO_31)
CC$Nat_3R_BIO <- (100-CC$Naturalness_BIO_35)
CC$Nat_4R_BIO <- (100-CC$Naturalness_BIO_36)

CC$Nat_1_BECCS <- CC$Naturalness_BECCS_30
CC$Nat_2R_BECCS <- (100-CC$Naturalness_BECCS_31)
CC$Nat_3R_BECCS <- (100-CC$Naturalness_BECCS_35)
CC$Nat_4R_BECCS <- (100-CC$Naturalness_BECCS_36)

CC$Nat_1_DACCS <- CC$Naturalness_DACCS_30
CC$Nat_2R_DACCS <- (100-CC$Naturalness_DACCS_31)
CC$Nat_3R_DACCS <- (100-CC$Naturalness_DACCS_35)
CC$Nat_4R_DACCS <- (100-CC$Naturalness_DACCS_36)

CC$Nat_1_EW <- CC$Naturalness_EW_30
CC$Nat_2R_EW <- (100-CC$Naturalness_EW_31)
CC$Nat_3R_EW <- (100-CC$Naturalness_EW_35)
CC$Nat_4R_EW <- (100-CC$Naturalness_EW_36)

CC$Nat_1_OF <- CC$Naturalness_OF_30
CC$Nat_2R_OF <- (100-CC$Naturalness_OF_31)
CC$Nat_3R_OF <- (100-CC$Naturalness_OF_35)
CC$Nat_4R_OF <- (100-CC$Naturalness_OF_36)

CC$Nat_1_BF <- CC$Naturalness_BF_30
CC$Nat_2R_BF <- (100-CC$Naturalness_BF_31)
CC$Nat_3R_BF <- (100-CC$Naturalness_BF_35)
CC$Nat_4R_BF <- (100-CC$Naturalness_BF_36)

CC$Nat_1_NE <- CC$Naturalness_NE_30
CC$Nat_2R_NE <- (100-CC$Naturalness_NE_31)
CC$Nat_3R_NE <- (100-CC$Naturalness_NE_35)
CC$Nat_4R_NE <- (100-CC$Naturalness_NE_36)

CC$Nat_1_SE <- CC$Naturalness_SE_30
CC$Nat_2R_SE <- (100-CC$Naturalness_SE_31)
CC$Nat_3R_SE <- (100-CC$Naturalness_SE_35)
CC$Nat_4R_SE <- (100-CC$Naturalness_SE_36)

CC$Nat_1_WE <- CC$Naturalness_WE_30
CC$Nat_2R_WE <- (100-CC$Naturalness_WE_31)
CC$Nat_3R_WE <- (100-CC$Naturalness_WE_35)
CC$Nat_4R_WE <- (100-CC$Naturalness_WE_36)

# Descriptives
describe(CC$Nat_1_AFSCS)
## CC$Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77    0.991    74.92    27.28     19.1     37.0 
##      .25      .50      .75      .90      .95 
##     60.5     83.0     95.0    100.0    100.0 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
describe(CC$Nat_2R_AFSCS)
## CC$Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       95    0.999    53.22    35.19      0.0     14.0 
##      .25      .50      .75      .90      .95 
##     30.0     50.0     82.5     97.8    100.0 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_3R_AFSCS)
## CC$Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       89    0.999    39.48    33.58      0.0      2.2 
##      .25      .50      .75      .90      .95 
##     15.5     35.0     60.5     86.0     95.8 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
describe(CC$Nat_4R_AFSCS)
## CC$Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77     0.99    79.59     25.6     23.1     41.2 
##      .25      .50      .75      .90      .95 
##     67.0     91.0     99.0    100.0    100.0 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
describe(CC$Nat_1_BIO)
## CC$Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91    0.999    45.61    31.02      0.0      6.1 
##      .25      .50      .75      .90      .95 
##     25.0     46.0     64.0     83.9     96.0 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
describe(CC$Nat_2R_BIO) 
## CC$Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    37.07    27.62      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     72.7     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
describe(CC$Nat_3R_BIO)
## CC$Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       69    0.993    23.95    23.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.5     35.0     49.9     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
describe(CC$Nat_4R_BIO) 
## CC$Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       96    0.999    49.87    35.67      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     95.9    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
describe(CC$Nat_1_BECCS) 
## CC$Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    43.48    29.31     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    25.00    44.00    61.00    76.20    88.55 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
describe(CC$Nat_2R_BECCS) 
## CC$Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       72    0.997    30.43    24.88     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.00    60.00    73.65 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
describe(CC$Nat_3R_BECCS) 
## CC$Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       69    0.991    22.77    22.39     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.25    20.00    35.00    48.00    61.65 
## 
## lowest :   0   1   2   3   4, highest:  80  90  92  98 100
describe(CC$Nat_4R_BECCS)
## CC$Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    41.83    31.45      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     39.0     60.0     82.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
describe(CC$Nat_1_DACCS)
## CC$Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.996    29.22    27.38      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     25.0     41.0     63.4     81.7 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
describe(CC$Nat_2R_DACCS) 
## CC$Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       78    0.995    27.79    26.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     23.0     39.0     66.8     78.7 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
describe(CC$Nat_3R_DACCS)
## CC$Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       60    0.976    16.62    18.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     12.0     26.0     40.4     48.7 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
describe(CC$Nat_4R_DACCS)
## CC$Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       79    0.995    28.49    27.02      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     41.5     63.0     82.0 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
describe(CC$Nat_1_EW)
## CC$Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       91    0.999    46.07    31.02      0.0      7.0 
##      .25      .50      .75      .90      .95 
##     25.5     50.0     67.0     81.0     89.0 
## 
## lowest :   0   2   3   4   5, highest:  91  92  95  98 100
describe(CC$Nat_2R_EW)
## CC$Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       75    0.995    27.06    24.88      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.5     23.0     40.0     58.2     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
describe(CC$Nat_3R_EW)
## CC$Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       70    0.994    25.62    23.99        0        0 
##      .25      .50      .75      .90      .95 
##        7       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
describe(CC$Nat_4R_EW)
## CC$Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       84    0.999    44.61    31.96        0        7 
##      .25      .50      .75      .90      .95 
##       22       44       67       80       93 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
describe(CC$Nat_1_OF)
## CC$Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    40.43    31.15      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     39.0     59.5     78.4     86.7 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
describe(CC$Nat_2R_OF)
## CC$Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       65    0.996    22.48    21.68      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     19.0     32.0     46.0     60.7 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
describe(CC$Nat_3R_OF)
## CC$Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       66    0.996    25.66    23.54      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     36.0     56.0     66.7 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
describe(CC$Nat_4R_OF)
## CC$Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       87    0.999    38.51    30.22      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     16.5     38.0     55.0     77.4     91.7 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
describe(CC$Nat_1_BF)
## CC$Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       88    0.999    52.38    31.87     2.00    12.40 
##      .25      .50      .75      .90      .95 
##    34.00    51.00    75.00    90.60    99.65 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
describe(CC$Nat_2R_BF)
## CC$Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       79    0.998    38.07    30.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    35.00    54.00    79.30    90.65 
## 
## lowest :   0   2   3   4   5, highest:  90  91  95  99 100
describe(CC$Nat_3R_BF)
## CC$Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       59    0.988    17.91    18.34     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    28.00    39.00    46.65 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
describe(CC$Nat_4R_BF)
## CC$Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       84    0.999    48.67    33.41     1.35    10.00 
##      .25      .50      .75      .90      .95 
##    26.00    49.00    73.25    90.30    98.65 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
describe(CC$Nat_1_NE)
## CC$Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       80    0.995       31    28.97      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     27.0     49.0     68.2     80.4 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
describe(CC$Nat_2R_NE)
## CC$Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       72    0.994    29.96    30.59      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     23.0     43.0     77.6     95.0 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
describe(CC$Nat_3R_NE)
## CC$Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       48    0.931    11.18    14.75        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
describe(CC$Nat_4R_NE)
## CC$Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.996    32.51    30.64      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     27.0     48.0     77.4     90.0 
## 
## lowest :   0   4   5   6   7, highest:  92  95  96  99 100
describe(CC$Nat_1_SE)
## CC$Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.991    72.97    29.25     10.2     30.4 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
describe(CC$Nat_2R_SE)
## CC$Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       77    0.989    66.22    35.98      6.2     18.4 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     96.0    100.0    100.0 
## 
## lowest :   0   1   5   6   7, highest:  96  97  98  99 100
describe(CC$Nat_3R_SE)
## CC$Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       52    0.964     14.8    18.23        0        0 
##      .25      .50      .75      .90      .95 
##        0       10       22       39       50 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
describe(CC$Nat_4R_SE)
## CC$Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       76    0.997     66.2    33.02     11.0     22.2 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
describe(CC$Nat_1_WE)
## CC$Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.993       70    30.85      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     57.0     78.0     92.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_2R_WE)
## CC$Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.991    63.74    35.55       10       20 
##      .25      .50      .75      .90      .95 
##       38       72       93      100      100 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
describe(CC$Nat_3R_WE)
## CC$Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.987    20.75    22.27      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      2.0     17.0     30.0     47.0     65.8 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
describe(CC$Nat_4R_WE)
## CC$Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.997    62.96    35.06      4.8     14.2 
##      .25      .50      .75      .90      .95 
##     42.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
sd(CC$Nat_1_AFSCS, na.rm = TRUE)
## [1] 25.49721
sd(CC$Nat_2R_AFSCS, na.rm = TRUE)
## [1] 30.55137
sd(CC$Nat_3R_AFSCS, na.rm = TRUE)
## [1] 29.60784
sd(CC$Nat_4R_AFSCS, na.rm = TRUE)
## [1] 25.03207
sd(CC$Nat_1_BIO, na.rm = TRUE)
## [1] 27.09083
sd(CC$Nat_2R_BIO, na.rm = TRUE)
## [1] 24.56568
sd(CC$Nat_3R_BIO, na.rm = TRUE)
## [1] 21.92187
sd(CC$Nat_4R_BIO, na.rm = TRUE) 
## [1] 30.9548
sd(CC$Nat_1_BECCS, na.rm = TRUE) 
## [1] 25.65509
sd(CC$Nat_2R_BECCS, na.rm = TRUE) 
## [1] 22.39619
sd(CC$Nat_3R_BECCS, na.rm = TRUE) 
## [1] 20.56689
sd(CC$Nat_4R_BECCS, na.rm = TRUE)
## [1] 27.55096
sd(CC$Nat_1_DACCS, na.rm = TRUE)
## [1] 24.84149
sd(CC$Nat_2R_DACCS, na.rm = TRUE) 
## [1] 24.88956
sd(CC$Nat_3R_DACCS, na.rm = TRUE)
## [1] 17.79345
sd(CC$Nat_4R_DACCS)
## [1] NA
sd(CC$Nat_1_EW, na.rm = TRUE)
## [1] 26.98155
sd(CC$Nat_2R_EW, na.rm = TRUE)
## [1] 22.69374
sd(CC$Nat_3R_EW, na.rm = TRUE)
## [1] 21.89062
sd(CC$Nat_4R_EW, na.rm = TRUE)
## [1] 27.74477
sd(CC$Nat_1_OF, na.rm = TRUE)
## [1] 27.14107
sd(CC$Nat_2R_OF, na.rm = TRUE)
## [1] 20.49896
sd(CC$Nat_3R_OF, na.rm = TRUE)
## [1] 21.76612
sd(CC$Nat_4R_OF, na.rm = TRUE)
## [1] 26.69147
sd(CC$Nat_1_BF, na.rm = TRUE)
## [1] 27.74057
sd(CC$Nat_2R_BF, na.rm = TRUE)
## [1] 26.80887
sd(CC$Nat_3R_BF, na.rm = TRUE)
## [1] 17.00108
sd(CC$Nat_4R_BF, na.rm = TRUE)
## [1] 28.97902
sd(CC$Nat_1_NE, na.rm = TRUE)
## [1] 25.86564
sd(CC$Nat_2R_NE, na.rm = TRUE)
## [1] 28.30164
sd(CC$Nat_3R_NE, na.rm = TRUE)
## [1] 15.3576
sd(CC$Nat_4R_NE, na.rm = TRUE)
## [1] 27.60394
sd(CC$Nat_1_SE, na.rm = TRUE)
## [1] 27.34702
sd(CC$Nat_2R_SE, na.rm = TRUE)
## [1] 32.18289
sd(CC$Nat_3R_SE, na.rm = TRUE)
## [1] 18.00439
sd(CC$Nat_4R_SE, na.rm = TRUE)
## [1] 29.35406
sd(CC$Nat_1_WE, na.rm = TRUE)
## [1] 28.31885
sd(CC$Nat_2R_WE, na.rm = TRUE)
## [1] 31.29357
sd(CC$Nat_3R_WE, na.rm = TRUE)
## [1] 21.1787
sd(CC$Nat_4R_WE, na.rm = TRUE)
## [1] 30.8923
hist(CC$Nat_1_AFSCS)

hist(CC$Nat_2R_AFSCS)

hist(CC$Nat_3R_AFSCS)

hist(CC$Nat_4R_AFSCS)

hist(CC$Nat_1_BIO)

hist(CC$Nat_2R_BIO) 

hist(CC$Nat_3R_BIO)

hist(CC$Nat_4R_BIO) 

hist(CC$Nat_1_BECCS) 

hist(CC$Nat_2R_BECCS) 

hist(CC$Nat_3R_BECCS) 

hist(CC$Nat_4R_BECCS)

hist(CC$Nat_1_DACCS)

hist(CC$Nat_2R_DACCS) 

hist(CC$Nat_3R_DACCS)

hist(CC$Nat_4R_DACCS)

hist(CC$Nat_1_EW)

hist(CC$Nat_2R_EW)

hist(CC$Nat_3R_EW)

hist(CC$Nat_4R_EW)

hist(CC$Nat_1_OF)

hist(CC$Nat_2R_OF)

hist(CC$Nat_3R_OF)

hist(CC$Nat_4R_OF)

hist(CC$Nat_1_BF)

hist(CC$Nat_2R_BF)

hist(CC$Nat_3R_BF)

hist(CC$Nat_4R_BF)

hist(CC$Nat_1_NE)

hist(CC$Nat_2R_NE)

hist(CC$Nat_3R_NE)

hist(CC$Nat_4R_NE)

hist(CC$Nat_1_SE)

hist(CC$Nat_2R_SE)

hist(CC$Nat_3R_SE)

hist(CC$Nat_4R_SE)

hist(CC$Nat_1_WE)

hist(CC$Nat_2R_WE)

hist(CC$Nat_3R_WE)

hist(CC$Nat_4R_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Nat_Score_AFSCS <- rowMeans(CC [, c("Nat_1_AFSCS", "Nat_2R_AFSCS", "Nat_3R_AFSCS", "Nat_4R_AFSCS")], na.rm=TRUE)
CC$Nat_Scale_AFSCS <- data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS)

CC$Nat_Score_BIO <- rowMeans(CC [, c("Nat_1_BIO", "Nat_2R_BIO", "Nat_3R_BIO", "Nat_4R_BIO")], na.rm=TRUE)
CC$Nat_Scale_BIO <- data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO)

CC$Nat_Score_BECCS <- rowMeans(CC [, c("Nat_1_BECCS", "Nat_2R_BECCS", "Nat_3R_BECCS", "Nat_4R_BECCS")], na.rm=TRUE)
CC$Nat_Scale_BECCS <- data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS)

CC$Nat_Score_DACCS <- rowMeans(CC [, c("Nat_1_DACCS", "Nat_2R_DACCS", "Nat_3R_DACCS", "Nat_4R_DACCS")], na.rm=TRUE)
CC$Nat_Scale_DACCS <- data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS)

CC$Nat_Score_EW <- rowMeans(CC [, c("Nat_1_EW", "Nat_2R_EW", "Nat_3R_EW", "Nat_4R_EW")], na.rm=TRUE)
CC$Nat_Scale_EW <- data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW)

CC$Nat_Score_OF <- rowMeans(CC [, c("Nat_1_OF", "Nat_2R_OF", "Nat_3R_OF", "Nat_4R_OF")], na.rm=TRUE)
CC$Nat_Scale_OF <- data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF)

CC$Nat_Score_BF <- rowMeans(CC [, c("Nat_1_BF", "Nat_2R_BF", "Nat_3R_BF", "Nat_4R_BF")], na.rm=TRUE)
CC$Nat_Scale_BF <- data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF)

CC$Nat_Score_NE <- rowMeans(CC [, c("Nat_1_NE", "Nat_2R_NE", "Nat_3R_NE", "Nat_4R_NE")], na.rm=TRUE)
CC$Nat_Scale_NE <- data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE)

CC$Nat_Score_SE <- rowMeans(CC [, c("Nat_1_SE", "Nat_2R_SE", "Nat_3R_SE", "Nat_4R_SE")], na.rm=TRUE)
CC$Nat_Scale_SE <- data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE)

CC$Nat_Score_WE <- rowMeans(CC [, c("Nat_1_WE", "Nat_2R_WE", "Nat_3R_WE", "Nat_4R_WE")], na.rm=TRUE)
CC$Nat_Scale_WE <- data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE)

# Describe Scores/Scales 
describe(CC$Nat_Score_AFSCS)
## CC$Nat_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      195        1     61.8    22.29    26.65    36.55 
##      .25      .50      .75      .90      .95 
##    48.88    63.25    74.88    87.20    94.90 
## 
## lowest :   0.00   7.00   8.00  11.00  11.75, highest:  98.00  98.75  99.50  99.75 100.00
describe(CC$Nat_Scale_AFSCS)
## CC$Nat_Scale_AFSCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77    0.991    74.92    27.28     19.1     37.0 
##      .25      .50      .75      .90      .95 
##     60.5     83.0     95.0    100.0    100.0 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       95    0.999    53.22    35.19      0.0     14.0 
##      .25      .50      .75      .90      .95 
##     30.0     50.0     82.5     97.8    100.0 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       89    0.999    39.48    33.58      0.0      2.2 
##      .25      .50      .75      .90      .95 
##     15.5     35.0     60.5     86.0     95.8 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       77     0.99    79.59     25.6     23.1     41.2 
##      .25      .50      .75      .90      .95 
##     67.0     91.0     99.0    100.0    100.0 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_AFSCS, na.rm = TRUE)
## [1] 19.74064
describe(CC$Nat_Score_BIO)
## CC$Nat_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      182        1    39.12    20.95     5.75    13.50 
##      .25      .50      .75      .90      .95 
##    26.88    39.25    51.06    63.25    68.75 
## 
## lowest :  0.00  0.75  1.75  2.50  2.75, highest: 76.75 78.00 87.25 96.50 97.50
describe(CC$Nat_Scale_BIO)
## CC$Nat_Scale_BIO 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91    0.999    45.61    31.02      0.0      6.1 
##      .25      .50      .75      .90      .95 
##     25.0     46.0     64.0     83.9     96.0 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       77    0.999    37.07    27.62      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     72.7     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       69    0.993    23.95    23.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.5     35.0     49.9     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       96    0.999    49.87    35.67      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     95.9    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BIO, na.rm = TRUE)
## [1] 18.56122
describe(CC$Nat_Score_BECCS)
## CC$Nat_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      178        1    34.63    18.88     6.25    12.22 
##      .25      .50      .75      .90      .95 
##    24.50    33.75    45.94    54.33    61.39 
## 
## lowest :  0.00  2.25  2.50  3.00  4.50, highest: 75.00 76.25 77.50 78.75 79.00
describe(CC$Nat_Scale_BECCS)
## CC$Nat_Scale_BECCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    43.48    29.31     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    25.00    44.00    61.00    76.20    88.55 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       72    0.997    30.43    24.88     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.00    60.00    73.65 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       69    0.991    22.77    22.39     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.25    20.00    35.00    48.00    61.65 
## 
## lowest :   0   1   2   3   4, highest:  80  90  92  98 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       89    0.999    41.83    31.45      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     39.0     60.0     82.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BECCS, na.rm = TRUE)
## [1] 16.65608
describe(CC$Nat_Score_DACCS)
## CC$Nat_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      156    0.999    25.53    18.95     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    13.12    24.75    35.75    45.85    56.60 
## 
## lowest :  0.00  0.25  0.50  2.50  3.50, highest: 70.50 70.75 75.00 75.25 79.25
describe(CC$Nat_Scale_DACCS)
## CC$Nat_Scale_DACCS 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       82    0.996    29.22    27.38      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     25.0     41.0     63.4     81.7 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       78    0.995    27.79    26.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     23.0     39.0     66.8     78.7 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       60    0.976    16.62    18.66      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     12.0     26.0     40.4     48.7 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       79    0.995    28.49    27.02      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     41.5     63.0     82.0 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_DACCS, na.rm = TRUE)
## [1] 16.89449
describe(CC$Nat_Score_EW)
## CC$Nat_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      187        1    35.84    20.57    5.425   13.000 
##      .25      .50      .75      .90      .95 
##   22.500   36.000   49.125   57.750   65.550 
## 
## lowest :  0.00  0.50  0.75  2.25  2.50, highest: 75.00 76.75 78.50 78.75 87.50
describe(CC$Nat_Scale_EW)
## CC$Nat_Scale_EW 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       91    0.999    46.07    31.02      0.0      7.0 
##      .25      .50      .75      .90      .95 
##     25.5     50.0     67.0     81.0     89.0 
## 
## lowest :   0   2   3   4   5, highest:  91  92  95  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       75    0.995    27.06    24.88      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.5     23.0     40.0     58.2     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       70    0.994    25.62    23.99        0        0 
##      .25      .50      .75      .90      .95 
##        7       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       84    0.999    44.61    31.96        0        7 
##      .25      .50      .75      .90      .95 
##       22       44       67       80       93 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_EW, na.rm = TRUE)
## [1] 18.08834
describe(CC$Nat_Score_OF)
## CC$Nat_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      166        1    31.77    19.83     4.05     8.50 
##      .25      .50      .75      .90      .95 
##    20.00    31.25    42.50    54.35    61.00 
## 
## lowest :  0.00  0.25  1.25  2.50  3.00, highest: 73.50 75.00 80.25 80.50 84.50
describe(CC$Nat_Scale_OF)
## CC$Nat_Scale_OF 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       82    0.999    40.43    31.15      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     18.0     39.0     59.5     78.4     86.7 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       65    0.996    22.48    21.68      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     19.0     32.0     46.0     60.7 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       66    0.996    25.66    23.54      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     36.0     56.0     66.7 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       87    0.999    38.51    30.22      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     16.5     38.0     55.0     77.4     91.7 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_OF, na.rm = TRUE)
## [1] 17.48905
describe(CC$Nat_Score_BF)
## CC$Nat_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      147        1    39.26    20.21    8.088   14.450 
##      .25      .50      .75      .90      .95 
##   26.688   39.250   50.062   60.725   70.075 
## 
## lowest :  0.00  0.25  1.00  1.50  2.00, highest: 72.50 73.00 74.25 75.00 86.75
describe(CC$Nat_Scale_BF)
## CC$Nat_Scale_BF 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       88    0.999    52.38    31.87     2.00    12.40 
##      .25      .50      .75      .90      .95 
##    34.00    51.00    75.00    90.60    99.65 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       79    0.998    38.07    30.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    35.00    54.00    79.30    90.65 
## 
## lowest :   0   2   3   4   5, highest:  90  91  95  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       59    0.988    17.91    18.34     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    28.00    39.00    46.65 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
## --------------------------------------------------------------------------------
## CC.Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       84    0.999    48.67    33.41     1.35    10.00 
##      .25      .50      .75      .90      .95 
##    26.00    49.00    73.25    90.30    98.65 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BF, na.rm = TRUE)
## [1] 17.80321
describe(CC$Nat_Score_NE)
## CC$Nat_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      139    0.999    26.16    19.39     0.00     2.30 
##      .25      .50      .75      .90      .95 
##    13.50    25.00    38.25    48.25    55.60 
## 
## lowest :  0.00  1.25  1.50  2.00  2.50, highest: 60.50 63.75 65.00 69.75 75.00
describe(CC$Nat_Scale_NE)
## CC$Nat_Scale_NE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       80    0.995       31    28.97      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     27.0     49.0     68.2     80.4 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       72    0.994    29.96    30.59      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     23.0     43.0     77.6     95.0 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       48    0.931    11.18    14.75        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.996    32.51    30.64      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     27.0     48.0     77.4     90.0 
## 
## lowest :   0   4   5   6   7, highest:  92  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_NE, na.rm = TRUE)
## [1] 17.14904
describe(CC$Nat_Score_SE)
## CC$Nat_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762      143        1    55.05    20.62    24.40    31.25 
##      .25      .50      .75      .90      .95 
##    41.75    54.75    69.75    75.00    83.20 
## 
## lowest :  0.00  2.00  5.50 14.50 16.00, highest: 87.25 87.50 90.00 92.00 94.00
describe(CC$Nat_Scale_SE)
## CC$Nat_Scale_SE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       75    0.991    72.97    29.25     10.2     30.4 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       77    0.989    66.22    35.98      6.2     18.4 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     96.0    100.0    100.0 
## 
## lowest :   0   1   5   6   7, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       52    0.964     14.8    18.23        0        0 
##      .25      .50      .75      .90      .95 
##        0       10       22       39       50 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
## --------------------------------------------------------------------------------
## CC.Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       76    0.997     66.2    33.02     11.0     22.2 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_SE, na.rm = TRUE)
## [1] 18.17609
describe(CC$Nat_Score_WE)
## CC$Nat_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      146        1    54.36    21.33    21.80    25.75 
##      .25      .50      .75      .90      .95 
##    42.50    55.00    69.50    75.00    80.30 
## 
## lowest :   0.00   6.00   7.75  15.00  15.50, highest:  86.75  90.50  91.50  92.00 100.00
describe(CC$Nat_Scale_WE)
## CC$Nat_Scale_WE 
## 
##  4  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.993       70    30.85      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     57.0     78.0     92.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.991    63.74    35.55       10       20 
##      .25      .50      .75      .90      .95 
##       38       72       93      100      100 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.987    20.75    22.27      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      2.0     17.0     30.0     47.0     65.8 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       78    0.997    62.96    35.06      4.8     14.2 
##      .25      .50      .75      .90      .95 
##     42.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_WE, na.rm = TRUE)
## [1] 18.78237
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, 
##     CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.67      0.69    0.66      0.35 2.2 0.017   62 20     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.64 0.67 0.71 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Nat_1_AFSCS       0.58      0.59    0.53      0.33 1.5    0.023 0.0318  0.22
## CC.Nat_2R_AFSCS      0.54      0.57    0.54      0.30 1.3    0.026 0.0697  0.22
## CC.Nat_3R_AFSCS      0.76      0.77    0.70      0.53 3.3    0.013 0.0053  0.53
## CC.Nat_4R_AFSCS      0.50      0.51    0.45      0.25 1.0    0.027 0.0337  0.22
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_AFSCS  343  0.72  0.75  0.65   0.50   75 25
## CC.Nat_2R_AFSCS 343  0.79  0.77  0.66   0.54   53 31
## CC.Nat_3R_AFSCS 343  0.56  0.53  0.26   0.22   39 30
## CC.Nat_4R_AFSCS 343  0.80  0.82  0.77   0.63   80 25
hist(CC$Nat_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, 
##     CC$Nat_4R_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.64    0.64      0.31 1.8 0.016   39 19     0.31
## 
##  lower alpha upper     95% confidence boundaries
## 0.63 0.66 0.69 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BIO       0.51      0.51    0.43      0.25 1.03    0.025 0.017  0.24
## CC.Nat_2R_BIO      0.61      0.58    0.58      0.31 1.37    0.020 0.090  0.24
## CC.Nat_3R_BIO      0.73      0.73    0.67      0.48 2.72    0.014 0.021  0.39
## CC.Nat_4R_BIO      0.43      0.42    0.36      0.20 0.73    0.030 0.030  0.14
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BIO  332  0.78  0.75  0.70   0.55   46 27
## CC.Nat_2R_BIO 332  0.68  0.69  0.50   0.43   37 25
## CC.Nat_3R_BIO 332  0.46  0.52  0.23   0.18   24 22
## CC.Nat_4R_BIO 332  0.85  0.82  0.79   0.64   50 31
hist(CC$Nat_Score_BIO, main = 'BIO Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, 
##     CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.61    0.62      0.28 1.6 0.018   35 17     0.25
## 
##  lower alpha upper     95% confidence boundaries
## 0.59 0.63 0.67 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BECCS       0.44      0.44    0.38      0.21 0.79    0.030 0.027 0.195
## CC.Nat_2R_BECCS      0.56      0.52    0.56      0.26 1.07    0.023 0.138 0.052
## CC.Nat_3R_BECCS      0.73      0.72    0.68      0.46 2.58    0.014 0.041 0.380
## CC.Nat_4R_BECCS      0.41      0.41    0.34      0.19 0.68    0.032 0.018 0.195
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BECCS  330  0.79  0.76  0.72   0.55   43 26
## CC.Nat_2R_BECCS 330  0.67  0.70  0.50   0.42   30 22
## CC.Nat_3R_BECCS 330  0.41  0.48  0.16   0.11   23 21
## CC.Nat_4R_BECCS 330  0.82  0.78  0.76   0.59   42 28
hist(CC$Nat_Score_BECCS, main = 'BECCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, 
##     CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.69    0.67      0.35 2.2 0.015   26 17     0.33
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.73 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Nat_1_DACCS       0.54      0.53    0.45      0.27 1.1    0.024 0.014  0.25
## CC.Nat_2R_DACCS      0.67      0.65    0.63      0.38 1.8    0.017 0.076  0.25
## CC.Nat_3R_DACCS      0.75      0.75    0.70      0.50 3.0    0.014 0.028  0.41
## CC.Nat_4R_DACCS      0.52      0.51    0.43      0.25 1.0    0.025 0.019  0.19
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_DACCS  347  0.82  0.80  0.77   0.63   29 25
## CC.Nat_2R_DACCS 347  0.71  0.69  0.50   0.44   28 25
## CC.Nat_3R_DACCS 347  0.49  0.56  0.29   0.25   17 18
## CC.Nat_4R_DACCS 347  0.84  0.82  0.79   0.65   28 25
hist(CC$Nat_Score_DACCS, main = 'DACCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, 
##     CC$Nat_4R_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.68     0.7      0.35 2.2 0.015   36 18     0.31
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.73 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_EW       0.57      0.57    0.50      0.30 1.31    0.023 0.033  0.21
## CC.Nat_2R_EW      0.62      0.59    0.64      0.32 1.43    0.020 0.140  0.19
## CC.Nat_3R_EW      0.79      0.79    0.75      0.56 3.75    0.011 0.030  0.51
## CC.Nat_4R_EW      0.46      0.46    0.40      0.22 0.84    0.029 0.034  0.21
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_EW  335  0.80  0.76  0.73   0.58   46 27
## CC.Nat_2R_EW 335  0.73  0.74  0.59   0.51   27 23
## CC.Nat_3R_EW 335  0.45  0.50  0.21   0.17   26 22
## CC.Nat_4R_EW 335  0.88  0.85  0.86   0.72   45 28
hist(CC$Nat_Score_EW, main = 'EW Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, 
##     CC$Nat_4R_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.69      0.69    0.69      0.35 2.2 0.015   32 17     0.32
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.69 0.72 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_OF       0.56      0.57    0.49      0.30 1.31    0.023 0.019  0.24
## CC.Nat_2R_OF      0.63      0.60    0.63      0.34 1.53    0.020 0.115  0.21
## CC.Nat_3R_OF      0.77      0.77    0.73      0.53 3.35    0.012 0.030  0.46
## CC.Nat_4R_OF      0.48      0.49    0.42      0.24 0.95    0.028 0.024  0.24
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_OF  327  0.81  0.77  0.73   0.58   40 27
## CC.Nat_2R_OF 327  0.70  0.73  0.57   0.49   22 20
## CC.Nat_3R_OF 327  0.49  0.53  0.26   0.21   26 22
## CC.Nat_4R_OF 327  0.86  0.83  0.83   0.69   39 27
hist(CC$Nat_Score_OF, main = 'OF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, 
##     CC$Nat_4R_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.65       0.6    0.63      0.27 1.5 0.016   39 18     0.25
## 
##  lower alpha upper     95% confidence boundaries
## 0.61 0.65 0.68 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BF       0.47      0.44    0.39      0.20 0.77    0.026 0.043 0.139
## CC.Nat_2R_BF      0.55      0.46    0.55      0.22 0.86    0.020 0.176 0.039
## CC.Nat_3R_BF      0.75      0.75    0.71      0.50 3.03    0.013 0.031 0.436
## CC.Nat_4R_BF      0.38      0.34    0.32      0.15 0.51    0.030 0.049 0.139
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BF  248  0.80  0.74  0.71  0.560   52 28
## CC.Nat_2R_BF 248  0.73  0.72  0.55  0.461   38 27
## CC.Nat_3R_BF 248  0.28  0.41  0.07  0.042   18 17
## CC.Nat_4R_BF 248  0.85  0.81  0.80  0.652   49 29
hist(CC$Nat_Score_BF, main = 'BF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, 
##     CC$Nat_4R_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63       0.6    0.62      0.28 1.5 0.017   26 17     0.21
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.63 0.67 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_NE       0.42      0.40    0.33      0.18 0.66    0.028 0.022  0.15
## CC.Nat_2R_NE      0.65      0.60    0.62      0.33 1.48    0.016 0.123  0.15
## CC.Nat_3R_NE      0.70      0.71    0.69      0.45 2.44    0.017 0.062  0.34
## CC.Nat_4R_NE      0.36      0.34    0.27      0.15 0.51    0.032 0.013  0.11
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_NE  257  0.81  0.78  0.78   0.59   31 26
## CC.Nat_2R_NE 257  0.66  0.62  0.37   0.32   30 28
## CC.Nat_3R_NE 257  0.35  0.48  0.16   0.13   11 15
## CC.Nat_4R_NE 257  0.85  0.82  0.84   0.65   33 28
hist(CC$Nat_Score_NE, main = 'NE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, 
##     CC$Nat_4R_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.58      0.58    0.57      0.26 1.4 0.02   55 18     0.22
## 
##  lower alpha upper     95% confidence boundaries
## 0.54 0.58 0.62 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.Nat_1_SE       0.43      0.46    0.36      0.22 0.84    0.029 0.0034  0.24
## CC.Nat_2R_SE      0.61      0.58    0.56      0.32 1.39    0.019 0.0689  0.27
## CC.Nat_3R_SE      0.60      0.62    0.57      0.35 1.60    0.022 0.0484  0.24
## CC.Nat_4R_SE      0.34      0.34    0.26      0.15 0.52    0.033 0.0038  0.15
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_SE  245  0.73  0.71  0.63   0.46   73 27
## CC.Nat_2R_SE 245  0.65  0.60  0.33   0.27   66 32
## CC.Nat_3R_SE 245  0.45  0.56  0.30   0.23   15 18
## CC.Nat_4R_SE 245  0.80  0.79  0.75   0.55   66 29
hist(CC$Nat_Score_SE, main = 'SE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Nat_3R_WE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, 
##     CC$Nat_4R_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.58      0.53    0.58      0.22 1.1 0.02   54 19     0.18
## 
##  lower alpha upper     95% confidence boundaries
## 0.54 0.58 0.62 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r  med.r
## CC.Nat_1_WE       0.33      0.28    0.27     0.114 0.39    0.033 0.053  0.017
## CC.Nat_2R_WE      0.53      0.47    0.55     0.225 0.87    0.023 0.182  0.017
## CC.Nat_3R_WE      0.73      0.73    0.69     0.476 2.72    0.015 0.044  0.377
## CC.Nat_4R_WE      0.26      0.20    0.20     0.076 0.25    0.038 0.050 -0.051
## 
##  Item statistics 
##                n raw.r std.r  r.cor r.drop mean sd
## CC.Nat_1_WE  257  0.79  0.77  0.767  0.566   70 28
## CC.Nat_2R_WE 257  0.68  0.64  0.412  0.343   64 31
## CC.Nat_3R_WE 257  0.25  0.35 -0.039 -0.037   21 21
## CC.Nat_4R_WE 257  0.84  0.82  0.834  0.626   63 31
hist(CC$Nat_Score_WE, main = 'WE Naturalness Scale Score')

#Correlations
cor.plot(CC$Nat_Scale_AFSCS, labels = c('1','2', '3', '4'), main = "Correlation Between AFSCS Support Items")

cor.plot(CC$Nat_Scale_BIO, labels = c('1','2', '3', '4'), main = "Correlation Between BIO Support Items")

cor.plot(CC$Nat_Scale_BECCS, labels = c('1','2', '3', '4'), main = "Correlation Between BECCS Support Items")

cor.plot(CC$Nat_Scale_DACCS, labels = c('1','2', '3', '4'), main = "Correlation Between DACCS Support Items")

cor.plot(CC$Nat_Scale_EW, labels = c('1','2', '3', '4'), main = "Correlation Between EW Support Items")

cor.plot(CC$Nat_Scale_OF, labels = c('1','2', '3', '4'), main = "Correlation Between OF Support Items")

cor.plot(CC$Nat_Scale_BF, labels = c('1','2', '3', '4'), main = "Correlation Between BF Support Items")

cor.plot(CC$Nat_Scale_NE, labels = c('1','2', '3', '4'), main = "Correlation Between NE Support Items")

cor.plot(CC$Nat_Scale_SE, labels = c('1','2', '3', '4'), main = "Correlation Between SE Support Items")

cor.plot(CC$Nat_Scale_WE, labels = c('1','2', '3', '4'), main = "Correlation Between WE Support Items")

Support

# Support was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent intent to support of the technology rated, used in this study as a proxy for support.

## 1. I would personally support non-government entities deploying these on a large scale. 
## 2. I would personally support spending government tax dollars to deploy these on a large scale. 

Descriptives

# Define Variables
CC$Support1_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_18))
CC$Support2_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_19))

CC$Support1_BIO <- CC$BI_BIO_18
CC$Support2_BIO <- CC$BI_BIO_19

CC$Support1_BECCS <- CC$BI_BECCS_18
CC$Support2_BECCS <- CC$BI_BECCS_19

CC$Support1_DACCS <- CC$BI_DACCS_18
CC$Support2_DACCS <- CC$BI_DACCS_19

CC$Support1_EW <- CC$BI_EW_18
CC$Support2_EW <- CC$BI_EW_19

CC$Support1_OF <- CC$BI_OF_18
CC$Support2_OF <- CC$BI_OF_19

CC$Support1_BF <- CC$BI_BF_18
CC$Support2_BF <- CC$BI_BF_19

CC$Support1_NE <- CC$BI_NE_18
CC$Support2_NE <- CC$BI_NE_19

CC$Support1_SE <- CC$BI_SE_18
CC$Support2_SE <- CC$BI_SE_19

CC$Support1_WE <- CC$BI_WE_18
CC$Support2_WE <- CC$BI_WE_19

# Descriptives
describe(CC$Support1_AFSCS)
## CC$Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       67     0.98    78.22    25.24       25       42 
##      .25      .50      .75      .90      .95 
##       68       85      100      100      100 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
describe(CC$Support2_AFSCS)
## CC$Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       69    0.987    74.06    29.37      4.0     25.6 
##      .25      .50      .75      .90      .95 
##     63.5     82.0     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
describe(CC$Support1_BIO)
## CC$Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       86    0.999    55.82    31.12     0.00    12.00 
##      .25      .50      .75      .90      .95 
##    39.75    59.00    76.00    90.90   100.00 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
describe(CC$Support2_BIO)
## CC$Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       90    0.999    51.39    33.78      0.0      3.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
describe(CC$Support1_BECCS)
## CC$Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    55.58    32.42     0.00    10.90 
##      .25      .50      .75      .90      .95 
##    36.25    60.00    75.00    93.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
describe(CC$Support2_BECCS)
## CC$Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.998    51.04    34.04     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    28.25    54.00    73.00    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
describe(CC$Support1_DACCS)
## CC$Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       86    0.998    54.59    33.75      0.0      5.6 
##      .25      .50      .75      .90      .95 
##     35.0     60.0     75.0     97.4    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Support2_DACCS)
## CC$Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       91    0.999    51.18    33.83      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     29.5     55.0     73.5     89.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
describe(CC$Support1_EW)
## CC$Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       93    0.998    50.29    33.57      0.0      4.4 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     72.0     90.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
describe(CC$Support2_EW)
## CC$Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       87    0.998     48.3    34.89      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     72.5     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support1_OF)
## CC$Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       90    0.999    53.27    34.92      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     29.5     59.0     75.0     94.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Support2_OF)
## CC$Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.998    49.17     35.2      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     53.0     74.5     89.0     97.1 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
describe(CC$Support1_BF)
## CC$Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       78    0.999    63.28    29.39     9.35    20.70 
##      .25      .50      .75      .90      .95 
##    50.00    68.50    82.00    95.00   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
describe(CC$Support2_BF)
## CC$Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    58.35    31.34     0.00    13.00 
##      .25      .50      .75      .90      .95 
##    45.00    61.00    77.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
describe(CC$Support1_NE)
## CC$Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    49.19    39.16        0        0 
##      .25      .50      .75      .90      .95 
##       15       52       79       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support2_NE)
## CC$Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    51.91    37.72        0        0 
##      .25      .50      .75      .90      .95 
##       25       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
describe(CC$Support1_SE)
## CC$Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.956    82.66    22.78     35.0     51.4 
##      .25      .50      .75      .90      .95 
##     75.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
describe(CC$Support2_SE)
## CC$Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       66    0.965    76.36    29.66      2.4     29.4 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
describe(CC$Support1_WE)
## CC$Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.988    76.82    25.62     22.6     43.0 
##      .25      .50      .75      .90      .95 
##     69.0     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
describe(CC$Support2_WE)
## CC$Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       65    0.989    73.32    29.82      1.6     24.6 
##      .25      .50      .75      .90      .95 
##     62.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
sd(CC$Support1_AFSCS, na.rm = TRUE)
## [1] 24.36924
sd(CC$Support2_AFSCS, na.rm = TRUE)
## [1] 28.19222
sd(CC$Support1_BIO, na.rm = TRUE)
## [1] 27.4581
sd(CC$Support2_BIO, na.rm = TRUE)
## [1] 29.52825
sd(CC$Support1_BECCS, na.rm = TRUE)
## [1] 28.53122
sd(CC$Support2_BECCS, na.rm = TRUE)
## [1] 29.75296
sd(CC$Support1_DACCS, na.rm = TRUE)
## [1] 29.6834
sd(CC$Support2_DACCS, na.rm = TRUE)
## [1] 29.5563
sd(CC$Support1_EW, na.rm = TRUE)
## [1] 29.25292
sd(CC$Support2_EW, na.rm = TRUE)
## [1] 30.30295
sd(CC$Support1_OF, na.rm = TRUE)
## [1] 30.54466
sd(CC$Support2_OF, na.rm = TRUE)
## [1] 30.72261
sd(CC$Support1_BF, na.rm = TRUE)
## [1] 26.33298
sd(CC$Support2_BF, na.rm = TRUE)
## [1] 27.8222
sd(CC$Support1_NE, na.rm = TRUE)
## [1] 34.00086
sd(CC$Support2_NE, na.rm = TRUE)
## [1] 32.86786
sd(CC$Support1_SE, na.rm = TRUE)
## [1] 23.17443
sd(CC$Support2_SE, na.rm = TRUE)
## [1] 28.89797
sd(CC$Support1_WE, na.rm = TRUE)
## [1] 24.49376
sd(CC$Support2_WE, na.rm = TRUE)
## [1] 28.52271
hist(CC$Support1_AFSCS)

hist(CC$Support2_AFSCS)

hist(CC$Support1_BIO)

hist(CC$Support2_BIO)

hist(CC$Support1_BECCS)

hist(CC$Support2_BECCS)

hist(CC$Support1_DACCS)

hist(CC$Support2_DACCS)

hist(CC$Support1_EW)

hist(CC$Support2_EW)

hist(CC$Support1_OF)

hist(CC$Support2_OF)

hist(CC$Support1_BF)

hist(CC$Support2_BF)

hist(CC$Support1_NE)

hist(CC$Support2_NE)

hist(CC$Support1_SE)

hist(CC$Support2_SE)

hist(CC$Support1_WE)

hist(CC$Support2_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Support_Score_AFSCS <- rowMeans(CC [, c("Support1_AFSCS", "Support2_AFSCS")], na.rm=TRUE)
CC$Support_Scale_AFSCS <- data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS)

CC$Support_Score_BIO <- rowMeans(CC [, c("Support1_BIO", "Support2_BIO")], na.rm=TRUE)
CC$Support_Scale_BIO <- data.frame(CC$Support1_BIO, CC$Support2_BIO)

CC$Support_Score_BECCS <- rowMeans(CC [, c("Support1_BECCS", "Support2_BECCS")], na.rm=TRUE)
CC$Support_Scale_BECCS <- data.frame(CC$Support1_BECCS, CC$Support2_BECCS)

CC$Support_Score_DACCS <- rowMeans(CC [, c("Support1_DACCS", "Support2_DACCS")], na.rm=TRUE)
CC$Support_Scale_DACCS <- data.frame(CC$Support1_DACCS, CC$Support2_DACCS)

CC$Support_Score_EW <- rowMeans(CC [, c("Support1_EW", "Support2_EW")], na.rm=TRUE)
CC$Support_Scale_EW <- data.frame(CC$Support1_EW, CC$Support2_EW)

CC$Support_Score_OF <- rowMeans(CC [, c("Support1_OF", "Support2_OF")], na.rm=TRUE)
CC$Support_Scale_OF <- data.frame(CC$Support1_OF, CC$Support2_OF)

CC$Support_Score_BF <- rowMeans(CC [, c("Support1_BF", "Support2_BF")], na.rm=TRUE)
CC$Support_Scale_BF <- data.frame(CC$Support1_BF, CC$Support2_BF)

CC$Support_Score_NE <- rowMeans(CC [, c("Support1_NE", "Support2_NE")], na.rm=TRUE)
CC$Support_Scale_NE <- data.frame(CC$Support1_NE, CC$Support2_NE)

CC$Support_Score_SE <- rowMeans(CC [, c("Support1_SE", "Support2_SE")], na.rm=TRUE)
CC$Support_Scale_SE <- data.frame(CC$Support1_SE, CC$Support2_SE)

CC$Support_Score_WE <- rowMeans(CC [, c("Support1_WE", "Support2_WE")], na.rm=TRUE)
CC$Support_Scale_WE <- data.frame(CC$Support1_WE, CC$Support2_WE)

# Describe Scores/Scales 
describe(CC$Support_Score_AFSCS)
## CC$Support_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      114    0.991    76.14    25.37    30.25    46.40 
##      .25      .50      .75      .90      .95 
##    62.50    82.00    95.25   100.00   100.00 
## 
## lowest :   0.0   4.0   5.0  10.0  12.5, highest:  97.0  97.5  98.0  99.5 100.0
describe(CC$Support_Scale_AFSCS)
## CC$Support_Scale_AFSCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       67     0.98    78.22    25.24       25       42 
##      .25      .50      .75      .90      .95 
##       68       85      100      100      100 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       69    0.987    74.06    29.37      4.0     25.6 
##      .25      .50      .75      .90      .95 
##     63.5     82.0     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_AFSCS, na.rm = TRUE)
## [1] 23.61434
describe(CC$Support_Score_BIO)
## CC$Support_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      142    0.999     53.6    29.85     0.55    13.55 
##      .25      .50      .75      .90      .95 
##    36.50    54.25    74.00    87.00    95.22 
## 
## lowest :   0.0   1.0   2.5   3.5   5.0, highest:  94.0  95.0  95.5  97.5 100.0
describe(CC$Support_Scale_BIO)
## CC$Support_Scale_BIO 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       86    0.999    55.82    31.12     0.00    12.00 
##      .25      .50      .75      .90      .95 
##    39.75    59.00    76.00    90.90   100.00 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       90    0.999    51.39    33.78      0.0      3.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BIO, na.rm = TRUE)
## [1] 26.28137
describe(CC$Support_Score_BECCS)
## CC$Support_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      136    0.999    53.31       31     0.00     9.90 
##      .25      .50      .75      .90      .95 
##    35.25    55.00    74.25    85.00    98.20 
## 
## lowest :   0.0   1.0   1.5   2.0   5.0, highest:  93.0  93.5  95.0  96.0 100.0
describe(CC$Support_Scale_BECCS)
## CC$Support_Scale_BECCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    55.58    32.42     0.00    10.90 
##      .25      .50      .75      .90      .95 
##    36.25    60.00    75.00    93.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       87    0.998    51.04    34.04     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    28.25    54.00    73.00    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BECCS, na.rm = TRUE)
## [1] 27.28703
describe(CC$Support_Score_DACCS)
## CC$Support_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      148    0.999    52.88    32.02     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    35.50    55.50    73.25    89.40    99.85 
## 
## lowest :   0.0   0.5   1.0   2.0   2.5, highest:  96.5  97.0  98.5  99.5 100.0
describe(CC$Support_Scale_DACCS)
## CC$Support_Scale_DACCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       86    0.998    54.59    33.75      0.0      5.6 
##      .25      .50      .75      .90      .95 
##     35.0     60.0     75.0     97.4    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       91    0.999    51.18    33.83      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     29.5     55.0     73.5     89.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_DACCS, na.rm = TRUE)
## [1] 28.11655
describe(CC$Support_Score_EW)
## CC$Support_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      137    0.999    49.29    31.61      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     29.5     50.5     68.5     85.8     98.6 
## 
## lowest :   0.0   0.5   1.0   2.0   2.5, highest:  94.5  95.0  95.5  98.0 100.0
describe(CC$Support_Scale_EW)
## CC$Support_Scale_EW 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       93    0.998    50.29    33.57      0.0      4.4 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     72.0     90.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       87    0.998     48.3    34.89      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     72.5     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_EW, na.rm = TRUE)
## [1] 27.63767
describe(CC$Support_Score_OF)
## CC$Support_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      145    0.999    51.22       33     0.00     5.80 
##      .25      .50      .75      .90      .95 
##    27.50    54.50    73.75    89.00    95.00 
## 
## lowest :   0.0   0.5   2.0   3.0   3.5, highest:  95.0  95.5  97.0  97.5 100.0
describe(CC$Support_Scale_OF)
## CC$Support_Scale_OF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       90    0.999    53.27    34.92      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     29.5     59.0     75.0     94.4    100.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## CC.Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.998    49.17     35.2      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     20.0     53.0     74.5     89.0     97.1 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_OF, na.rm = TRUE)
## [1] 28.83405
describe(CC$Support_Score_BF)
## CC$Support_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      120        1    60.82    27.72    10.00    22.05 
##      .25      .50      .75      .90      .95 
##    50.00    64.00    78.12    92.00    99.00 
## 
## lowest :   0.0   2.5   4.0   5.0   7.0, highest:  95.0  96.5  98.0  99.0 100.0
describe(CC$Support_Scale_BF)
## CC$Support_Scale_BF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       78    0.999    63.28    29.39     9.35    20.70 
##      .25      .50      .75      .90      .95 
##    50.00    68.50    82.00    95.00   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       82    0.999    58.35    31.34     0.00    13.00 
##      .25      .50      .75      .90      .95 
##    45.00    61.00    77.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BF, na.rm = TRUE)
## [1] 24.89028
describe(CC$Support_Score_NE)
## CC$Support_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      122    0.999    50.55    35.85      0.0      0.6 
##      .25      .50      .75      .90      .95 
##     27.5     52.0     76.5     91.1     99.2 
## 
## lowest :   0.0   1.0   2.0   3.0   3.5, highest:  95.0  95.5  96.0  99.0 100.0
describe(CC$Support_Scale_NE)
## CC$Support_Scale_NE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    49.19    39.16        0        0 
##      .25      .50      .75      .90      .95 
##       15       52       79       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       86    0.997    51.91    37.72        0        0 
##      .25      .50      .75      .90      .95 
##       25       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_NE, na.rm = TRUE)
## [1] 31.10287
describe(CC$Support_Score_SE)
## CC$Support_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       93    0.979    79.51    24.49     30.4     49.2 
##      .25      .50      .75      .90      .95 
##     68.0     87.5    100.0    100.0    100.0 
## 
## lowest :   0.0   0.5   2.5  10.0  12.0, highest:  97.5  98.5  99.0  99.5 100.0
describe(CC$Support_Scale_SE)
## CC$Support_Scale_SE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.956    82.66    22.78     35.0     51.4 
##      .25      .50      .75      .90      .95 
##     75.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       66    0.965    76.36    29.66      2.4     29.4 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_SE, na.rm = TRUE)
## [1] 23.53217
describe(CC$Support_Score_WE)
## CC$Support_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       99    0.993    75.07    26.24     19.9     42.5 
##      .25      .50      .75      .90      .95 
##     64.0     80.0     95.5    100.0    100.0 
## 
## lowest :   0.0   3.0  10.5  11.0  15.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$Support_Scale_WE)
## CC$Support_Scale_WE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       63    0.988    76.82    25.62     22.6     43.0 
##      .25      .50      .75      .90      .95 
##     69.0     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       65    0.989    73.32    29.82      1.6     24.6 
##      .25      .50      .75      .90      .95 
##     62.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_WE, na.rm = TRUE)
## [1] 24.65437
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.76    0.61      0.61 3.2 0.015   76 24     0.61
## 
##  lower alpha upper     95% confidence boundaries
## 0.73 0.75 0.78 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_AFSCS      0.53      0.61    0.38      0.61 1.6       NA     0
## CC.Support2_AFSCS      0.71      0.61    0.38      0.61 1.6       NA     0
##                   med.r
## CC.Support1_AFSCS  0.61
## CC.Support2_AFSCS  0.61
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_AFSCS 343  0.88   0.9   0.7   0.61   78 24
## CC.Support2_AFSCS 343  0.91   0.9   0.7   0.61   74 28
hist(CC$Support_Score_AFSCS, main = 'AFSCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_BIO, CC$Support2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BIO, CC$Support2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82     0.7       0.7 4.7 0.011   54 26      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.82 0.84 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BIO      0.65       0.7    0.49       0.7 2.3       NA     0   0.7
## CC.Support2_BIO      0.75       0.7    0.49       0.7 2.3       NA     0   0.7
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BIO 332  0.92  0.92  0.77    0.7   56 27
## CC.Support2_BIO 332  0.93  0.92  0.77    0.7   51 30
hist(CC$Support_Score_BIO, main = 'BIO Support Scale Score')

psych::alpha(data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.86    0.75      0.75 6.1 0.0089   53 27     0.75
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.86 0.88 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_BECCS      0.72      0.75    0.57      0.75 3.1       NA     0
## CC.Support2_BECCS      0.79      0.75    0.57      0.75 3.1       NA     0
##                   med.r
## CC.Support1_BECCS  0.75
## CC.Support2_BECCS  0.75
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BECCS 330  0.93  0.94  0.81   0.75   56 29
## CC.Support2_BECCS 330  0.94  0.94  0.81   0.75   51 30
hist(CC$Support_Score_BECCS, main = 'BECCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89     0.8       0.8 8.1 0.0069   53 28      0.8
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.9 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_DACCS      0.81       0.8    0.64       0.8 4.1       NA     0
## CC.Support2_DACCS      0.80       0.8    0.64       0.8 4.1       NA     0
##                   med.r
## CC.Support1_DACCS   0.8
## CC.Support2_DACCS   0.8
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_DACCS 347  0.95  0.95  0.85    0.8   55 30
## CC.Support2_DACCS 347  0.95  0.95  0.85    0.8   51 30
hist(CC$Support_Score_DACCS, main = 'DACCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_EW, CC$Support2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_EW, CC$Support2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.2 0.01   49 28     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_EW      0.70      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Support2_EW      0.75      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_EW 335  0.93  0.93  0.79   0.72   50 29
## CC.Support2_EW 335  0.93  0.93  0.79   0.72   48 30
hist(CC$Support_Score_EW, main = 'EW Support Scale Score')

psych::alpha(data.frame(CC$Support1_OF, CC$Support2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_OF, CC$Support2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.87      0.87    0.77      0.77 6.8 0.0081   51 29     0.77
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.89 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_OF      0.77      0.77     0.6      0.77 3.4       NA     0  0.77
## CC.Support2_OF      0.78      0.77     0.6      0.77 3.4       NA     0  0.77
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_OF 327  0.94  0.94  0.83   0.77   53 31
## CC.Support2_OF 327  0.94  0.94  0.83   0.77   49 31
hist(CC$Support_Score_OF, main = 'OF Support Scale Score')

psych::alpha(data.frame(CC$Support1_BF, CC$Support2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BF, CC$Support2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82    0.69      0.69 4.4 0.012   61 25     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.82 0.84 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BF      0.65      0.69    0.48      0.69 2.2       NA     0  0.69
## CC.Support2_BF      0.73      0.69    0.48      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BF 248  0.91  0.92  0.76   0.69   63 26
## CC.Support2_BF 248  0.92  0.92  0.76   0.69   58 28
hist(CC$Support_Score_BF, main = 'BF Support Scale Score')

psych::alpha(data.frame(CC$Support1_NE, CC$Support2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_NE, CC$Support2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.84      0.84    0.73      0.73 5.4 0.0098   51 31     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_NE      0.76      0.73    0.53      0.73 2.7       NA     0  0.73
## CC.Support2_NE      0.71      0.73    0.53      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_NE 257  0.93  0.93   0.8   0.73   49 34
## CC.Support2_NE 257  0.93  0.93   0.8   0.73   52 33
hist(CC$Support_Score_NE, main = 'NE Support Scale Score')

psych::alpha(data.frame(CC$Support1_SE, CC$Support2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_SE, CC$Support2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.63      0.63 3.4 0.014   80 24     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.73 0.76 0.79 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_SE      0.50      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Support2_SE      0.78      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_SE 245  0.88   0.9  0.72   0.63   83 23
## CC.Support2_SE 245  0.92   0.9  0.72   0.63   76 29
hist(CC$Support_Score_SE, main = 'SE Support Scale Score')

psych::alpha(data.frame(CC$Support1_WE, CC$Support2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_WE, CC$Support2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.73      0.73 5.4 0.01   75 25     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_WE      0.63      0.73    0.53      0.73 2.7       NA     0  0.73
## CC.Support2_WE      0.85      0.73    0.53      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_WE 257  0.92  0.93  0.79   0.73   77 24
## CC.Support2_WE 257  0.94  0.93  0.79   0.73   73 29
hist(CC$Support_Score_WE, main = 'WE Support Scale Score')

#Correlations
cor.plot(CC$Support_Scale_AFSCS, labels = c('1','2'), main = "Correlation Between AFSCS Support Items")

cor.plot(CC$Support_Scale_BIO, labels = c('1','2'), main = "Correlation Between BIO Support Items")

cor.plot(CC$Support_Scale_BECCS, labels = c('1','2'), main = "Correlation Between BECCS Support Items")

cor.plot(CC$Support_Scale_DACCS, labels = c('1','2'), main = "Correlation Between DACCS Support Items")

cor.plot(CC$Support_Scale_EW, labels = c('1','2'), main = "Correlation Between EW Support Items")

cor.plot(CC$Support_Scale_OF, labels = c('1','2'), main = "Correlation Between OF Support Items")

cor.plot(CC$Support_Scale_BF, labels = c('1','2'), main = "Correlation Between BF Support Items")

cor.plot(CC$Support_Scale_NE, labels = c('1','2'), main = "Correlation Between NE Support Items")

cor.plot(CC$Support_Scale_SE, labels = c('1','2'), main = "Correlation Between SE Support Items")

cor.plot(CC$Support_Scale_WE, labels = c('1','2'), main = "Correlation Between WE Support Items")

Risk

# Risk was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent risk perception of the technology rated.

## 1. This is risky to deploy.
## 2. This is frightening.

Descriptives

# Define Variables
CC$Risk_1_AFSCS <- CC$Risk_AFSCS_32
CC$Risk_2_AFSCS <- CC$Risk_AFSCS_33

CC$Risk_1_BIO <- CC$Risk_BIO_32
CC$Risk_2_BIO <- CC$Risk_BIO_33

CC$Risk_1_BECCS <- CC$Risk_BECCS_32
CC$Risk_2_BECCS <- CC$Risk_BECCS_33

CC$Risk_1_DACCS <- CC$Risk_DACCS_32
CC$Risk_2_DACCS <- CC$Risk_DACCS_33

CC$Risk_1_EW <- CC$Risk_EW_32
CC$Risk_2_EW <- CC$Risk_EW_33

CC$Risk_1_OF <- CC$Risk_OF_32
CC$Risk_2_OF <- CC$Risk_OF_33

CC$Risk_1_BF <- CC$Risk_BF_32
CC$Risk_2_BF <- CC$Risk_BF_33

CC$Risk_1_NE <- CC$Risk_NE_32
CC$Risk_2_NE <- CC$Risk_NE_33

CC$Risk_1_SE <- CC$Risk_SE_32
CC$Risk_2_SE <- CC$Risk_SE_33

CC$Risk_1_WE <- CC$Risk_WE_32
CC$Risk_2_WE <- CC$Risk_WE_33

# Descriptives
describe(CC$Risk_1_AFSCS)
## CC$Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       65    0.983    19.29    23.37        0        0 
##      .25      .50      .75      .90      .95 
##        0       11       30       51       70 
## 
## lowest :   0   1   2   3   4, highest:  79  80  81  85 100
describe(CC$Risk_2_AFSCS)
## CC$Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       56    0.933    13.06    18.81      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     16.0     44.0     59.8 
## 
## lowest :   0   1   2   3   4, highest:  74  75  80  85 100
describe(CC$Risk_1_BIO)
## CC$Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       83    0.999    39.39    28.83      0.0      4.0 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.9     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
describe(CC$Risk_2_BIO)
## CC$Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       82    0.992    27.98     28.3     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    25.00    47.25    63.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
describe(CC$Risk_1_BECCS)
## CC$Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    45.35    30.93     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    24.25    49.50    64.00    80.00    92.55 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
describe(CC$Risk_2_BECCS)
## CC$Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       80    0.992    31.86    31.91      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.0     25.5     51.0     72.3     90.0 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
describe(CC$Risk_1_DACCS)
## CC$Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       90    0.999    50.12    31.12      0.0      9.0 
##      .25      .50      .75      .90      .95 
##     30.0     52.0     70.0     84.4     95.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Risk_2_DACCS)
## CC$Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       92    0.994    35.84    33.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     33.0     59.0     79.4     89.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
describe(CC$Risk_1_EW)
## CC$Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       85    0.999    45.98    30.54      3.7     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     64.0     82.6     93.3 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_EW)
## CC$Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.994    30.92    31.26      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.5     24.0     51.0     74.6     85.0 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
describe(CC$Risk_1_OF)
## CC$Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       94    0.999    54.49    31.47      1.3     14.6 
##      .25      .50      .75      .90      .95 
##     33.0     57.0     75.0     89.4     97.7 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
describe(CC$Risk_2_OF)
## CC$Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.996    38.24    33.86      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.5     37.0     62.5     80.0     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
describe(CC$Risk_1_BF)
## CC$Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       74    0.998    32.13    27.09     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    12.75    30.00    50.00    69.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
describe(CC$Risk_2_BF)
## CC$Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.984    19.96    22.59     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.75    14.00    32.00    51.00    63.65 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
describe(CC$Risk_1_NE)
## CC$Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       76    0.998    56.87    34.87      3.8     10.0 
##      .25      .50      .75      .90      .95 
##     31.0     62.0     80.0    100.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_NE)
## CC$Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       84    0.999    48.97    37.15      0.0      2.6 
##      .25      .50      .75      .90      .95 
##     20.0     54.0     76.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
describe(CC$Risk_1_SE)
## CC$Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       54    0.945    13.63    18.58      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      5.0     21.0     40.6     52.0 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
describe(CC$Risk_2_SE)
## CC$Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       42    0.821    6.735    10.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      7.0     22.6     33.8 
## 
## lowest :  0  1  2  3  4, highest: 51 64 75 79 88
describe(CC$Risk_1_WE)
## CC$Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.984    23.56    28.04      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     13.0     38.0     68.0     80.2 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
describe(CC$Risk_2_WE)
## CC$Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       55    0.915    14.02    20.08        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       19       43       68 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
sd(CC$Risk_1_AFSCS, na.rm = TRUE)
## [1] 22.70809
sd(CC$Risk_2_AFSCS, na.rm = TRUE)
## [1] 20.35588
sd(CC$Risk_1_BIO, na.rm = TRUE)
## [1] 25.12406
sd(CC$Risk_2_BIO, na.rm = TRUE)
## [1] 25.33067
sd(CC$Risk_1_BECCS, na.rm = TRUE)
## [1] 26.96612
sd(CC$Risk_2_BECCS, na.rm = TRUE)
## [1] 28.51304
sd(CC$Risk_1_DACCS, na.rm = TRUE)
## [1] 27.21191
sd(CC$Risk_2_DACCS, na.rm = TRUE)
## [1] 29.61833
sd(CC$Risk_1_EW, na.rm = TRUE)
## [1] 26.62165
sd(CC$Risk_2_EW, na.rm = TRUE)
## [1] 27.95912
sd(CC$Risk_1_OF, na.rm = TRUE)
## [1] 27.45413
sd(CC$Risk_2_OF, na.rm = TRUE)
## [1] 29.57223
sd(CC$Risk_1_BF, na.rm = TRUE)
## [1] 23.86879
sd(CC$Risk_2_BF, na.rm = TRUE)
## [1] 21.27785
sd(CC$Risk_1_NE, na.rm = TRUE)
## [1] 30.46242
sd(CC$Risk_2_NE, na.rm = TRUE)
## [1] 32.24126
sd(CC$Risk_1_SE, na.rm = TRUE)
## [1] 19.15884
sd(CC$Risk_2_SE, na.rm = TRUE)
## [1] 13.82528
sd(CC$Risk_1_WE, na.rm = TRUE)
## [1] 26.48551
sd(CC$Risk_2_WE, na.rm = TRUE)
## [1] 21.76884
hist(CC$Risk_1_AFSCS)

hist(CC$Risk_2_AFSCS)

hist(CC$Risk_1_BIO)

hist(CC$Risk_2_BIO)

hist(CC$Risk_1_BECCS)

hist(CC$Risk_2_BECCS)

hist(CC$Risk_1_DACCS)

hist(CC$Risk_2_DACCS)

hist(CC$Risk_1_EW)

hist(CC$Risk_2_EW)

hist(CC$Risk_1_OF)

hist(CC$Risk_2_OF)

hist(CC$Risk_1_BF)

hist(CC$Risk_2_BF)

hist(CC$Risk_1_NE)

hist(CC$Risk_2_NE)

hist(CC$Risk_1_SE)

hist(CC$Risk_2_SE)

hist(CC$Risk_1_WE)

hist(CC$Risk_2_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_1_AFSCS", "Risk_2_AFSCS")], na.rm=TRUE)
CC$Risk_Scale_AFSCS <- data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS)

CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_1_BIO", "Risk_2_BIO")], na.rm=TRUE)
CC$Risk_Scale_BIO <- data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO)

CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_1_BECCS", "Risk_2_BECCS")], na.rm=TRUE)
CC$Risk_Scale_BECCS <- data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS)

CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_1_DACCS", "Risk_2_DACCS")], na.rm=TRUE)
CC$Risk_Scale_DACCS <- data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS)

CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_1_EW", "Risk_2_EW")], na.rm=TRUE)
CC$Risk_Scale_EW <- data.frame(CC$Risk_1_EW, CC$Risk_2_EW)

CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_1_OF", "Risk_2_OF")], na.rm=TRUE)
CC$Risk_Scale_OF <- data.frame(CC$Risk_1_OF, CC$Risk_2_OF)

CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_1_BF", "Risk_2_BF")], na.rm=TRUE)
CC$Risk_Scale_BF <- data.frame(CC$Risk_1_BF, CC$Risk_2_BF)

CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_1_NE", "Risk_2_NE")], na.rm=TRUE)
CC$Risk_Scale_NE <- data.frame(CC$Risk_1_NE, CC$Risk_2_NE)

CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_1_SE", "Risk_2_SE")], na.rm=TRUE)
CC$Risk_Scale_SE <- data.frame(CC$Risk_1_SE, CC$Risk_2_SE)

CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_1_WE", "Risk_2_WE")], na.rm=TRUE)
CC$Risk_Scale_WE <- data.frame(CC$Risk_1_WE, CC$Risk_2_WE)

# Describe Scores/Scales 
describe(CC$Risk_Score_AFSCS)
## CC$Risk_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      103    0.987    16.18    20.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5      8.0     24.5     47.3     62.5 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  78.0  79.0  80.0  85.0 100.0
describe(CC$Risk_Scale_AFSCS)
## CC$Risk_Scale_AFSCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       65    0.983    19.29    23.37        0        0 
##      .25      .50      .75      .90      .95 
##        0       11       30       51       70 
## 
## lowest :   0   1   2   3   4, highest:  79  80  81  85 100
## --------------------------------------------------------------------------------
## CC.Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       56    0.933    13.06    18.81      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     16.0     44.0     59.8 
## 
## lowest :   0   1   2   3   4, highest:  74  75  80  85 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_AFSCS, na.rm = TRUE)
## [1] 20.1135
describe(CC$Risk_Score_BIO)
## CC$Risk_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      133        1    33.69    26.45     0.00     3.00 
##      .25      .50      .75      .90      .95 
##    12.50    32.50    50.00    63.00    75.67 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 84.0 88.0 90.0 93.0 95.0
describe(CC$Risk_Scale_BIO)
## CC$Risk_Scale_BIO 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       83    0.999    39.39    28.83      0.0      4.0 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.9     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       82    0.992    27.98     28.3     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    25.00    47.25    63.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BIO, na.rm = TRUE)
## [1] 23.16999
describe(CC$Risk_Score_BECCS)
## CC$Risk_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      140    0.999    38.61    28.99     0.00     3.95 
##      .25      .50      .75      .90      .95 
##    19.50    37.75    55.00    72.05    85.55 
## 
## lowest :   0.0   0.5   1.0   2.5   3.0, highest:  92.5  93.0  94.0  98.0 100.0
describe(CC$Risk_Scale_BECCS)
## CC$Risk_Scale_BECCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       86    0.999    45.35    30.93     0.00     6.90 
##      .25      .50      .75      .90      .95 
##    24.25    49.50    64.00    80.00    92.55 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       80    0.992    31.86    31.91      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.0     25.5     51.0     72.3     90.0 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BECCS, na.rm = TRUE)
## [1] 25.48881
describe(CC$Risk_Score_DACCS)
## CC$Risk_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      151        1    42.98    30.22     0.00     5.50 
##      .25      .50      .75      .90      .95 
##    22.25    45.00    62.50    78.10    89.35 
## 
## lowest :   0.0   0.5   1.0   2.5   3.0, highest:  95.5  98.0  98.5  99.5 100.0
describe(CC$Risk_Scale_DACCS)
## CC$Risk_Scale_DACCS 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       90    0.999    50.12    31.12      0.0      9.0 
##      .25      .50      .75      .90      .95 
##     30.0     52.0     70.0     84.4     95.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       92    0.994    35.84    33.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     33.0     59.0     79.4     89.0 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_DACCS, na.rm = TRUE)
## [1] 26.347
describe(CC$Risk_Score_EW)
## CC$Risk_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      146        1    38.45     28.7     2.35     7.50 
##      .25      .50      .75      .90      .95 
##    17.75    37.00    55.00    75.00    85.00 
## 
## lowest :   0.0   1.0   2.0   2.5   3.0, highest:  94.0  96.0  97.5  99.5 100.0
describe(CC$Risk_Scale_EW)
## CC$Risk_Scale_EW 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       85    0.999    45.98    30.54      3.7     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     64.0     82.6     93.3 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       83    0.994    30.92    31.26      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.5     24.0     51.0     74.6     85.0 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_EW, na.rm = TRUE)
## [1] 25.2467
describe(CC$Risk_Score_OF)
## CC$Risk_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      153        1    46.37    30.58     0.80    10.00 
##      .25      .50      .75      .90      .95 
##    25.25    45.50    66.25    81.50    89.85 
## 
## lowest :   0.0   0.5   1.5   2.0   5.0, highest:  96.0  97.0  98.5  99.0 100.0
describe(CC$Risk_Scale_OF)
## CC$Risk_Scale_OF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       94    0.999    54.49    31.47      1.3     14.6 
##      .25      .50      .75      .90      .95 
##     33.0     57.0     75.0     89.4     97.7 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88    0.996    38.24    33.86      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.5     37.0     62.5     80.0     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_OF, na.rm = TRUE)
## [1] 26.54645
describe(CC$Risk_Score_BF)
## CC$Risk_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      105    0.999    26.04    22.96    0.000    0.500 
##      .25      .50      .75      .90      .95 
##    8.375   22.250   40.250   52.300   60.650 
## 
## lowest :   0.0   0.5   1.0   1.5   2.5, highest:  81.5  83.5  85.5  86.0 100.0
describe(CC$Risk_Scale_BF)
## CC$Risk_Scale_BF 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       74    0.998    32.13    27.09     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    12.75    30.00    50.00    69.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       65    0.984    19.96    22.59     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.75    14.00    32.00    51.00    63.65 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BF, na.rm = TRUE)
## [1] 20.52519
describe(CC$Risk_Score_NE)
## CC$Risk_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      126        1    52.92     34.7      2.4      6.9 
##      .25      .50      .75      .90      .95 
##     25.0     58.0     75.5     91.5    100.0 
## 
## lowest :   0.0   0.5   1.5   2.0   2.5, highest:  95.5  96.5  98.5  99.0 100.0
describe(CC$Risk_Scale_NE)
## CC$Risk_Scale_NE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       76    0.998    56.87    34.87      3.8     10.0 
##      .25      .50      .75      .90      .95 
##     31.0     62.0     80.0    100.0    100.0 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       84    0.999    48.97    37.15      0.0      2.6 
##      .25      .50      .75      .90      .95 
##     20.0     54.0     76.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_NE, na.rm = TRUE)
## [1] 30.17134
describe(CC$Risk_Score_SE)
## CC$Risk_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       69    0.955    10.18    13.87      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.0     15.0     34.0     42.9 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 45.0 48.5 51.0 63.0 78.5
describe(CC$Risk_Scale_SE)
## CC$Risk_Scale_SE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       54    0.945    13.63    18.58      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      5.0     21.0     40.6     52.0 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
## --------------------------------------------------------------------------------
## CC.Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       42    0.821    6.735    10.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      7.0     22.6     33.8 
## 
## lowest :  0  1  2  3  4, highest: 51 64 75 79 88
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_SE, na.rm = TRUE)
## [1] 14.22085
describe(CC$Risk_Score_WE)
## CC$Risk_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       94    0.988    18.79    23.08      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     11.0     25.5     52.2     67.3 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 89.0 89.5 92.0 98.0 98.5
describe(CC$Risk_Scale_WE)
## CC$Risk_Scale_WE 
## 
##  2  Variables      1007  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       71    0.984    23.56    28.04      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     13.0     38.0     68.0     80.2 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
## --------------------------------------------------------------------------------
## CC.Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       55    0.915    14.02    20.08        0        0 
##      .25      .50      .75      .90      .95 
##        0        4       19       43       68 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_WE, na.rm = TRUE)
## [1] 22.76701
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.85      0.85    0.74      0.74 5.8 0.0093   16 20     0.74
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.85 0.87 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_AFSCS      0.83      0.74    0.55      0.74 2.9       NA     0  0.74
## CC.Risk_2_AFSCS      0.67      0.74    0.55      0.74 2.9       NA     0  0.74
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_AFSCS 343  0.94  0.93  0.81   0.74   19 23
## CC.Risk_2_AFSCS 343  0.93  0.93  0.81   0.74   13 20
hist(CC$Risk_Score_AFSCS, main = 'AFSCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.81    0.69      0.69 4.4 0.012   34 23     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.81 0.84 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BIO      0.68      0.69    0.47      0.69 2.2       NA     0  0.69
## CC.Risk_2_BIO      0.69      0.69    0.47      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BIO 332  0.92  0.92  0.76   0.69   39 25
## CC.Risk_2_BIO 332  0.92  0.92  0.76   0.69   28 25
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.82    0.69      0.69 4.4 0.012   39 25     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.81 0.84 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BECCS      0.65      0.69    0.47      0.69 2.2       NA     0  0.69
## CC.Risk_2_BECCS      0.73      0.69    0.47      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BECCS 330  0.91  0.92  0.76   0.69   45 27
## CC.Risk_2_BECCS 330  0.92  0.92  0.76   0.69   32 29
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.83      0.84    0.72      0.72 5.1 0.01   43 26     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.86 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_DACCS      0.66      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Risk_2_DACCS      0.78      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_DACCS 347  0.92  0.93  0.79   0.72   50 27
## CC.Risk_2_DACCS 347  0.93  0.93  0.79   0.72   36 30
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.71      0.71 4.9 0.011   38 25     0.71
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_EW      0.68      0.71    0.51      0.71 2.5       NA     0  0.71
## CC.Risk_2_EW      0.75      0.71    0.51      0.71 2.5       NA     0  0.71
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_EW 335  0.92  0.93  0.78   0.71   46 27
## CC.Risk_2_EW 335  0.93  0.93  0.78   0.71   31 28
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.84      0.85    0.73      0.73 5.5 0.0097   46 27     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.84 0.86 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_OF      0.68      0.73    0.54      0.73 2.7       NA     0  0.73
## CC.Risk_2_OF      0.79      0.73    0.54      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_OF 327  0.93  0.93   0.8   0.73   54 27
## CC.Risk_2_OF 327  0.94  0.93   0.8   0.73   38 30
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.79      0.79    0.65      0.65 3.8 0.013   26 21     0.65
## 
##  lower alpha upper     95% confidence boundaries
## 0.76 0.79 0.81 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BF      0.73      0.65    0.43      0.65 1.9       NA     0  0.65
## CC.Risk_2_BF      0.58      0.65    0.43      0.65 1.9       NA     0  0.65
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BF 248  0.92  0.91  0.73   0.65   32 24
## CC.Risk_2_BF 248  0.90  0.91  0.73   0.65   20 21
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.92      0.92    0.85      0.85  12 0.0051   53 30     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.91 0.92 0.93 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_NE      0.81      0.85    0.73      0.85 5.8       NA     0  0.85
## CC.Risk_2_NE      0.90      0.85    0.73      0.85 5.8       NA     0  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_NE 257  0.96  0.96  0.89   0.85   57 30
## CC.Risk_2_NE 257  0.96  0.96  0.89   0.85   49 32
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.62      0.64    0.47      0.47 1.8 0.022   10 14     0.47
## 
##  lower alpha upper     95% confidence boundaries
## 0.58 0.62 0.66 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_SE      0.66      0.47    0.22      0.47 0.9       NA     0  0.47
## CC.Risk_2_SE      0.34      0.47    0.22      0.47 0.9       NA     0  0.47
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_SE 245   0.9  0.86  0.59   0.47 13.6 19
## CC.Risk_2_SE 245   0.8  0.86  0.59   0.47  6.7 14
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.87      0.88    0.78      0.78   7 0.008   19 23     0.78
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.87 0.88 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_WE      0.95      0.78    0.61      0.78 3.5       NA     0  0.78
## CC.Risk_2_WE      0.64      0.78    0.61      0.78 3.5       NA     0  0.78
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_WE 257  0.95  0.94  0.83   0.78   24 26
## CC.Risk_2_WE 257  0.93  0.94  0.83   0.78   14 22
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')

#Correlations
cor.plot(CC$Risk_Scale_AFSCS, labels = c('1','2'), main = "Correlation Between AFSCS Risk Items")

cor.plot(CC$Risk_Scale_BIO, labels = c('1','2'), main = "Correlation Between BIO Risk Items")

cor.plot(CC$Risk_Scale_BECCS, labels = c('1','2'), main = "Correlation Between BECCS Risk Items")

cor.plot(CC$Risk_Scale_DACCS, labels = c('1','2'), main = "Correlation Between DACCS Risk Items")

cor.plot(CC$Risk_Scale_EW, labels = c('1','2'), main = "Correlation Between EW Risk Items")

cor.plot(CC$Risk_Scale_OF, labels = c('1','2'), main = "Correlation Between OF Risk Items")

cor.plot(CC$Risk_Scale_BF, labels = c('1','2'), main = "Correlation Between BF Risk Items")

cor.plot(CC$Risk_Scale_NE, labels = c('1','2'), main = "Correlation Between NE Risk Items")

cor.plot(CC$Risk_Scale_SE, labels = c('1','2'), main = "Correlation Between SE Risk Items")

cor.plot(CC$Risk_Scale_WE, labels = c('1','2'), main = "Correlation Between WE Risk Items")

Understanding

# Understanding was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant understanding of the technology rated.

## 1. I understand how this works.

Descriptives

# Define Variables
CC$Und_AFSCS <- CC$Risk_AFSCS_30
CC$Und_BIO <- CC$Risk_BIO_30
CC$Und_BECCS <- CC$Risk_BECCS_30
CC$Und_DACCS <- CC$Risk_DACCS_30
CC$Und_EW <- CC$Risk_EW_30
CC$Und_OF <- CC$Risk_OF_30
CC$Und_BF <- CC$Risk_BF_30
CC$Und_NE <- CC$Risk_NE_30
CC$Und_SE <- CC$Risk_SE_30
CC$Und_WE <- CC$Risk_WE_30

# Descriptives
describe(CC$Und_AFSCS)
## CC$Und_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664       85    0.995    70.96    28.64     17.3     32.0 
##      .25      .50      .75      .90      .95 
##     57.0     77.0     92.0    100.0    100.0 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
describe(CC$Und_BIO)
## CC$Und_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675       91        1    48.06    32.06        1       10 
##      .25      .50      .75      .90      .95 
##       25       50       70       86       95 
## 
## lowest :   0   1   2   5   6, highest:  94  95  97  98 100
describe(CC$Und_BECCS)
## CC$Und_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677       93    0.999    45.42    32.95      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     22.0     44.5     67.0     85.0     92.0 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Und_DACCS)
## CC$Und_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660       93        1    45.61    34.44      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     19.0     46.0     70.0     85.0     92.7 
## 
## lowest :   0   1   2   3   4, highest:  93  95  98  99 100
describe(CC$Und_EW)
## CC$Und_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672       90    0.999    43.44    31.42      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     21.5     41.0     63.0     80.6     88.0 
## 
## lowest :   0   1   2   3   4, highest:  88  91  93  94 100
describe(CC$Und_OF)
## CC$Und_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680       88        1    51.18    32.34      5.0      9.0 
##      .25      .50      .75      .90      .95 
##     28.0     53.0     73.5     87.0     94.0 
## 
## lowest :   0   2   4   5   6, highest:  94  95  97  98 100
describe(CC$Und_BF)
## CC$Und_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759       80    0.999    61.88    30.79     6.75    23.40 
##      .25      .50      .75      .90      .95 
##    42.75    66.00    81.25    99.00   100.00 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
describe(CC$Und_NE)
## CC$Und_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       83    0.999    65.29    30.66     10.8     23.6 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     88.0     99.4    100.0 
## 
## lowest :   0   2   3   4   6, highest:  96  97  98  99 100
describe(CC$Und_SE)
## CC$Und_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       56    0.978    83.81    19.14     50.0     56.4 
##      .25      .50      .75      .90      .95 
##     75.0     90.0    100.0    100.0    100.0 
## 
## lowest :   2   5  21  22  30, highest:  96  97  98  99 100
describe(CC$Und_WE)
## CC$Und_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       53    0.982    82.82    19.09     51.0     61.2 
##      .25      .50      .75      .90      .95 
##     74.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0  15  16  19  26, highest:  96  97  98  99 100
sd(CC$Und_AFSCS, na.rm = TRUE)
## [1] 26.01993
sd(CC$Und_BIO, na.rm = TRUE)
## [1] 27.80563
sd(CC$Und_BECCS, na.rm = TRUE)
## [1] 28.56679
sd(CC$Und_DACCS, na.rm = TRUE)
## [1] 29.85122
sd(CC$Und_EW, na.rm = TRUE)
## [1] 27.30677
sd(CC$Und_OF, na.rm = TRUE)
## [1] 28.08305
sd(CC$Und_BF, na.rm = TRUE)
## [1] 27.24634
sd(CC$Und_NE, na.rm = TRUE)
## [1] 27.26283
sd(CC$Und_SE, na.rm = TRUE)
## [1] 18.50476
sd(CC$Und_WE, na.rm = TRUE)
## [1] 18.43885
hist(CC$Und_AFSCS)

hist(CC$Und_BIO)

hist(CC$Und_BECCS)

hist(CC$Und_DACCS)

hist(CC$Und_EW)

hist(CC$Und_OF)

hist(CC$Und_BF)

hist(CC$Und_NE)

hist(CC$Und_SE)

hist(CC$Und_WE)

Score(s) & Scale(s)

# Note: Understanding scores & scales not present because measure is one item.)

Benefit - Risk Difference

Descriptives / Score(s) & Scale(s)

#Difference Score
CC$BRDiff.AFSCS <- (CC$Ben_AFSCS - CC$Risk_Score_AFSCS) 
CC$BRDiff.BIO <- (CC$Ben_BIO - CC$Risk_Score_BIO) 
CC$BRDiff.BECCS <- (CC$Ben_BECCS - CC$Risk_Score_BECCS) 
CC$BRDiff.DACCS <- (CC$Ben_DACCS - CC$Risk_Score_DACCS) 
CC$BRDiff.EW <- (CC$Ben_EW - CC$Risk_Score_EW) 
CC$BRDiff.OF <- (CC$Ben_OF - CC$Risk_Score_OF)
CC$BRDiff.BF <- (CC$Ben_BF - CC$Risk_Score_BF) 
CC$BRDiff.NE <- (CC$Ben_NE - CC$Risk_Score_NE) 
CC$BRDiff.SE <- (CC$Ben_SE - CC$Risk_Score_SE) 
CC$BRDiff.WE <- (CC$Ben_WE - CC$Risk_Score_WE) 

#Descriptives
describe(CC$BRDiff.AFSCS)
## CC$BRDiff.AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      167        1    52.25     38.7    -10.9      1.8 
##      .25      .50      .75      .90      .95 
##     32.5     57.0     80.0     92.0    100.0 
## 
## lowest : -100.0  -56.5  -45.0  -42.0  -37.5, highest:   97.0   98.0   98.5   99.5  100.0
describe(CC$BRDiff.BIO)
## CC$BRDiff.BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      182        1    19.78    44.51  -47.500  -27.000 
##      .25      .50      .75      .90      .95 
##   -6.125   18.250   45.625   74.450   87.000 
## 
## lowest : -90.0 -80.0 -77.5 -76.5 -75.0, highest:  91.5  93.0  95.5  99.5 100.0
describe(CC$BRDiff.BECCS)
## CC$BRDiff.BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      187        1    16.39    47.73   -59.65   -36.05 
##      .25      .50      .75      .90      .95 
##   -10.75    19.00    46.00    72.55    80.55 
## 
## lowest : -100.0  -93.0  -90.0  -87.0  -83.0, highest:   87.5   88.0   90.0   94.0  100.0
describe(CC$BRDiff.DACCS)
## CC$BRDiff.DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      200        1    12.37    48.68   -60.35   -40.00 
##      .25      .50      .75      .90      .95 
##   -15.00    10.00    43.25    68.20    85.40 
## 
## lowest : -100.0  -93.0  -92.0  -83.5  -80.0, highest:   95.0   96.0   98.0   99.0  100.0
describe(CC$BRDiff.EW)
## CC$BRDiff.EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      184        1     13.7    44.02   -51.95   -36.60 
##      .25      .50      .75      .90      .95 
##    -9.75    12.00    44.25    61.30    71.05 
## 
## lowest : -100.0  -88.5  -87.5  -81.0  -80.0, highest:   89.0   91.0   95.0   97.5  100.0
describe(CC$BRDiff.OF)
## CC$BRDiff.OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      188        1     8.17    47.47   -69.85   -53.90 
##      .25      .50      .75      .90      .95 
##   -16.50    10.00    36.00    62.70    73.90 
## 
## lowest : -100.0  -99.0  -90.5  -87.0  -85.0, highest:   87.5   88.0   89.0   98.0  100.0
describe(CC$BRDiff.BF)
## CC$BRDiff.BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      152        1    25.88    42.11   -33.77   -22.15 
##      .25      .50      .75      .90      .95 
##     0.00    24.25    51.75    75.30    84.82 
## 
## lowest : -100.0  -81.0  -60.5  -58.5  -57.5, highest:   92.0   92.5   95.5   99.5  100.0
describe(CC$BRDiff.NE)
## CC$BRDiff.NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      169        1    7.265    55.56    -82.6    -63.7 
##      .25      .50      .75      .90      .95 
##    -20.0      4.0     44.5     78.7     86.8 
## 
## lowest : -100.0  -90.0  -89.0  -87.5  -86.5, highest:   92.5   94.5   95.5   97.0  100.0
describe(CC$BRDiff.SE)
## CC$BRDiff.SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762      132    0.999    56.12    35.25     -1.4     15.5 
##      .25      .50      .75      .90      .95 
##     34.0     60.5     80.0     96.3    100.0 
## 
## lowest : -30.0 -27.5 -25.5 -22.5 -20.0, highest:  96.5  97.5  98.0  99.5 100.0
describe(CC$BRDiff.WE)
## CC$BRDiff.WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      145        1     46.1    44.66    -30.5    -10.2 
##      .25      .50      .75      .90      .95 
##     23.5     55.5     74.0     90.7    100.0 
## 
## lowest : -92.5 -89.5 -84.0 -79.0 -74.5, highest:  95.0  96.5  98.5  99.5 100.0
#Histograms
hist(CC$BRDiff.AFSCS)

hist(CC$BRDiff.BIO)

hist(CC$BRDiff.BECCS)

hist(CC$BRDiff.DACCS)

hist(CC$BRDiff.EW)

hist(CC$BRDiff.OF)

hist(CC$BRDiff.BF)

hist(CC$BRDiff.NE)

hist(CC$BRDiff.SE)

hist(CC$BRDiff.WE)

#SD
sd(CC$BRDiff.AFSCS, na.rm = TRUE)
## [1] 35.00885
sd(CC$BRDiff.BIO, na.rm = TRUE)
## [1] 39.30418
sd(CC$BRDiff.BECCS, na.rm = TRUE)
## [1] 42.27369
sd(CC$BRDiff.DACCS, na.rm = TRUE)
## [1] 42.78619
sd(CC$BRDiff.EW, na.rm = TRUE)
## [1] 39.15126
sd(CC$BRDiff.OF, na.rm = TRUE)
## [1] 42.17408
sd(CC$BRDiff.BF, na.rm = TRUE)
## [1] 37.18901
sd(CC$BRDiff.NE, na.rm = TRUE)
## [1] 48.96707
sd(CC$BRDiff.SE, na.rm = TRUE)
## [1] 31.2928
sd(CC$BRDiff.WE, na.rm = TRUE)
## [1] 40.94974

Familiarity/Understanding

Descriptives / Score(s) & Scale(s)

#Mean understanding/familiarity scores  by technology
CC$FR.AFSCS <- rowMeans(CC [, c("Familiar_AFSCS", "Und_AFSCS")], na.rm=TRUE)
CC$FR.BIO <- rowMeans(CC [, c("Familiar_BIO", "Und_BIO")], na.rm=TRUE)
CC$FR.BECCS <- rowMeans(CC [, c("Familiar_BECCS", "Und_BECCS")], na.rm=TRUE)
CC$FR.DACCS <- rowMeans(CC [, c("Familiar_DACCS", "Und_DACCS")], na.rm=TRUE)
CC$FR.EW <- rowMeans(CC [, c("Familiar_EW", "Und_EW")], na.rm=TRUE)
CC$FR.OF <- rowMeans(CC [, c("Familiar_OF", "Und_OF")], na.rm=TRUE)
CC$FR.BF <- rowMeans(CC [, c("Familiar_BF", "Und_BF")], na.rm=TRUE)
CC$FR.NE <- rowMeans(CC [, c("Familiar_NE", "Und_NE")], na.rm=TRUE)
CC$FR.SE <- rowMeans(CC [, c("Familiar_SE", "Und_SE")], na.rm=TRUE)
CC$FR.WE <- rowMeans(CC [, c("Familiar_WE", "Und_WE")], na.rm=TRUE)

#Descriptives
describe(CC$FR.AFSCS)
## CC$FR.AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      343      664      149    0.999    66.83    29.53     16.6     26.6 
##      .25      .50      .75      .90      .95 
##     50.0     71.0     88.5    100.0    100.0 
## 
## lowest :   0.0   0.5   2.5   3.5   5.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$FR.BIO)
## CC$FR.BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      332      675      138        1    37.92    27.57     1.00     9.10 
##      .25      .50      .75      .90      .95 
##    18.88    34.75    54.50    73.95    80.00 
## 
## lowest :   0.0   0.5   1.0   3.0   3.5, highest:  92.5  93.0  93.5  98.5 100.0
describe(CC$FR.BECCS)
## CC$FR.BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      330      677      142        1    37.53    28.26    0.225    4.500 
##      .25      .50      .75      .90      .95 
##   18.000   35.000   52.500   71.550   82.325 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  92.5  93.5  95.0  99.5 100.0
describe(CC$FR.DACCS)
## CC$FR.DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      347      660      149        1    35.83     27.9     0.50     5.00 
##      .25      .50      .75      .90      .95 
##    15.00    34.00    52.00    69.70    78.55 
## 
## lowest :   0.0   0.5   1.0   2.0   2.5, highest:  93.0  93.5  95.0  99.5 100.0
describe(CC$FR.EW)
## CC$FR.EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      335      672      128        1    32.97    25.23      0.0      3.0 
##      .25      .50      .75      .90      .95 
##     16.0     30.5     47.5     64.6     75.5 
## 
## lowest :  0.0  1.0  1.5  2.0  2.5, highest: 86.0 88.5 89.5 95.0 95.5
describe(CC$FR.OF)
## CC$FR.OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      327      680      145        1     38.4    25.63     4.50     7.50 
##      .25      .50      .75      .90      .95 
##    20.00    38.50    52.50    67.50    80.35 
## 
## lowest :   0.0   0.5   1.0   2.0   3.5, highest:  86.5  87.0  92.5  93.0 100.0
describe(CC$FR.BF)
## CC$FR.BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      248      759      117        1     59.9    28.49    12.70    26.70 
##      .25      .50      .75      .90      .95 
##    44.38    61.00    77.50    93.00    99.32 
## 
## lowest :   0.0   0.5   2.5  10.0  11.5, highest:  97.5  98.5  99.0  99.5 100.0
describe(CC$FR.NE)
## CC$FR.NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750      120        1    67.23    26.85     19.2     33.6 
##      .25      .50      .75      .90      .95 
##     51.0     72.5     87.0     95.0     99.2 
## 
## lowest :   0.0   2.5   3.0   6.0   7.5, highest:  96.5  97.0  97.5  99.0 100.0
describe(CC$FR.SE)
## CC$FR.SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      245      762       78    0.987    85.88    16.23     52.2     63.7 
##      .25      .50      .75      .90      .95 
##     80.0     90.0     98.5    100.0    100.0 
## 
## lowest :  23.0  25.0  33.0  40.5  42.5, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$FR.WE)
## CC$FR.WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      257      750       88    0.994    82.31    17.72     50.4     63.0 
##      .25      .50      .75      .90      .95 
##     73.5     86.0     95.0    100.0    100.0 
## 
## lowest :   1.5   8.0  16.0  23.5  34.0, highest:  97.0  97.5  98.0  99.5 100.0
#SD
sd(CC$FR.AFSCS, na.rm = TRUE)
## [1] 26.26246
sd(CC$FR.BIO, na.rm = TRUE)
## [1] 24.31053
sd(CC$FR.BECCS, na.rm = TRUE)
## [1] 24.87139
sd(CC$FR.DACCS, na.rm = TRUE)
## [1] 24.4548
sd(CC$FR.EW, na.rm = TRUE)
## [1] 22.23358
sd(CC$FR.OF, na.rm = TRUE)
## [1] 22.49241
sd(CC$FR.BF, na.rm = TRUE)
## [1] 25.10918
sd(CC$FR.NE, na.rm = TRUE)
## [1] 24.0517
sd(CC$FR.SE, na.rm = TRUE)
## [1] 15.59678
sd(CC$FR.WE, na.rm = TRUE)
## [1] 16.95988
#Histograms
hist(CC$FR.AFSCS)

hist(CC$FR.BIO)

hist(CC$FR.BECCS)

hist(CC$FR.DACCS)

hist(CC$FR.EW)

hist(CC$FR.OF)

hist(CC$FR.BF)

hist(CC$FR.NE)

hist(CC$FR.SE)

hist(CC$FR.WE)

#Scales
CC$FR2.AFSCS <- data.frame(CC$Familiar_AFSCS, CC$Und_AFSCS)
CC$FR2.BIO <- data.frame(CC$Familiar_BIO, CC$Und_BIO)
CC$FR2.BECCS <- data.frame(CC$Familiar_BECCS, CC$Und_BECCS)
CC$FR2.DACCS <- data.frame(CC$Familiar_DACCS, CC$Und_DACCS)
CC$FR2.EW <- data.frame(CC$Familiar_EW, CC$Und_EW)
CC$FR2.OF <- data.frame(CC$Familiar_OF, CC$Und_OF)
CC$FR2.BF <- data.frame(CC$Familiar_BF, CC$Und_BF)
CC$FR2.NE <- data.frame(CC$Familiar_NE, CC$Und_NE)
CC$FR2.SE <- data.frame(CC$Familiar_SE, CC$Und_SE)
CC$FR2.WE <- data.frame(CC$Familiar_WE, CC$Und_WE)

#Alphas
psych::alpha(CC$FR2.AFSCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.AFSCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.83      0.84    0.72      0.72 5.1 0.01   67 26     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_AFSCS      0.85      0.72    0.52      0.72 2.6       NA     0
## CC.Und_AFSCS           0.61      0.72    0.52      0.72 2.6       NA     0
##                   med.r
## CC.Familiar_AFSCS  0.72
## CC.Und_AFSCS       0.72
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_AFSCS 343  0.94  0.93  0.79   0.72   63 31
## CC.Und_AFSCS      343  0.91  0.93  0.79   0.72   71 26
psych::alpha(CC$FR2.BIO)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BIO)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.73      0.73    0.57      0.57 2.7 0.017   38 24     0.57
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.73 0.76 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BIO      0.56      0.57    0.33      0.57 1.3       NA     0  0.57
## CC.Und_BIO           0.59      0.57    0.33      0.57 1.3       NA     0  0.57
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BIO 332  0.88  0.89  0.67   0.57   28 27
## CC.Und_BIO      332  0.89  0.89  0.67   0.57   48 28
psych::alpha(CC$FR2.BECCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BECCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.71      0.71    0.56      0.56 2.5 0.018   38 25     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.68 0.71 0.75 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_BECCS      0.54      0.56    0.31      0.56 1.3       NA     0
## CC.Und_BECCS           0.57      0.56    0.31      0.56 1.3       NA     0
##                   med.r
## CC.Familiar_BECCS  0.56
## CC.Und_BECCS       0.56
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BECCS 330  0.88  0.88  0.66   0.56   30 28
## CC.Und_BECCS      330  0.89  0.88  0.66   0.56   45 29
psych::alpha(CC$FR2.DACCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.DACCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.73      0.74    0.58      0.58 2.8 0.017   36 24     0.58
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.73 0.76 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_DACCS      0.49      0.58    0.34      0.58 1.4       NA     0
## CC.Und_DACCS           0.69      0.58    0.34      0.58 1.4       NA     0
##                   med.r
## CC.Familiar_DACCS  0.58
## CC.Und_DACCS       0.58
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_DACCS 347  0.87  0.89  0.68   0.58   26 25
## CC.Und_DACCS      347  0.91  0.89  0.68   0.58   46 30
psych::alpha(CC$FR2.EW)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.EW)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.71    0.55      0.55 2.4 0.018   33 22     0.55
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.74 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_EW      0.46      0.55     0.3      0.55 1.2       NA     0  0.55
## CC.Und_EW           0.64      0.55     0.3      0.55 1.2       NA     0  0.55
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_EW 335  0.86  0.88  0.65   0.55   22 23
## CC.Und_EW      335  0.90  0.88  0.65   0.55   43 27
psych::alpha(CC$FR2.OF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.OF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.59      0.59    0.42      0.42 1.4 0.026   38 22     0.42
## 
##  lower alpha upper     95% confidence boundaries
## 0.53 0.59 0.64 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_OF      0.38      0.42    0.17      0.42 0.71       NA     0  0.42
## CC.Und_OF           0.46      0.42    0.17      0.42 0.71       NA     0  0.42
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_OF 327  0.82  0.84  0.54   0.42   26 25
## CC.Und_OF      327  0.86  0.84  0.54   0.42   51 28
psych::alpha(CC$FR2.BF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.76    0.62      0.62 3.2 0.015   60 25     0.62
## 
##  lower alpha upper     95% confidence boundaries
## 0.73 0.76 0.79 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BF      0.65      0.62    0.38      0.62 1.6       NA     0  0.62
## CC.Und_BF           0.59      0.62    0.38      0.62 1.6       NA     0  0.62
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BF 248  0.90   0.9  0.71   0.62   58 29
## CC.Und_BF      248  0.89   0.9  0.71   0.62   62 27
psych::alpha(CC$FR2.NE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.NE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.75     0.6       0.6 2.9 0.016   67 24      0.6
## 
##  lower alpha upper     95% confidence boundaries
## 0.72 0.75 0.78 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_NE      0.58       0.6    0.35       0.6 1.5       NA     0   0.6
## CC.Und_NE           0.61       0.6    0.35       0.6 1.5       NA     0   0.6
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_NE 257  0.89  0.89  0.69    0.6   69 27
## CC.Und_NE      257  0.90  0.89  0.69    0.6   65 27
psych::alpha(CC$FR2.SE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.SE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.77      0.77    0.63      0.63 3.4 0.014   86 16     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.77 0.8 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_SE      0.55      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Und_SE           0.73      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_SE 245  0.89   0.9  0.72   0.63   88 16
## CC.Und_SE      245  0.92   0.9  0.72   0.63   84 19
psych::alpha(CC$FR2.WE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.WE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.66    0.49      0.49 1.9 0.021   82 17     0.49
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.66 0.7 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_WE      0.56      0.49    0.24      0.49 0.97       NA     0  0.49
## CC.Und_WE           0.44      0.49    0.24      0.49 0.97       NA     0  0.49
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_WE 257  0.88  0.86  0.61   0.49   82 21
## CC.Und_WE      257  0.85  0.86  0.61   0.49   83 18

Scale Correlations

Naturalness Scales by Technology

#Naturalness Scales by Technology (One scale per technology)
CC$corNat <- data.frame(CC$Nat_Scale_AFSCS, CC$Nat_Scale_BIO, CC$Nat_Scale_BECCS, CC$Nat_Scale_DACCS, CC$Nat_Scale_EW, CC$Nat_Scale_OF, CC$Nat_Scale_BF, CC$Nat_Scale_NE, CC$Nat_Scale_SE, CC$Nat_Scale_WE)

mydata.cor1 = cor(CC$corNat, use = "pairwise.complete.obs")
head(round(mydata.cor1,2))
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS            1.00            0.45            0.09            0.60
## CC.Nat_2R_AFSCS           0.45            1.00            0.22            0.53
## CC.Nat_3R_AFSCS           0.09            0.22            1.00            0.22
## CC.Nat_4R_AFSCS           0.60            0.53            0.22            1.00
## CC.Nat_1_BIO             -0.02           -0.05           -0.01            0.04
## CC.Nat_2R_BIO             0.10            0.30           -0.11            0.15
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS         -0.02          0.10         -0.36         -0.15
## CC.Nat_2R_AFSCS        -0.05          0.30         -0.25         -0.02
## CC.Nat_3R_AFSCS        -0.01         -0.11          0.35          0.11
## CC.Nat_4R_AFSCS         0.04          0.15         -0.10          0.01
## CC.Nat_1_BIO            1.00          0.39          0.06          0.64
## CC.Nat_2R_BIO           0.39          1.00          0.14          0.39
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS            0.20            0.00           -0.08            0.21
## CC.Nat_2R_AFSCS          -0.03            0.16            0.06            0.00
## CC.Nat_3R_AFSCS          -0.30           -0.08            0.17           -0.30
## CC.Nat_4R_AFSCS           0.08            0.04            0.06            0.12
## CC.Nat_1_BIO              0.20            0.24           -0.08            0.30
## CC.Nat_2R_BIO             0.01            0.31           -0.07            0.18
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS            0.10            0.05           -0.03            0.15
## CC.Nat_2R_AFSCS           0.16            0.37            0.02            0.30
## CC.Nat_3R_AFSCS           0.14            0.22            0.04            0.22
## CC.Nat_4R_AFSCS          -0.02            0.01           -0.08            0.10
## CC.Nat_1_BIO              0.37           -0.03           -0.12            0.27
## CC.Nat_2R_BIO             0.10            0.20           -0.09            0.12
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS         0.10        -0.04        -0.24         0.02        0.29
## CC.Nat_2R_AFSCS        0.01         0.26         0.13         0.05        0.05
## CC.Nat_3R_AFSCS       -0.04         0.20         0.41         0.04       -0.10
## CC.Nat_4R_AFSCS       -0.03         0.00        -0.10         0.01        0.17
## CC.Nat_1_BIO           0.27         0.21         0.10         0.37        0.51
## CC.Nat_2R_BIO          0.26         0.35         0.14         0.32        0.23
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS          0.10         0.23         0.24        0.03        -0.11
## CC.Nat_2R_AFSCS         0.16         0.11         0.11       -0.13         0.15
## CC.Nat_3R_AFSCS         0.16         0.41        -0.09       -0.17        -0.16
## CC.Nat_4R_AFSCS         0.19         0.07         0.22       -0.03         0.14
## CC.Nat_1_BIO            0.31        -0.23         0.41        0.36         0.12
## CC.Nat_2R_BIO           0.52         0.07         0.31        0.12         0.46
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS         -0.20        -0.02        0.10         0.01         0.01
## CC.Nat_2R_AFSCS        -0.23         0.08        0.05         0.25         0.01
## CC.Nat_3R_AFSCS         0.18        -0.11       -0.24         0.05         0.02
## CC.Nat_4R_AFSCS        -0.23         0.10       -0.20        -0.02        -0.08
## CC.Nat_1_BIO           -0.19         0.31        0.20         0.03         0.09
## CC.Nat_2R_BIO           0.26         0.20        0.16         0.15         0.22
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS         -0.04        0.05         0.10        -0.18         0.01
## CC.Nat_2R_AFSCS         0.04       -0.14         0.33        -0.07        -0.01
## CC.Nat_3R_AFSCS        -0.12       -0.39         0.13         0.23        -0.22
## CC.Nat_4R_AFSCS         0.01       -0.14         0.18        -0.06        -0.07
## CC.Nat_1_BIO            0.16        0.22         0.06         0.07        -0.14
## CC.Nat_2R_BIO           0.13        0.04         0.21        -0.05         0.07
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS         0.20         0.30        -0.15         0.15
## CC.Nat_2R_AFSCS       -0.01         0.21         0.11        -0.03
## CC.Nat_3R_AFSCS       -0.22        -0.10         0.49        -0.27
## CC.Nat_4R_AFSCS        0.16         0.33        -0.14         0.19
## CC.Nat_1_BIO           0.17         0.09        -0.33         0.14
## CC.Nat_2R_BIO         -0.12         0.08        -0.07        -0.06
library("Hmisc")
mydata.rcorr1 = rcorr(as.matrix(mydata.cor1))
mydata.rcorr1
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS            1.00            0.59           -0.14            0.79
## CC.Nat_2R_AFSCS           0.59            1.00            0.28            0.69
## CC.Nat_3R_AFSCS          -0.14            0.28            1.00            0.08
## CC.Nat_4R_AFSCS           0.79            0.69            0.08            1.00
## CC.Nat_1_BIO             -0.03           -0.19           -0.36           -0.01
## CC.Nat_2R_BIO            -0.03            0.21           -0.16            0.07
## CC.Nat_3R_BIO            -0.66           -0.42            0.43           -0.51
## CC.Nat_4R_BIO            -0.28           -0.24           -0.08           -0.15
## CC.Nat_1_BECCS            0.15           -0.21           -0.55           -0.03
## CC.Nat_2R_BECCS          -0.12            0.18           -0.16           -0.06
## CC.Nat_3R_BECCS          -0.34           -0.09            0.48           -0.25
## CC.Nat_4R_BECCS           0.17           -0.20           -0.56            0.06
## CC.Nat_1_DACCS            0.04           -0.07           -0.07           -0.21
## CC.Nat_2R_DACCS           0.01            0.35            0.22           -0.06
## CC.Nat_3R_DACCS          -0.38           -0.22            0.34           -0.35
## CC.Nat_4R_DACCS          -0.03            0.07            0.04           -0.15
## CC.Nat_1_EW              -0.03           -0.13           -0.10           -0.20
## CC.Nat_2R_EW             -0.34            0.10            0.27           -0.24
## CC.Nat_3R_EW             -0.56           -0.19            0.61           -0.36
## CC.Nat_4R_EW             -0.21           -0.21           -0.08           -0.27
## CC.Nat_1_OF               0.22           -0.09           -0.26            0.01
## CC.Nat_2R_OF             -0.03            0.08            0.15           -0.02
## CC.Nat_3R_OF             -0.15            0.06            0.67           -0.10
## CC.Nat_4R_OF              0.23           -0.02           -0.19            0.10
## CC.Nat_1_BF              -0.07           -0.29           -0.64           -0.17
## CC.Nat_2R_BF             -0.27            0.05           -0.36           -0.08
## CC.Nat_3R_BF             -0.59           -0.37            0.37           -0.61
## CC.Nat_4R_BF             -0.23           -0.19           -0.42           -0.14
## CC.Nat_1_NE              -0.11           -0.23           -0.57           -0.41
## CC.Nat_2R_NE             -0.15            0.05           -0.15           -0.22
## CC.Nat_3R_NE             -0.40           -0.26            0.07           -0.39
## CC.Nat_4R_NE             -0.21           -0.23           -0.48           -0.33
## CC.Nat_1_SE               0.00           -0.33           -0.72           -0.30
## CC.Nat_2R_SE              0.07            0.40            0.06            0.16
## CC.Nat_3R_SE             -0.63           -0.44            0.34           -0.50
## CC.Nat_4R_SE             -0.05           -0.22           -0.54           -0.27
## CC.Nat_1_WE               0.38           -0.16           -0.59            0.26
## CC.Nat_2R_WE              0.40            0.28           -0.28            0.46
## CC.Nat_3R_WE             -0.38           -0.03            0.61           -0.35
## CC.Nat_4R_WE              0.33           -0.16           -0.60            0.27
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS         -0.03         -0.03         -0.66         -0.28
## CC.Nat_2R_AFSCS        -0.19          0.21         -0.42         -0.24
## CC.Nat_3R_AFSCS        -0.36         -0.16          0.43         -0.08
## CC.Nat_4R_AFSCS        -0.01          0.07         -0.51         -0.15
## CC.Nat_1_BIO            1.00          0.48         -0.12          0.77
## CC.Nat_2R_BIO           0.48          1.00         -0.02          0.47
## CC.Nat_3R_BIO          -0.12         -0.02          1.00          0.26
## CC.Nat_4R_BIO           0.77          0.47          0.26          1.00
## CC.Nat_1_BECCS          0.47          0.06         -0.06          0.33
## CC.Nat_2R_BECCS         0.21          0.39         -0.09          0.23
## CC.Nat_3R_BECCS        -0.48         -0.21          0.58         -0.18
## CC.Nat_4R_BECCS         0.56          0.15         -0.12          0.53
## CC.Nat_1_DACCS          0.32          0.04          0.09          0.24
## CC.Nat_2R_DACCS        -0.04          0.30          0.05         -0.10
## CC.Nat_3R_DACCS        -0.47         -0.24          0.56         -0.30
## CC.Nat_4R_DACCS         0.24          0.13          0.20          0.24
## CC.Nat_1_EW             0.49          0.36          0.13          0.44
## CC.Nat_2R_EW            0.21          0.52          0.34          0.42
## CC.Nat_3R_EW           -0.25          0.01          0.74          0.15
## CC.Nat_4R_EW            0.50          0.40          0.30          0.55
## CC.Nat_1_OF             0.58          0.31         -0.20          0.43
## CC.Nat_2R_OF            0.26          0.50          0.16          0.32
## CC.Nat_3R_OF           -0.54         -0.20          0.54         -0.22
## CC.Nat_4R_OF            0.50          0.37         -0.14          0.51
## CC.Nat_1_BF             0.56          0.14         -0.31          0.27
## CC.Nat_2R_BF            0.06          0.49         -0.10         -0.03
## CC.Nat_3R_BF           -0.47         -0.13          0.67         -0.22
## CC.Nat_4R_BF            0.46          0.27         -0.11          0.36
## CC.Nat_1_NE             0.21          0.01         -0.12          0.06
## CC.Nat_2R_NE           -0.24         -0.02         -0.02         -0.17
## CC.Nat_3R_NE           -0.19         -0.06          0.37         -0.13
## CC.Nat_4R_NE            0.18          0.00          0.03          0.15
## CC.Nat_1_SE             0.28          0.07         -0.41         -0.01
## CC.Nat_2R_SE           -0.27          0.06         -0.36         -0.23
## CC.Nat_3R_SE           -0.26         -0.36          0.56         -0.02
## CC.Nat_4R_SE           -0.13         -0.07         -0.26         -0.18
## CC.Nat_1_WE             0.14         -0.28         -0.55         -0.10
## CC.Nat_2R_WE           -0.03         -0.08         -0.51         -0.14
## CC.Nat_3R_WE           -0.45         -0.24          0.24         -0.14
## CC.Nat_4R_WE            0.09         -0.28         -0.54         -0.07
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS            0.15           -0.12           -0.34            0.17
## CC.Nat_2R_AFSCS          -0.21            0.18           -0.09           -0.20
## CC.Nat_3R_AFSCS          -0.55           -0.16            0.48           -0.56
## CC.Nat_4R_AFSCS          -0.03           -0.06           -0.25            0.06
## CC.Nat_1_BIO              0.47            0.21           -0.48            0.56
## CC.Nat_2R_BIO             0.06            0.39           -0.21            0.15
## CC.Nat_3R_BIO            -0.06           -0.09            0.58           -0.12
## CC.Nat_4R_BIO             0.33            0.23           -0.18            0.53
## CC.Nat_1_BECCS            1.00            0.21           -0.32            0.84
## CC.Nat_2R_BECCS           0.21            1.00            0.00            0.26
## CC.Nat_3R_BECCS          -0.32            0.00            1.00           -0.36
## CC.Nat_4R_BECCS           0.84            0.26           -0.36            1.00
## CC.Nat_1_DACCS            0.44            0.02           -0.31            0.39
## CC.Nat_2R_DACCS          -0.06            0.47            0.08           -0.16
## CC.Nat_3R_DACCS          -0.32           -0.22            0.70           -0.38
## CC.Nat_4R_DACCS           0.32           -0.03           -0.20            0.26
## CC.Nat_1_EW               0.32            0.09           -0.33            0.27
## CC.Nat_2R_EW              0.00            0.54            0.13            0.09
## CC.Nat_3R_EW             -0.34           -0.08            0.78           -0.35
## CC.Nat_4R_EW              0.31            0.21           -0.15            0.29
## CC.Nat_1_OF               0.46            0.17           -0.28            0.46
## CC.Nat_2R_OF              0.13            0.10            0.02            0.18
## CC.Nat_3R_OF             -0.36           -0.15            0.74           -0.38
## CC.Nat_4R_OF              0.43            0.19           -0.18            0.54
## CC.Nat_1_BF               0.42            0.21           -0.65            0.30
## CC.Nat_2R_BF             -0.07            0.40           -0.31           -0.13
## CC.Nat_3R_BF             -0.45           -0.18            0.68           -0.44
## CC.Nat_4R_BF              0.13            0.08           -0.59            0.08
## CC.Nat_1_NE               0.55           -0.14           -0.24            0.30
## CC.Nat_2R_NE              0.09            0.21            0.08           -0.15
## CC.Nat_3R_NE             -0.28           -0.15            0.69           -0.26
## CC.Nat_4R_NE              0.55           -0.13           -0.25            0.34
## CC.Nat_1_SE               0.26            0.01           -0.65            0.29
## CC.Nat_2R_SE             -0.37            0.23            0.03           -0.27
## CC.Nat_3R_SE             -0.34           -0.17            0.51           -0.27
## CC.Nat_4R_SE              0.04           -0.06           -0.42            0.21
## CC.Nat_1_WE               0.32           -0.22           -0.53            0.42
## CC.Nat_2R_WE             -0.18           -0.04           -0.41           -0.01
## CC.Nat_3R_WE             -0.41           -0.10            0.45           -0.45
## CC.Nat_4R_WE              0.26           -0.12           -0.43            0.40
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS            0.04            0.01           -0.38           -0.03
## CC.Nat_2R_AFSCS          -0.07            0.35           -0.22            0.07
## CC.Nat_3R_AFSCS          -0.07            0.22            0.34            0.04
## CC.Nat_4R_AFSCS          -0.21           -0.06           -0.35           -0.15
## CC.Nat_1_BIO              0.32           -0.04           -0.47            0.24
## CC.Nat_2R_BIO             0.04            0.30           -0.24            0.13
## CC.Nat_3R_BIO             0.09            0.05            0.56            0.20
## CC.Nat_4R_BIO             0.24           -0.10           -0.30            0.24
## CC.Nat_1_BECCS            0.44           -0.06           -0.32            0.32
## CC.Nat_2R_BECCS           0.02            0.47           -0.22           -0.03
## CC.Nat_3R_BECCS          -0.31            0.08            0.70           -0.20
## CC.Nat_4R_BECCS           0.39           -0.16           -0.38            0.26
## CC.Nat_1_DACCS            1.00            0.41           -0.05            0.77
## CC.Nat_2R_DACCS           0.41            1.00            0.16            0.45
## CC.Nat_3R_DACCS          -0.05            0.16            1.00            0.09
## CC.Nat_4R_DACCS           0.77            0.45            0.09            1.00
## CC.Nat_1_EW               0.53            0.32           -0.34            0.41
## CC.Nat_2R_EW              0.34            0.66            0.04            0.47
## CC.Nat_3R_EW             -0.31           -0.02            0.56           -0.18
## CC.Nat_4R_EW              0.38            0.31           -0.24            0.40
## CC.Nat_1_OF               0.37            0.21           -0.31            0.25
## CC.Nat_2R_OF              0.33            0.34            0.15            0.32
## CC.Nat_3R_OF             -0.16            0.16            0.57           -0.15
## CC.Nat_4R_OF              0.18            0.05           -0.43            0.07
## CC.Nat_1_BF               0.15           -0.04           -0.40            0.26
## CC.Nat_2R_BF             -0.15            0.22           -0.08            0.13
## CC.Nat_3R_BF              0.01            0.21            0.84            0.05
## CC.Nat_4R_BF             -0.06           -0.12           -0.30            0.25
## CC.Nat_1_NE               0.31           -0.13           -0.23            0.22
## CC.Nat_2R_NE             -0.28           -0.06           -0.12           -0.27
## CC.Nat_3R_NE             -0.27           -0.06            0.65            0.06
## CC.Nat_4R_NE              0.24           -0.24           -0.24            0.31
## CC.Nat_1_SE               0.33           -0.04           -0.32            0.19
## CC.Nat_2R_SE             -0.38            0.00           -0.11           -0.26
## CC.Nat_3R_SE             -0.25           -0.08            0.48           -0.19
## CC.Nat_4R_SE              0.09           -0.11           -0.18            0.14
## CC.Nat_1_WE               0.06           -0.50           -0.31           -0.16
## CC.Nat_2R_WE             -0.11           -0.22           -0.26           -0.14
## CC.Nat_3R_WE             -0.19            0.00            0.27           -0.13
## CC.Nat_4R_WE             -0.07           -0.51           -0.33           -0.22
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS        -0.03        -0.34        -0.56        -0.21        0.22
## CC.Nat_2R_AFSCS       -0.13         0.10        -0.19        -0.21       -0.09
## CC.Nat_3R_AFSCS       -0.10         0.27         0.61        -0.08       -0.26
## CC.Nat_4R_AFSCS       -0.20        -0.24        -0.36        -0.27        0.01
## CC.Nat_1_BIO           0.49         0.21        -0.25         0.50        0.58
## CC.Nat_2R_BIO          0.36         0.52         0.01         0.40        0.31
## CC.Nat_3R_BIO          0.13         0.34         0.74         0.30       -0.20
## CC.Nat_4R_BIO          0.44         0.42         0.15         0.55        0.43
## CC.Nat_1_BECCS         0.32         0.00        -0.34         0.31        0.46
## CC.Nat_2R_BECCS        0.09         0.54        -0.08         0.21        0.17
## CC.Nat_3R_BECCS       -0.33         0.13         0.78        -0.15       -0.28
## CC.Nat_4R_BECCS        0.27         0.09        -0.35         0.29        0.46
## CC.Nat_1_DACCS         0.53         0.34        -0.31         0.38        0.37
## CC.Nat_2R_DACCS        0.32         0.66        -0.02         0.31        0.21
## CC.Nat_3R_DACCS       -0.34         0.04         0.56        -0.24       -0.31
## CC.Nat_4R_DACCS        0.41         0.47        -0.18         0.40        0.25
## CC.Nat_1_EW            1.00         0.50        -0.13         0.88        0.68
## CC.Nat_2R_EW           0.50         1.00         0.28         0.61        0.31
## CC.Nat_3R_EW          -0.13         0.28         1.00         0.06       -0.21
## CC.Nat_4R_EW           0.88         0.61         0.06         1.00        0.56
## CC.Nat_1_OF            0.68         0.31        -0.21         0.56        1.00
## CC.Nat_2R_OF           0.30         0.47         0.20         0.23        0.49
## CC.Nat_3R_OF          -0.10         0.14         0.70        -0.01       -0.23
## CC.Nat_4R_OF           0.62         0.32        -0.05         0.58        0.86
## CC.Nat_1_BF            0.41         0.06        -0.53         0.41        0.48
## CC.Nat_2R_BF          -0.09         0.31        -0.22         0.02       -0.18
## CC.Nat_3R_BF          -0.20         0.21         0.67        -0.06       -0.39
## CC.Nat_4R_BF           0.27         0.14        -0.27         0.37        0.20
## CC.Nat_1_NE            0.08        -0.20        -0.24         0.07        0.06
## CC.Nat_2R_NE          -0.06        -0.11         0.03         0.07       -0.30
## CC.Nat_3R_NE          -0.33         0.09         0.52        -0.10       -0.23
## CC.Nat_4R_NE           0.01        -0.13        -0.16         0.11       -0.07
## CC.Nat_1_SE            0.35        -0.09        -0.63         0.13        0.28
## CC.Nat_2R_SE          -0.45        -0.11         0.02        -0.41       -0.43
## CC.Nat_3R_SE          -0.13         0.06         0.64         0.01       -0.35
## CC.Nat_4R_SE           0.14        -0.09        -0.43         0.03       -0.04
## CC.Nat_1_WE           -0.25        -0.57        -0.59        -0.30        0.01
## CC.Nat_2R_WE          -0.41        -0.40        -0.53        -0.37       -0.45
## CC.Nat_3R_WE          -0.05         0.24         0.62        -0.04       -0.07
## CC.Nat_4R_WE          -0.35        -0.55        -0.58        -0.29       -0.08
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS         -0.03        -0.15         0.23       -0.07        -0.27
## CC.Nat_2R_AFSCS         0.08         0.06        -0.02       -0.29         0.05
## CC.Nat_3R_AFSCS         0.15         0.67        -0.19       -0.64        -0.36
## CC.Nat_4R_AFSCS        -0.02        -0.10         0.10       -0.17        -0.08
## CC.Nat_1_BIO            0.26        -0.54         0.50        0.56         0.06
## CC.Nat_2R_BIO           0.50        -0.20         0.37        0.14         0.49
## CC.Nat_3R_BIO           0.16         0.54        -0.14       -0.31        -0.10
## CC.Nat_4R_BIO           0.32        -0.22         0.51        0.27        -0.03
## CC.Nat_1_BECCS          0.13        -0.36         0.43        0.42        -0.07
## CC.Nat_2R_BECCS         0.10        -0.15         0.19        0.21         0.40
## CC.Nat_3R_BECCS         0.02         0.74        -0.18       -0.65        -0.31
## CC.Nat_4R_BECCS         0.18        -0.38         0.54        0.30        -0.13
## CC.Nat_1_DACCS          0.33        -0.16         0.18        0.15        -0.15
## CC.Nat_2R_DACCS         0.34         0.16         0.05       -0.04         0.22
## CC.Nat_3R_DACCS         0.15         0.57        -0.43       -0.40        -0.08
## CC.Nat_4R_DACCS         0.32        -0.15         0.07        0.26         0.13
## CC.Nat_1_EW             0.30        -0.10         0.62        0.41        -0.09
## CC.Nat_2R_EW            0.47         0.14         0.32        0.06         0.31
## CC.Nat_3R_EW            0.20         0.70        -0.05       -0.53        -0.22
## CC.Nat_4R_EW            0.23        -0.01         0.58        0.41         0.02
## CC.Nat_1_OF             0.49        -0.23         0.86        0.48        -0.18
## CC.Nat_2R_OF            1.00         0.16         0.50       -0.22        -0.04
## CC.Nat_3R_OF            0.16         1.00        -0.10       -0.79        -0.38
## CC.Nat_4R_OF            0.50        -0.10         1.00        0.19        -0.31
## CC.Nat_1_BF            -0.22        -0.79         0.19        1.00         0.44
## CC.Nat_2R_BF           -0.04        -0.38        -0.31        0.44         1.00
## CC.Nat_3R_BF            0.15         0.67        -0.42       -0.41        -0.01
## CC.Nat_4R_BF           -0.17        -0.64         0.03        0.83         0.59
## CC.Nat_1_NE            -0.12        -0.43         0.00        0.57         0.04
## CC.Nat_2R_NE           -0.31         0.11        -0.20       -0.11         0.34
## CC.Nat_3R_NE            0.11         0.29        -0.23       -0.29         0.12
## CC.Nat_4R_NE           -0.08        -0.45        -0.05        0.53         0.25
## CC.Nat_1_SE             0.07        -0.66         0.19        0.80         0.20
## CC.Nat_2R_SE           -0.27        -0.01        -0.29       -0.39         0.38
## CC.Nat_3R_SE           -0.05         0.53        -0.26       -0.44        -0.13
## CC.Nat_4R_SE           -0.12        -0.41         0.06        0.49         0.24
## CC.Nat_1_WE            -0.21        -0.37        -0.04        0.37        -0.17
## CC.Nat_2R_WE           -0.38        -0.42        -0.40       -0.04         0.25
## CC.Nat_3R_WE            0.17         0.53         0.03       -0.46        -0.27
## CC.Nat_4R_WE           -0.36        -0.35        -0.06        0.33        -0.06
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS         -0.59        -0.23       -0.11        -0.15        -0.40
## CC.Nat_2R_AFSCS        -0.37        -0.19       -0.23         0.05        -0.26
## CC.Nat_3R_AFSCS         0.37        -0.42       -0.57        -0.15         0.07
## CC.Nat_4R_AFSCS        -0.61        -0.14       -0.41        -0.22        -0.39
## CC.Nat_1_BIO           -0.47         0.46        0.21        -0.24        -0.19
## CC.Nat_2R_BIO          -0.13         0.27        0.01        -0.02        -0.06
## CC.Nat_3R_BIO           0.67        -0.11       -0.12        -0.02         0.37
## CC.Nat_4R_BIO          -0.22         0.36        0.06        -0.17        -0.13
## CC.Nat_1_BECCS         -0.45         0.13        0.55         0.09        -0.28
## CC.Nat_2R_BECCS        -0.18         0.08       -0.14         0.21        -0.15
## CC.Nat_3R_BECCS         0.68        -0.59       -0.24         0.08         0.69
## CC.Nat_4R_BECCS        -0.44         0.08        0.30        -0.15        -0.26
## CC.Nat_1_DACCS          0.01        -0.06        0.31        -0.28        -0.27
## CC.Nat_2R_DACCS         0.21        -0.12       -0.13        -0.06        -0.06
## CC.Nat_3R_DACCS         0.84        -0.30       -0.23        -0.12         0.65
## CC.Nat_4R_DACCS         0.05         0.25        0.22        -0.27         0.06
## CC.Nat_1_EW            -0.20         0.27        0.08        -0.06        -0.33
## CC.Nat_2R_EW            0.21         0.14       -0.20        -0.11         0.09
## CC.Nat_3R_EW            0.67        -0.27       -0.24         0.03         0.52
## CC.Nat_4R_EW           -0.06         0.37        0.07         0.07        -0.10
## CC.Nat_1_OF            -0.39         0.20        0.06        -0.30        -0.23
## CC.Nat_2R_OF            0.15        -0.17       -0.12        -0.31         0.11
## CC.Nat_3R_OF            0.67        -0.64       -0.43         0.11         0.29
## CC.Nat_4R_OF           -0.42         0.03        0.00        -0.20        -0.23
## CC.Nat_1_BF            -0.41         0.83        0.57        -0.11        -0.29
## CC.Nat_2R_BF           -0.01         0.59        0.04         0.34         0.12
## CC.Nat_3R_BF            1.00        -0.27       -0.12         0.02         0.81
## CC.Nat_4R_BF           -0.27         1.00        0.33        -0.04        -0.10
## CC.Nat_1_NE            -0.12         0.33        1.00         0.27        -0.05
## CC.Nat_2R_NE            0.02        -0.04        0.27         1.00        -0.13
## CC.Nat_3R_NE            0.81        -0.10       -0.05        -0.13         1.00
## CC.Nat_4R_NE           -0.13         0.57        0.88         0.33        -0.03
## CC.Nat_1_SE            -0.33         0.55        0.68        -0.17        -0.28
## CC.Nat_2R_SE           -0.09        -0.17       -0.38         0.37        -0.03
## CC.Nat_3R_SE            0.79        -0.16       -0.26         0.15         0.63
## CC.Nat_4R_SE           -0.12         0.38        0.44        -0.03        -0.10
## CC.Nat_1_WE            -0.59         0.08        0.37        -0.15        -0.49
## CC.Nat_2R_WE           -0.46         0.13       -0.09        -0.11        -0.38
## CC.Nat_3R_WE            0.56        -0.33       -0.35         0.10         0.41
## CC.Nat_4R_WE           -0.60         0.10        0.29         0.00        -0.43
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS         -0.21        0.00         0.07        -0.63        -0.05
## CC.Nat_2R_AFSCS        -0.23       -0.33         0.40        -0.44        -0.22
## CC.Nat_3R_AFSCS        -0.48       -0.72         0.06         0.34        -0.54
## CC.Nat_4R_AFSCS        -0.33       -0.30         0.16        -0.50        -0.27
## CC.Nat_1_BIO            0.18        0.28        -0.27        -0.26        -0.13
## CC.Nat_2R_BIO           0.00        0.07         0.06        -0.36        -0.07
## CC.Nat_3R_BIO           0.03       -0.41        -0.36         0.56        -0.26
## CC.Nat_4R_BIO           0.15       -0.01        -0.23        -0.02        -0.18
## CC.Nat_1_BECCS          0.55        0.26        -0.37        -0.34         0.04
## CC.Nat_2R_BECCS        -0.13        0.01         0.23        -0.17        -0.06
## CC.Nat_3R_BECCS        -0.25       -0.65         0.03         0.51        -0.42
## CC.Nat_4R_BECCS         0.34        0.29        -0.27        -0.27         0.21
## CC.Nat_1_DACCS          0.24        0.33        -0.38        -0.25         0.09
## CC.Nat_2R_DACCS        -0.24       -0.04         0.00        -0.08        -0.11
## CC.Nat_3R_DACCS        -0.24       -0.32        -0.11         0.48        -0.18
## CC.Nat_4R_DACCS         0.31        0.19        -0.26        -0.19         0.14
## CC.Nat_1_EW             0.01        0.35        -0.45        -0.13         0.14
## CC.Nat_2R_EW           -0.13       -0.09        -0.11         0.06        -0.09
## CC.Nat_3R_EW           -0.16       -0.63         0.02         0.64        -0.43
## CC.Nat_4R_EW            0.11        0.13        -0.41         0.01         0.03
## CC.Nat_1_OF            -0.07        0.28        -0.43        -0.35        -0.04
## CC.Nat_2R_OF           -0.08        0.07        -0.27        -0.05        -0.12
## CC.Nat_3R_OF           -0.45       -0.66        -0.01         0.53        -0.41
## CC.Nat_4R_OF           -0.05        0.19        -0.29        -0.26         0.06
## CC.Nat_1_BF             0.53        0.80        -0.39        -0.44         0.49
## CC.Nat_2R_BF            0.25        0.20         0.38        -0.13         0.24
## CC.Nat_3R_BF           -0.13       -0.33        -0.09         0.79        -0.12
## CC.Nat_4R_BF            0.57        0.55        -0.17        -0.16         0.38
## CC.Nat_1_NE             0.88        0.68        -0.38        -0.26         0.44
## CC.Nat_2R_NE            0.33       -0.17         0.37         0.15        -0.03
## CC.Nat_3R_NE           -0.03       -0.28        -0.03         0.63        -0.10
## CC.Nat_4R_NE            1.00        0.47        -0.22        -0.09         0.51
## CC.Nat_1_SE             0.47        1.00         0.05        -0.17         0.78
## CC.Nat_2R_SE           -0.22        0.05         1.00         0.00         0.21
## CC.Nat_3R_SE           -0.09       -0.17         0.00         1.00         0.09
## CC.Nat_4R_SE            0.51        0.78         0.21         0.09         1.00
## CC.Nat_1_WE             0.37        0.50        -0.10        -0.51         0.35
## CC.Nat_2R_WE            0.05        0.04         0.52        -0.55         0.10
## CC.Nat_3R_WE           -0.33       -0.46         0.09         0.61        -0.18
## CC.Nat_4R_WE            0.32        0.36         0.07        -0.51         0.35
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS         0.38         0.40        -0.38         0.33
## CC.Nat_2R_AFSCS       -0.16         0.28        -0.03        -0.16
## CC.Nat_3R_AFSCS       -0.59        -0.28         0.61        -0.60
## CC.Nat_4R_AFSCS        0.26         0.46        -0.35         0.27
## CC.Nat_1_BIO           0.14        -0.03        -0.45         0.09
## CC.Nat_2R_BIO         -0.28        -0.08        -0.24        -0.28
## CC.Nat_3R_BIO         -0.55        -0.51         0.24        -0.54
## CC.Nat_4R_BIO         -0.10        -0.14        -0.14        -0.07
## CC.Nat_1_BECCS         0.32        -0.18        -0.41         0.26
## CC.Nat_2R_BECCS       -0.22        -0.04        -0.10        -0.12
## CC.Nat_3R_BECCS       -0.53        -0.41         0.45        -0.43
## CC.Nat_4R_BECCS        0.42        -0.01        -0.45         0.40
## CC.Nat_1_DACCS         0.06        -0.11        -0.19        -0.07
## CC.Nat_2R_DACCS       -0.50        -0.22         0.00        -0.51
## CC.Nat_3R_DACCS       -0.31        -0.26         0.27        -0.33
## CC.Nat_4R_DACCS       -0.16        -0.14        -0.13        -0.22
## CC.Nat_1_EW           -0.25        -0.41        -0.05        -0.35
## CC.Nat_2R_EW          -0.57        -0.40         0.24        -0.55
## CC.Nat_3R_EW          -0.59        -0.53         0.62        -0.58
## CC.Nat_4R_EW          -0.30        -0.37        -0.04        -0.29
## CC.Nat_1_OF            0.01        -0.45        -0.07        -0.08
## CC.Nat_2R_OF          -0.21        -0.38         0.17        -0.36
## CC.Nat_3R_OF          -0.37        -0.42         0.53        -0.35
## CC.Nat_4R_OF          -0.04        -0.40         0.03        -0.06
## CC.Nat_1_BF            0.37        -0.04        -0.46         0.33
## CC.Nat_2R_BF          -0.17         0.25        -0.27        -0.06
## CC.Nat_3R_BF          -0.59        -0.46         0.56        -0.60
## CC.Nat_4R_BF           0.08         0.13        -0.33         0.10
## CC.Nat_1_NE            0.37        -0.09        -0.35         0.29
## CC.Nat_2R_NE          -0.15        -0.11         0.10         0.00
## CC.Nat_3R_NE          -0.49        -0.38         0.41        -0.43
## CC.Nat_4R_NE           0.37         0.05        -0.33         0.32
## CC.Nat_1_SE            0.50         0.04        -0.46         0.36
## CC.Nat_2R_SE          -0.10         0.52         0.09         0.07
## CC.Nat_3R_SE          -0.51        -0.55         0.61        -0.51
## CC.Nat_4R_SE           0.35         0.10        -0.18         0.35
## CC.Nat_1_WE            1.00         0.53        -0.38         0.93
## CC.Nat_2R_WE           0.53         1.00        -0.40         0.59
## CC.Nat_3R_WE          -0.38        -0.40         1.00        -0.35
## CC.Nat_4R_WE           0.93         0.59        -0.35         1.00
## 
## n
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS            40            40            40            40
## CC.Nat_2R_AFSCS           40            40            40            40
## CC.Nat_3R_AFSCS           40            40            40            40
## CC.Nat_4R_AFSCS           40            40            40            40
## CC.Nat_1_BIO              40            40            40            40
## CC.Nat_2R_BIO             40            40            40            40
## CC.Nat_3R_BIO             40            40            40            40
## CC.Nat_4R_BIO             40            40            40            40
## CC.Nat_1_BECCS            40            40            40            40
## CC.Nat_2R_BECCS           40            40            40            40
## CC.Nat_3R_BECCS           40            40            40            40
## CC.Nat_4R_BECCS           40            40            40            40
## CC.Nat_1_DACCS            40            40            40            40
## CC.Nat_2R_DACCS           40            40            40            40
## CC.Nat_3R_DACCS           40            40            40            40
## CC.Nat_4R_DACCS           40            40            40            40
## CC.Nat_1_EW               40            40            40            40
## CC.Nat_2R_EW              40            40            40            40
## CC.Nat_3R_EW              40            40            40            40
## CC.Nat_4R_EW              40            40            40            40
## CC.Nat_1_OF               40            40            40            40
## CC.Nat_2R_OF              40            40            40            40
## CC.Nat_3R_OF              40            40            40            40
## CC.Nat_4R_OF              40            40            40            40
## CC.Nat_1_BF               28            28            28            28
## CC.Nat_2R_BF              28            28            28            28
## CC.Nat_3R_BF              28            28            28            28
## CC.Nat_4R_BF              28            28            28            28
## CC.Nat_1_NE               28            28            28            28
## CC.Nat_2R_NE              28            28            28            28
## CC.Nat_3R_NE              28            28            28            28
## CC.Nat_4R_NE              28            28            28            28
## CC.Nat_1_SE               28            28            28            28
## CC.Nat_2R_SE              28            28            28            28
## CC.Nat_3R_SE              28            28            28            28
## CC.Nat_4R_SE              28            28            28            28
## CC.Nat_1_WE               28            28            28            28
## CC.Nat_2R_WE              28            28            28            28
## CC.Nat_3R_WE              28            28            28            28
## CC.Nat_4R_WE              28            28            28            28
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS           40           40           40           40          40
## CC.Nat_2R_AFSCS          40           40           40           40          40
## CC.Nat_3R_AFSCS          40           40           40           40          40
## CC.Nat_4R_AFSCS          40           40           40           40          40
## CC.Nat_1_BIO             40           40           40           40          40
## CC.Nat_2R_BIO            40           40           40           40          40
## CC.Nat_3R_BIO            40           40           40           40          40
## CC.Nat_4R_BIO            40           40           40           40          40
## CC.Nat_1_BECCS           40           40           40           40          40
## CC.Nat_2R_BECCS          40           40           40           40          40
## CC.Nat_3R_BECCS          40           40           40           40          40
## CC.Nat_4R_BECCS          40           40           40           40          40
## CC.Nat_1_DACCS           40           40           40           40          40
## CC.Nat_2R_DACCS          40           40           40           40          40
## CC.Nat_3R_DACCS          40           40           40           40          40
## CC.Nat_4R_DACCS          40           40           40           40          40
## CC.Nat_1_EW              40           40           40           40          40
## CC.Nat_2R_EW             40           40           40           40          40
## CC.Nat_3R_EW             40           40           40           40          40
## CC.Nat_4R_EW             40           40           40           40          40
## CC.Nat_1_OF              40           40           40           40          40
## CC.Nat_2R_OF             40           40           40           40          40
## CC.Nat_3R_OF             40           40           40           40          40
## CC.Nat_4R_OF             40           40           40           40          40
## CC.Nat_1_BF              28           28           28           28          28
## CC.Nat_2R_BF             28           28           28           28          28
## CC.Nat_3R_BF             28           28           28           28          28
## CC.Nat_4R_BF             28           28           28           28          28
## CC.Nat_1_NE              28           28           28           28          28
## CC.Nat_2R_NE             28           28           28           28          28
## CC.Nat_3R_NE             28           28           28           28          28
## CC.Nat_4R_NE             28           28           28           28          28
## CC.Nat_1_SE              28           28           28           28          28
## CC.Nat_2R_SE             28           28           28           28          28
## CC.Nat_3R_SE             28           28           28           28          28
## CC.Nat_4R_SE             28           28           28           28          28
## CC.Nat_1_WE              28           28           28           28          28
## CC.Nat_2R_WE             28           28           28           28          28
## CC.Nat_3R_WE             28           28           28           28          28
## CC.Nat_4R_WE             28           28           28           28          28
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS            40           40           40          28           28
## CC.Nat_2R_AFSCS           40           40           40          28           28
## CC.Nat_3R_AFSCS           40           40           40          28           28
## CC.Nat_4R_AFSCS           40           40           40          28           28
## CC.Nat_1_BIO              40           40           40          28           28
## CC.Nat_2R_BIO             40           40           40          28           28
## CC.Nat_3R_BIO             40           40           40          28           28
## CC.Nat_4R_BIO             40           40           40          28           28
## CC.Nat_1_BECCS            40           40           40          28           28
## CC.Nat_2R_BECCS           40           40           40          28           28
## CC.Nat_3R_BECCS           40           40           40          28           28
## CC.Nat_4R_BECCS           40           40           40          28           28
## CC.Nat_1_DACCS            40           40           40          28           28
## CC.Nat_2R_DACCS           40           40           40          28           28
## CC.Nat_3R_DACCS           40           40           40          28           28
## CC.Nat_4R_DACCS           40           40           40          28           28
## CC.Nat_1_EW               40           40           40          28           28
## CC.Nat_2R_EW              40           40           40          28           28
## CC.Nat_3R_EW              40           40           40          28           28
## CC.Nat_4R_EW              40           40           40          28           28
## CC.Nat_1_OF               40           40           40          28           28
## CC.Nat_2R_OF              40           40           40          28           28
## CC.Nat_3R_OF              40           40           40          28           28
## CC.Nat_4R_OF              40           40           40          28           28
## CC.Nat_1_BF               28           28           28          28           28
## CC.Nat_2R_BF              28           28           28          28           28
## CC.Nat_3R_BF              28           28           28          28           28
## CC.Nat_4R_BF              28           28           28          28           28
## CC.Nat_1_NE               28           28           28          24           24
## CC.Nat_2R_NE              28           28           28          24           24
## CC.Nat_3R_NE              28           28           28          24           24
## CC.Nat_4R_NE              28           28           28          24           24
## CC.Nat_1_SE               28           28           28          24           24
## CC.Nat_2R_SE              28           28           28          24           24
## CC.Nat_3R_SE              28           28           28          24           24
## CC.Nat_4R_SE              28           28           28          24           24
## CC.Nat_1_WE               28           28           28          24           24
## CC.Nat_2R_WE              28           28           28          24           24
## CC.Nat_3R_WE              28           28           28          24           24
## CC.Nat_4R_WE              28           28           28          24           24
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS            28           28          28           28           28
## CC.Nat_2R_AFSCS           28           28          28           28           28
## CC.Nat_3R_AFSCS           28           28          28           28           28
## CC.Nat_4R_AFSCS           28           28          28           28           28
## CC.Nat_1_BIO              28           28          28           28           28
## CC.Nat_2R_BIO             28           28          28           28           28
## CC.Nat_3R_BIO             28           28          28           28           28
## CC.Nat_4R_BIO             28           28          28           28           28
## CC.Nat_1_BECCS            28           28          28           28           28
## CC.Nat_2R_BECCS           28           28          28           28           28
## CC.Nat_3R_BECCS           28           28          28           28           28
## CC.Nat_4R_BECCS           28           28          28           28           28
## CC.Nat_1_DACCS            28           28          28           28           28
## CC.Nat_2R_DACCS           28           28          28           28           28
## CC.Nat_3R_DACCS           28           28          28           28           28
## CC.Nat_4R_DACCS           28           28          28           28           28
## CC.Nat_1_EW               28           28          28           28           28
## CC.Nat_2R_EW              28           28          28           28           28
## CC.Nat_3R_EW              28           28          28           28           28
## CC.Nat_4R_EW              28           28          28           28           28
## CC.Nat_1_OF               28           28          28           28           28
## CC.Nat_2R_OF              28           28          28           28           28
## CC.Nat_3R_OF              28           28          28           28           28
## CC.Nat_4R_OF              28           28          28           28           28
## CC.Nat_1_BF               28           28          24           24           24
## CC.Nat_2R_BF              28           28          24           24           24
## CC.Nat_3R_BF              28           28          24           24           24
## CC.Nat_4R_BF              28           28          24           24           24
## CC.Nat_1_NE               24           24          28           28           28
## CC.Nat_2R_NE              24           24          28           28           28
## CC.Nat_3R_NE              24           24          28           28           28
## CC.Nat_4R_NE              24           24          28           28           28
## CC.Nat_1_SE               24           24          24           24           24
## CC.Nat_2R_SE              24           24          24           24           24
## CC.Nat_3R_SE              24           24          24           24           24
## CC.Nat_4R_SE              24           24          24           24           24
## CC.Nat_1_WE               24           24          24           24           24
## CC.Nat_2R_WE              24           24          24           24           24
## CC.Nat_3R_WE              24           24          24           24           24
## CC.Nat_4R_WE              24           24          24           24           24
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS            28          28           28           28           28
## CC.Nat_2R_AFSCS           28          28           28           28           28
## CC.Nat_3R_AFSCS           28          28           28           28           28
## CC.Nat_4R_AFSCS           28          28           28           28           28
## CC.Nat_1_BIO              28          28           28           28           28
## CC.Nat_2R_BIO             28          28           28           28           28
## CC.Nat_3R_BIO             28          28           28           28           28
## CC.Nat_4R_BIO             28          28           28           28           28
## CC.Nat_1_BECCS            28          28           28           28           28
## CC.Nat_2R_BECCS           28          28           28           28           28
## CC.Nat_3R_BECCS           28          28           28           28           28
## CC.Nat_4R_BECCS           28          28           28           28           28
## CC.Nat_1_DACCS            28          28           28           28           28
## CC.Nat_2R_DACCS           28          28           28           28           28
## CC.Nat_3R_DACCS           28          28           28           28           28
## CC.Nat_4R_DACCS           28          28           28           28           28
## CC.Nat_1_EW               28          28           28           28           28
## CC.Nat_2R_EW              28          28           28           28           28
## CC.Nat_3R_EW              28          28           28           28           28
## CC.Nat_4R_EW              28          28           28           28           28
## CC.Nat_1_OF               28          28           28           28           28
## CC.Nat_2R_OF              28          28           28           28           28
## CC.Nat_3R_OF              28          28           28           28           28
## CC.Nat_4R_OF              28          28           28           28           28
## CC.Nat_1_BF               24          24           24           24           24
## CC.Nat_2R_BF              24          24           24           24           24
## CC.Nat_3R_BF              24          24           24           24           24
## CC.Nat_4R_BF              24          24           24           24           24
## CC.Nat_1_NE               28          24           24           24           24
## CC.Nat_2R_NE              28          24           24           24           24
## CC.Nat_3R_NE              28          24           24           24           24
## CC.Nat_4R_NE              28          24           24           24           24
## CC.Nat_1_SE               24          28           28           28           28
## CC.Nat_2R_SE              24          28           28           28           28
## CC.Nat_3R_SE              24          28           28           28           28
## CC.Nat_4R_SE              24          28           28           28           28
## CC.Nat_1_WE               24          24           24           24           24
## CC.Nat_2R_WE              24          24           24           24           24
## CC.Nat_3R_WE              24          24           24           24           24
## CC.Nat_4R_WE              24          24           24           24           24
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS           28           28           28           28
## CC.Nat_2R_AFSCS          28           28           28           28
## CC.Nat_3R_AFSCS          28           28           28           28
## CC.Nat_4R_AFSCS          28           28           28           28
## CC.Nat_1_BIO             28           28           28           28
## CC.Nat_2R_BIO            28           28           28           28
## CC.Nat_3R_BIO            28           28           28           28
## CC.Nat_4R_BIO            28           28           28           28
## CC.Nat_1_BECCS           28           28           28           28
## CC.Nat_2R_BECCS          28           28           28           28
## CC.Nat_3R_BECCS          28           28           28           28
## CC.Nat_4R_BECCS          28           28           28           28
## CC.Nat_1_DACCS           28           28           28           28
## CC.Nat_2R_DACCS          28           28           28           28
## CC.Nat_3R_DACCS          28           28           28           28
## CC.Nat_4R_DACCS          28           28           28           28
## CC.Nat_1_EW              28           28           28           28
## CC.Nat_2R_EW             28           28           28           28
## CC.Nat_3R_EW             28           28           28           28
## CC.Nat_4R_EW             28           28           28           28
## CC.Nat_1_OF              28           28           28           28
## CC.Nat_2R_OF             28           28           28           28
## CC.Nat_3R_OF             28           28           28           28
## CC.Nat_4R_OF             28           28           28           28
## CC.Nat_1_BF              24           24           24           24
## CC.Nat_2R_BF             24           24           24           24
## CC.Nat_3R_BF             24           24           24           24
## CC.Nat_4R_BF             24           24           24           24
## CC.Nat_1_NE              24           24           24           24
## CC.Nat_2R_NE             24           24           24           24
## CC.Nat_3R_NE             24           24           24           24
## CC.Nat_4R_NE             24           24           24           24
## CC.Nat_1_SE              24           24           24           24
## CC.Nat_2R_SE             24           24           24           24
## CC.Nat_3R_SE             24           24           24           24
## CC.Nat_4R_SE             24           24           24           24
## CC.Nat_1_WE              28           28           28           28
## CC.Nat_2R_WE             28           28           28           28
## CC.Nat_3R_WE             28           28           28           28
## CC.Nat_4R_WE             28           28           28           28
## 
## P
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS                 0.0000          0.3994          0.0000         
## CC.Nat_2R_AFSCS 0.0000                         0.0756          0.0000         
## CC.Nat_3R_AFSCS 0.3994         0.0756                          0.6121         
## CC.Nat_4R_AFSCS 0.0000         0.0000          0.6121                         
## CC.Nat_1_BIO    0.8733         0.2329          0.0206          0.9548         
## CC.Nat_2R_BIO   0.8487         0.2030          0.3185          0.6514         
## CC.Nat_3R_BIO   0.0000         0.0069          0.0054          0.0008         
## CC.Nat_4R_BIO   0.0843         0.1419          0.6385          0.3455         
## CC.Nat_1_BECCS  0.3490         0.1965          0.0002          0.8686         
## CC.Nat_2R_BECCS 0.4566         0.2688          0.3167          0.7323         
## CC.Nat_3R_BECCS 0.0333         0.5993          0.0017          0.1126         
## CC.Nat_4R_BECCS 0.2919         0.2133          0.0002          0.6927         
## CC.Nat_1_DACCS  0.8035         0.6677          0.6540          0.1857         
## CC.Nat_2R_DACCS 0.9698         0.0274          0.1726          0.7145         
## CC.Nat_3R_DACCS 0.0149         0.1657          0.0316          0.0284         
## CC.Nat_4R_DACCS 0.8672         0.6685          0.8248          0.3614         
## CC.Nat_1_EW     0.8769         0.4313          0.5573          0.2262         
## CC.Nat_2R_EW    0.0324         0.5546          0.0983          0.1289         
## CC.Nat_3R_EW    0.0001         0.2501          0.0000          0.0225         
## CC.Nat_4R_EW    0.2004         0.1880          0.6309          0.0946         
## CC.Nat_1_OF     0.1729         0.5916          0.1114          0.9755         
## CC.Nat_2R_OF    0.8777         0.6101          0.3534          0.8792         
## CC.Nat_3R_OF    0.3682         0.7266          0.0000          0.5512         
## CC.Nat_4R_OF    0.1610         0.8996          0.2334          0.5509         
## CC.Nat_1_BF     0.7240         0.1360          0.0003          0.3858         
## CC.Nat_2R_BF    0.1625         0.7895          0.0584          0.6743         
## CC.Nat_3R_BF    0.0010         0.0530          0.0524          0.0005         
## CC.Nat_4R_BF    0.2359         0.3381          0.0258          0.4897         
## CC.Nat_1_NE     0.5644         0.2289          0.0015          0.0321         
## CC.Nat_2R_NE    0.4521         0.7823          0.4559          0.2598         
## CC.Nat_3R_NE    0.0364         0.1848          0.7215          0.0413         
## CC.Nat_4R_NE    0.2798         0.2313          0.0105          0.0861         
## CC.Nat_1_SE     0.9919         0.0867          0.0000          0.1180         
## CC.Nat_2R_SE    0.7092         0.0335          0.7514          0.4203         
## CC.Nat_3R_SE    0.0003         0.0202          0.0777          0.0063         
## CC.Nat_4R_SE    0.7935         0.2656          0.0028          0.1618         
## CC.Nat_1_WE     0.0464         0.4218          0.0010          0.1776         
## CC.Nat_2R_WE    0.0360         0.1516          0.1443          0.0130         
## CC.Nat_3R_WE    0.0444         0.8620          0.0006          0.0663         
## CC.Nat_4R_WE    0.0835         0.4193          0.0008          0.1708         
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS  0.8733       0.8487        0.0000        0.0843       
## CC.Nat_2R_AFSCS 0.2329       0.2030        0.0069        0.1419       
## CC.Nat_3R_AFSCS 0.0206       0.3185        0.0054        0.6385       
## CC.Nat_4R_AFSCS 0.9548       0.6514        0.0008        0.3455       
## CC.Nat_1_BIO                 0.0017        0.4587        0.0000       
## CC.Nat_2R_BIO   0.0017                     0.9260        0.0021       
## CC.Nat_3R_BIO   0.4587       0.9260                      0.1100       
## CC.Nat_4R_BIO   0.0000       0.0021        0.1100                     
## CC.Nat_1_BECCS  0.0024       0.7358        0.7317        0.0386       
## CC.Nat_2R_BECCS 0.1927       0.0141        0.5944        0.1549       
## CC.Nat_3R_BECCS 0.0017       0.1850        0.0000        0.2584       
## CC.Nat_4R_BECCS 0.0002       0.3530        0.4675        0.0004       
## CC.Nat_1_DACCS  0.0417       0.8091        0.5827        0.1347       
## CC.Nat_2R_DACCS 0.7860       0.0580        0.7653        0.5373       
## CC.Nat_3R_DACCS 0.0025       0.1367        0.0002        0.0635       
## CC.Nat_4R_DACCS 0.1402       0.4109        0.2150        0.1433       
## CC.Nat_1_EW     0.0015       0.0235        0.4062        0.0044       
## CC.Nat_2R_EW    0.1990       0.0006        0.0299        0.0065       
## CC.Nat_3R_EW    0.1126       0.9544        0.0000        0.3677       
## CC.Nat_4R_EW    0.0011       0.0104        0.0644        0.0002       
## CC.Nat_1_OF     0.0000       0.0477        0.2152        0.0056       
## CC.Nat_2R_OF    0.1086       0.0010        0.3111        0.0411       
## CC.Nat_3R_OF    0.0004       0.2141        0.0003        0.1779       
## CC.Nat_4R_OF    0.0010       0.0195        0.3846        0.0007       
## CC.Nat_1_BF     0.0021       0.4876        0.1138        0.1722       
## CC.Nat_2R_BF    0.7473       0.0078        0.6214        0.8643       
## CC.Nat_3R_BF    0.0113       0.5012        0.0000        0.2655       
## CC.Nat_4R_BF    0.0131       0.1595        0.5620        0.0637       
## CC.Nat_1_NE     0.2738       0.9406        0.5486        0.7736       
## CC.Nat_2R_NE    0.2178       0.9032        0.9246        0.3947       
## CC.Nat_3R_NE    0.3222       0.7532        0.0554        0.5147       
## CC.Nat_4R_NE    0.3553       0.9990        0.8760        0.4588       
## CC.Nat_1_SE     0.1464       0.7094        0.0319        0.9776       
## CC.Nat_2R_SE    0.1694       0.7597        0.0600        0.2371       
## CC.Nat_3R_SE    0.1854       0.0635        0.0019        0.9231       
## CC.Nat_4R_SE    0.5187       0.7252        0.1733        0.3477       
## CC.Nat_1_WE     0.4651       0.1453        0.0027        0.6281       
## CC.Nat_2R_WE    0.8623       0.6825        0.0052        0.4812       
## CC.Nat_3R_WE    0.0172       0.2192        0.2091        0.4890       
## CC.Nat_4R_WE    0.6415       0.1536        0.0030        0.7187       
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS  0.3490         0.4566          0.0333          0.2919         
## CC.Nat_2R_AFSCS 0.1965         0.2688          0.5993          0.2133         
## CC.Nat_3R_AFSCS 0.0002         0.3167          0.0017          0.0002         
## CC.Nat_4R_AFSCS 0.8686         0.7323          0.1126          0.6927         
## CC.Nat_1_BIO    0.0024         0.1927          0.0017          0.0002         
## CC.Nat_2R_BIO   0.7358         0.0141          0.1850          0.3530         
## CC.Nat_3R_BIO   0.7317         0.5944          0.0000          0.4675         
## CC.Nat_4R_BIO   0.0386         0.1549          0.2584          0.0004         
## CC.Nat_1_BECCS                 0.1851          0.0476          0.0000         
## CC.Nat_2R_BECCS 0.1851                         0.9876          0.1084         
## CC.Nat_3R_BECCS 0.0476         0.9876                          0.0221         
## CC.Nat_4R_BECCS 0.0000         0.1084          0.0221                         
## CC.Nat_1_DACCS  0.0041         0.9003          0.0542          0.0129         
## CC.Nat_2R_DACCS 0.7284         0.0022          0.6122          0.3237         
## CC.Nat_3R_DACCS 0.0408         0.1680          0.0000          0.0166         
## CC.Nat_4R_DACCS 0.0433         0.8537          0.2237          0.1088         
## CC.Nat_1_EW     0.0440         0.5634          0.0353          0.0947         
## CC.Nat_2R_EW    0.9859         0.0003          0.4379          0.6017         
## CC.Nat_3R_EW    0.0299         0.6416          0.0000          0.0285         
## CC.Nat_4R_EW    0.0490         0.1872          0.3711          0.0712         
## CC.Nat_1_OF     0.0025         0.2896          0.0818          0.0026         
## CC.Nat_2R_OF    0.4393         0.5351          0.9190          0.2694         
## CC.Nat_3R_OF    0.0230         0.3515          0.0000          0.0148         
## CC.Nat_4R_OF    0.0053         0.2392          0.2550          0.0003         
## CC.Nat_1_BF     0.0261         0.2791          0.0002          0.1248         
## CC.Nat_2R_BF    0.7074         0.0364          0.1070          0.4960         
## CC.Nat_3R_BF    0.0166         0.3705          0.0000          0.0195         
## CC.Nat_4R_BF    0.5104         0.6758          0.0010          0.6692         
## CC.Nat_1_NE     0.0024         0.4616          0.2128          0.1183         
## CC.Nat_2R_NE    0.6332         0.2813          0.6770          0.4594         
## CC.Nat_3R_NE    0.1538         0.4419          0.0000          0.1891         
## CC.Nat_4R_NE    0.0025         0.5212          0.1942          0.0737         
## CC.Nat_1_SE     0.1886         0.9616          0.0002          0.1290         
## CC.Nat_2R_SE    0.0504         0.2440          0.8944          0.1630         
## CC.Nat_3R_SE    0.0779         0.3860          0.0052          0.1705         
## CC.Nat_4R_SE    0.8451         0.7708          0.0259          0.2785         
## CC.Nat_1_WE     0.1003         0.2539          0.0036          0.0276         
## CC.Nat_2R_WE    0.3505         0.8228          0.0289          0.9514         
## CC.Nat_3R_WE    0.0282         0.6028          0.0155          0.0169         
## CC.Nat_4R_WE    0.1849         0.5519          0.0230          0.0328         
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS  0.8035         0.9698          0.0149          0.8672         
## CC.Nat_2R_AFSCS 0.6677         0.0274          0.1657          0.6685         
## CC.Nat_3R_AFSCS 0.6540         0.1726          0.0316          0.8248         
## CC.Nat_4R_AFSCS 0.1857         0.7145          0.0284          0.3614         
## CC.Nat_1_BIO    0.0417         0.7860          0.0025          0.1402         
## CC.Nat_2R_BIO   0.8091         0.0580          0.1367          0.4109         
## CC.Nat_3R_BIO   0.5827         0.7653          0.0002          0.2150         
## CC.Nat_4R_BIO   0.1347         0.5373          0.0635          0.1433         
## CC.Nat_1_BECCS  0.0041         0.7284          0.0408          0.0433         
## CC.Nat_2R_BECCS 0.9003         0.0022          0.1680          0.8537         
## CC.Nat_3R_BECCS 0.0542         0.6122          0.0000          0.2237         
## CC.Nat_4R_BECCS 0.0129         0.3237          0.0166          0.1088         
## CC.Nat_1_DACCS                 0.0093          0.7475          0.0000         
## CC.Nat_2R_DACCS 0.0093                         0.3342          0.0034         
## CC.Nat_3R_DACCS 0.7475         0.3342                          0.5755         
## CC.Nat_4R_DACCS 0.0000         0.0034          0.5755                         
## CC.Nat_1_EW     0.0004         0.0423          0.0332          0.0090         
## CC.Nat_2R_EW    0.0321         0.0000          0.8261          0.0020         
## CC.Nat_3R_EW    0.0505         0.9059          0.0002          0.2725         
## CC.Nat_4R_EW    0.0167         0.0480          0.1346          0.0098         
## CC.Nat_1_OF     0.0183         0.1931          0.0493          0.1265         
## CC.Nat_2R_OF    0.0396         0.0327          0.3484          0.0412         
## CC.Nat_3R_OF    0.3390         0.3344          0.0001          0.3669         
## CC.Nat_4R_OF    0.2779         0.7398          0.0052          0.6784         
## CC.Nat_1_BF     0.4468         0.8265          0.0373          0.1864         
## CC.Nat_2R_BF    0.4379         0.2566          0.6909          0.5106         
## CC.Nat_3R_BF    0.9617         0.2896          0.0000          0.8098         
## CC.Nat_4R_BF    0.7660         0.5336          0.1166          0.1967         
## CC.Nat_1_NE     0.1034         0.5085          0.2304          0.2551         
## CC.Nat_2R_NE    0.1432         0.7620          0.5344          0.1702         
## CC.Nat_3R_NE    0.1684         0.7499          0.0002          0.7783         
## CC.Nat_4R_NE    0.2265         0.2208          0.2113          0.1122         
## CC.Nat_1_SE     0.0873         0.8231          0.0984          0.3235         
## CC.Nat_2R_SE    0.0488         0.9925          0.5632          0.1875         
## CC.Nat_3R_SE    0.2085         0.6972          0.0102          0.3277         
## CC.Nat_4R_SE    0.6630         0.5683          0.3471          0.4759         
## CC.Nat_1_WE     0.7513         0.0069          0.1131          0.4234         
## CC.Nat_2R_WE    0.5872         0.2609          0.1859          0.4622         
## CC.Nat_3R_WE    0.3437         0.9874          0.1714          0.5240         
## CC.Nat_4R_WE    0.7361         0.0060          0.0879          0.2571         
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS  0.8769      0.0324       0.0001       0.2004       0.1729     
## CC.Nat_2R_AFSCS 0.4313      0.5546       0.2501       0.1880       0.5916     
## CC.Nat_3R_AFSCS 0.5573      0.0983       0.0000       0.6309       0.1114     
## CC.Nat_4R_AFSCS 0.2262      0.1289       0.0225       0.0946       0.9755     
## CC.Nat_1_BIO    0.0015      0.1990       0.1126       0.0011       0.0000     
## CC.Nat_2R_BIO   0.0235      0.0006       0.9544       0.0104       0.0477     
## CC.Nat_3R_BIO   0.4062      0.0299       0.0000       0.0644       0.2152     
## CC.Nat_4R_BIO   0.0044      0.0065       0.3677       0.0002       0.0056     
## CC.Nat_1_BECCS  0.0440      0.9859       0.0299       0.0490       0.0025     
## CC.Nat_2R_BECCS 0.5634      0.0003       0.6416       0.1872       0.2896     
## CC.Nat_3R_BECCS 0.0353      0.4379       0.0000       0.3711       0.0818     
## CC.Nat_4R_BECCS 0.0947      0.6017       0.0285       0.0712       0.0026     
## CC.Nat_1_DACCS  0.0004      0.0321       0.0505       0.0167       0.0183     
## CC.Nat_2R_DACCS 0.0423      0.0000       0.9059       0.0480       0.1931     
## CC.Nat_3R_DACCS 0.0332      0.8261       0.0002       0.1346       0.0493     
## CC.Nat_4R_DACCS 0.0090      0.0020       0.2725       0.0098       0.1265     
## CC.Nat_1_EW                 0.0010       0.4152       0.0000       0.0000     
## CC.Nat_2R_EW    0.0010                   0.0851       0.0000       0.0518     
## CC.Nat_3R_EW    0.4152      0.0851                    0.7310       0.1926     
## CC.Nat_4R_EW    0.0000      0.0000       0.7310                    0.0002     
## CC.Nat_1_OF     0.0000      0.0518       0.1926       0.0002                  
## CC.Nat_2R_OF    0.0635      0.0022       0.2104       0.1503       0.0015     
## CC.Nat_3R_OF    0.5359      0.3937       0.0000       0.9372       0.1507     
## CC.Nat_4R_OF    0.0000      0.0476       0.7781       0.0000       0.0000     
## CC.Nat_1_BF     0.0322      0.7777       0.0040       0.0298       0.0094     
## CC.Nat_2R_BF    0.6497      0.1100       0.2697       0.9049       0.3671     
## CC.Nat_3R_BF    0.3083      0.2795       0.0001       0.7563       0.0392     
## CC.Nat_4R_BF    0.1570      0.4712       0.1669       0.0538       0.3080     
## CC.Nat_1_NE     0.6806      0.2962       0.2246       0.7413       0.7592     
## CC.Nat_2R_NE    0.7527      0.5664       0.8657       0.7177       0.1147     
## CC.Nat_3R_NE    0.0837      0.6307       0.0045       0.5973       0.2307     
## CC.Nat_4R_NE    0.9579      0.5237       0.4306       0.5910       0.7082     
## CC.Nat_1_SE     0.0695      0.6485       0.0003       0.4952       0.1520     
## CC.Nat_2R_SE    0.0172      0.5712       0.9228       0.0320       0.0232     
## CC.Nat_3R_SE    0.4969      0.7733       0.0002       0.9473       0.0707     
## CC.Nat_4R_SE    0.4900      0.6642       0.0224       0.8835       0.8325     
## CC.Nat_1_WE     0.1956      0.0014       0.0009       0.1235       0.9438     
## CC.Nat_2R_WE    0.0295      0.0344       0.0035       0.0499       0.0167     
## CC.Nat_3R_WE    0.8061      0.2105       0.0004       0.8218       0.7349     
## CC.Nat_4R_WE    0.0708      0.0024       0.0013       0.1327       0.7043     
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS  0.8777       0.3682       0.1610       0.7240      0.1625      
## CC.Nat_2R_AFSCS 0.6101       0.7266       0.8996       0.1360      0.7895      
## CC.Nat_3R_AFSCS 0.3534       0.0000       0.2334       0.0003      0.0584      
## CC.Nat_4R_AFSCS 0.8792       0.5512       0.5509       0.3858      0.6743      
## CC.Nat_1_BIO    0.1086       0.0004       0.0010       0.0021      0.7473      
## CC.Nat_2R_BIO   0.0010       0.2141       0.0195       0.4876      0.0078      
## CC.Nat_3R_BIO   0.3111       0.0003       0.3846       0.1138      0.6214      
## CC.Nat_4R_BIO   0.0411       0.1779       0.0007       0.1722      0.8643      
## CC.Nat_1_BECCS  0.4393       0.0230       0.0053       0.0261      0.7074      
## CC.Nat_2R_BECCS 0.5351       0.3515       0.2392       0.2791      0.0364      
## CC.Nat_3R_BECCS 0.9190       0.0000       0.2550       0.0002      0.1070      
## CC.Nat_4R_BECCS 0.2694       0.0148       0.0003       0.1248      0.4960      
## CC.Nat_1_DACCS  0.0396       0.3390       0.2779       0.4468      0.4379      
## CC.Nat_2R_DACCS 0.0327       0.3344       0.7398       0.8265      0.2566      
## CC.Nat_3R_DACCS 0.3484       0.0001       0.0052       0.0373      0.6909      
## CC.Nat_4R_DACCS 0.0412       0.3669       0.6784       0.1864      0.5106      
## CC.Nat_1_EW     0.0635       0.5359       0.0000       0.0322      0.6497      
## CC.Nat_2R_EW    0.0022       0.3937       0.0476       0.7777      0.1100      
## CC.Nat_3R_EW    0.2104       0.0000       0.7781       0.0040      0.2697      
## CC.Nat_4R_EW    0.1503       0.9372       0.0000       0.0298      0.9049      
## CC.Nat_1_OF     0.0015       0.1507       0.0000       0.0094      0.3671      
## CC.Nat_2R_OF                 0.3327       0.0010       0.2572      0.8527      
## CC.Nat_3R_OF    0.3327                    0.5532       0.0000      0.0432      
## CC.Nat_4R_OF    0.0010       0.5532                    0.3330      0.1111      
## CC.Nat_1_BF     0.2572       0.0000       0.3330                   0.0196      
## CC.Nat_2R_BF    0.8527       0.0432       0.1111       0.0196                  
## CC.Nat_3R_BF    0.4594       0.0000       0.0270       0.0312      0.9413      
## CC.Nat_4R_BF    0.4012       0.0003       0.8668       0.0000      0.0010      
## CC.Nat_1_NE     0.5393       0.0216       0.9837       0.0039      0.8378      
## CC.Nat_2R_NE    0.1132       0.5756       0.3044       0.6181      0.1027      
## CC.Nat_3R_NE    0.5861       0.1359       0.2384       0.1682      0.5809      
## CC.Nat_4R_NE    0.6724       0.0156       0.7831       0.0071      0.2379      
## CC.Nat_1_SE     0.7324       0.0001       0.3306       0.0000      0.3378      
## CC.Nat_2R_SE    0.1602       0.9508       0.1384       0.0575      0.0693      
## CC.Nat_3R_SE    0.8077       0.0037       0.1852       0.0333      0.5432      
## CC.Nat_4R_SE    0.5570       0.0302       0.7793       0.0141      0.2665      
## CC.Nat_1_WE     0.2812       0.0519       0.8534       0.0747      0.4383      
## CC.Nat_2R_WE    0.0492       0.0258       0.0342       0.8527      0.2422      
## CC.Nat_3R_WE    0.3826       0.0036       0.8737       0.0238      0.2027      
## CC.Nat_4R_WE    0.0611       0.0648       0.7740       0.1205      0.7940      
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS  0.0010       0.2359       0.5644      0.4521       0.0364      
## CC.Nat_2R_AFSCS 0.0530       0.3381       0.2289      0.7823       0.1848      
## CC.Nat_3R_AFSCS 0.0524       0.0258       0.0015      0.4559       0.7215      
## CC.Nat_4R_AFSCS 0.0005       0.4897       0.0321      0.2598       0.0413      
## CC.Nat_1_BIO    0.0113       0.0131       0.2738      0.2178       0.3222      
## CC.Nat_2R_BIO   0.5012       0.1595       0.9406      0.9032       0.7532      
## CC.Nat_3R_BIO   0.0000       0.5620       0.5486      0.9246       0.0554      
## CC.Nat_4R_BIO   0.2655       0.0637       0.7736      0.3947       0.5147      
## CC.Nat_1_BECCS  0.0166       0.5104       0.0024      0.6332       0.1538      
## CC.Nat_2R_BECCS 0.3705       0.6758       0.4616      0.2813       0.4419      
## CC.Nat_3R_BECCS 0.0000       0.0010       0.2128      0.6770       0.0000      
## CC.Nat_4R_BECCS 0.0195       0.6692       0.1183      0.4594       0.1891      
## CC.Nat_1_DACCS  0.9617       0.7660       0.1034      0.1432       0.1684      
## CC.Nat_2R_DACCS 0.2896       0.5336       0.5085      0.7620       0.7499      
## CC.Nat_3R_DACCS 0.0000       0.1166       0.2304      0.5344       0.0002      
## CC.Nat_4R_DACCS 0.8098       0.1967       0.2551      0.1702       0.7783      
## CC.Nat_1_EW     0.3083       0.1570       0.6806      0.7527       0.0837      
## CC.Nat_2R_EW    0.2795       0.4712       0.2962      0.5664       0.6307      
## CC.Nat_3R_EW    0.0001       0.1669       0.2246      0.8657       0.0045      
## CC.Nat_4R_EW    0.7563       0.0538       0.7413      0.7177       0.5973      
## CC.Nat_1_OF     0.0392       0.3080       0.7592      0.1147       0.2307      
## CC.Nat_2R_OF    0.4594       0.4012       0.5393      0.1132       0.5861      
## CC.Nat_3R_OF    0.0000       0.0003       0.0216      0.5756       0.1359      
## CC.Nat_4R_OF    0.0270       0.8668       0.9837      0.3044       0.2384      
## CC.Nat_1_BF     0.0312       0.0000       0.0039      0.6181       0.1682      
## CC.Nat_2R_BF    0.9413       0.0010       0.8378      0.1027       0.5809      
## CC.Nat_3R_BF                 0.1688       0.5659      0.9167       0.0000      
## CC.Nat_4R_BF    0.1688                    0.1144      0.8430       0.6410      
## CC.Nat_1_NE     0.5659       0.1144                   0.1723       0.7936      
## CC.Nat_2R_NE    0.9167       0.8430       0.1723                   0.5024      
## CC.Nat_3R_NE    0.0000       0.6410       0.7936      0.5024                   
## CC.Nat_4R_NE    0.5491       0.0038       0.0000      0.0839       0.8690      
## CC.Nat_1_SE     0.1127       0.0059       0.0003      0.4150       0.1890      
## CC.Nat_2R_SE    0.6707       0.4359       0.0683      0.0771       0.8815      
## CC.Nat_3R_SE    0.0000       0.4542       0.2245      0.4853       0.0011      
## CC.Nat_4R_SE    0.5837       0.0687       0.0302      0.8942       0.6462      
## CC.Nat_1_WE     0.0023       0.7057       0.0739      0.4922       0.0146      
## CC.Nat_2R_WE    0.0232       0.5415       0.6691      0.6045       0.0687      
## CC.Nat_3R_WE    0.0044       0.1168       0.0967      0.6452       0.0457      
## CC.Nat_4R_WE    0.0020       0.6546       0.1751      0.9963       0.0358      
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS  0.2798       0.9919      0.7092       0.0003       0.7935      
## CC.Nat_2R_AFSCS 0.2313       0.0867      0.0335       0.0202       0.2656      
## CC.Nat_3R_AFSCS 0.0105       0.0000      0.7514       0.0777       0.0028      
## CC.Nat_4R_AFSCS 0.0861       0.1180      0.4203       0.0063       0.1618      
## CC.Nat_1_BIO    0.3553       0.1464      0.1694       0.1854       0.5187      
## CC.Nat_2R_BIO   0.9990       0.7094      0.7597       0.0635       0.7252      
## CC.Nat_3R_BIO   0.8760       0.0319      0.0600       0.0019       0.1733      
## CC.Nat_4R_BIO   0.4588       0.9776      0.2371       0.9231       0.3477      
## CC.Nat_1_BECCS  0.0025       0.1886      0.0504       0.0779       0.8451      
## CC.Nat_2R_BECCS 0.5212       0.9616      0.2440       0.3860       0.7708      
## CC.Nat_3R_BECCS 0.1942       0.0002      0.8944       0.0052       0.0259      
## CC.Nat_4R_BECCS 0.0737       0.1290      0.1630       0.1705       0.2785      
## CC.Nat_1_DACCS  0.2265       0.0873      0.0488       0.2085       0.6630      
## CC.Nat_2R_DACCS 0.2208       0.8231      0.9925       0.6972       0.5683      
## CC.Nat_3R_DACCS 0.2113       0.0984      0.5632       0.0102       0.3471      
## CC.Nat_4R_DACCS 0.1122       0.3235      0.1875       0.3277       0.4759      
## CC.Nat_1_EW     0.9579       0.0695      0.0172       0.4969       0.4900      
## CC.Nat_2R_EW    0.5237       0.6485      0.5712       0.7733       0.6642      
## CC.Nat_3R_EW    0.4306       0.0003      0.9228       0.0002       0.0224      
## CC.Nat_4R_EW    0.5910       0.4952      0.0320       0.9473       0.8835      
## CC.Nat_1_OF     0.7082       0.1520      0.0232       0.0707       0.8325      
## CC.Nat_2R_OF    0.6724       0.7324      0.1602       0.8077       0.5570      
## CC.Nat_3R_OF    0.0156       0.0001      0.9508       0.0037       0.0302      
## CC.Nat_4R_OF    0.7831       0.3306      0.1384       0.1852       0.7793      
## CC.Nat_1_BF     0.0071       0.0000      0.0575       0.0333       0.0141      
## CC.Nat_2R_BF    0.2379       0.3378      0.0693       0.5432       0.2665      
## CC.Nat_3R_BF    0.5491       0.1127      0.6707       0.0000       0.5837      
## CC.Nat_4R_BF    0.0038       0.0059      0.4359       0.4542       0.0687      
## CC.Nat_1_NE     0.0000       0.0003      0.0683       0.2245       0.0302      
## CC.Nat_2R_NE    0.0839       0.4150      0.0771       0.4853       0.8942      
## CC.Nat_3R_NE    0.8690       0.1890      0.8815       0.0011       0.6462      
## CC.Nat_4R_NE                 0.0203      0.2945       0.6711       0.0105      
## CC.Nat_1_SE     0.0203                   0.8103       0.3868       0.0000      
## CC.Nat_2R_SE    0.2945       0.8103                   0.9908       0.2798      
## CC.Nat_3R_SE    0.6711       0.3868      0.9908                    0.6476      
## CC.Nat_4R_SE    0.0105       0.0000      0.2798       0.6476                   
## CC.Nat_1_WE     0.0758       0.0128      0.6515       0.0111       0.0973      
## CC.Nat_2R_WE    0.8234       0.8429      0.0091       0.0053       0.6450      
## CC.Nat_3R_WE    0.1186       0.0243      0.6622       0.0015       0.4095      
## CC.Nat_4R_WE    0.1249       0.0810      0.7551       0.0108       0.0960      
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS  0.0464      0.0360       0.0444       0.0835      
## CC.Nat_2R_AFSCS 0.4218      0.1516       0.8620       0.4193      
## CC.Nat_3R_AFSCS 0.0010      0.1443       0.0006       0.0008      
## CC.Nat_4R_AFSCS 0.1776      0.0130       0.0663       0.1708      
## CC.Nat_1_BIO    0.4651      0.8623       0.0172       0.6415      
## CC.Nat_2R_BIO   0.1453      0.6825       0.2192       0.1536      
## CC.Nat_3R_BIO   0.0027      0.0052       0.2091       0.0030      
## CC.Nat_4R_BIO   0.6281      0.4812       0.4890       0.7187      
## CC.Nat_1_BECCS  0.1003      0.3505       0.0282       0.1849      
## CC.Nat_2R_BECCS 0.2539      0.8228       0.6028       0.5519      
## CC.Nat_3R_BECCS 0.0036      0.0289       0.0155       0.0230      
## CC.Nat_4R_BECCS 0.0276      0.9514       0.0169       0.0328      
## CC.Nat_1_DACCS  0.7513      0.5872       0.3437       0.7361      
## CC.Nat_2R_DACCS 0.0069      0.2609       0.9874       0.0060      
## CC.Nat_3R_DACCS 0.1131      0.1859       0.1714       0.0879      
## CC.Nat_4R_DACCS 0.4234      0.4622       0.5240       0.2571      
## CC.Nat_1_EW     0.1956      0.0295       0.8061       0.0708      
## CC.Nat_2R_EW    0.0014      0.0344       0.2105       0.0024      
## CC.Nat_3R_EW    0.0009      0.0035       0.0004       0.0013      
## CC.Nat_4R_EW    0.1235      0.0499       0.8218       0.1327      
## CC.Nat_1_OF     0.9438      0.0167       0.7349       0.7043      
## CC.Nat_2R_OF    0.2812      0.0492       0.3826       0.0611      
## CC.Nat_3R_OF    0.0519      0.0258       0.0036       0.0648      
## CC.Nat_4R_OF    0.8534      0.0342       0.8737       0.7740      
## CC.Nat_1_BF     0.0747      0.8527       0.0238       0.1205      
## CC.Nat_2R_BF    0.4383      0.2422       0.2027       0.7940      
## CC.Nat_3R_BF    0.0023      0.0232       0.0044       0.0020      
## CC.Nat_4R_BF    0.7057      0.5415       0.1168       0.6546      
## CC.Nat_1_NE     0.0739      0.6691       0.0967       0.1751      
## CC.Nat_2R_NE    0.4922      0.6045       0.6452       0.9963      
## CC.Nat_3R_NE    0.0146      0.0687       0.0457       0.0358      
## CC.Nat_4R_NE    0.0758      0.8234       0.1186       0.1249      
## CC.Nat_1_SE     0.0128      0.8429       0.0243       0.0810      
## CC.Nat_2R_SE    0.6515      0.0091       0.6622       0.7551      
## CC.Nat_3R_SE    0.0111      0.0053       0.0015       0.0108      
## CC.Nat_4R_SE    0.0973      0.6450       0.4095       0.0960      
## CC.Nat_1_WE                 0.0036       0.0486       0.0000      
## CC.Nat_2R_WE    0.0036                   0.0337       0.0009      
## CC.Nat_3R_WE    0.0486      0.0337                    0.0664      
## CC.Nat_4R_WE    0.0000      0.0009       0.0664
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor1, method="color")

corrplot(mydata.cor1, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Individual Differences

#Individual Differences
CC$corID <- data.frame(CC$ATNS_Scale, CC$CCB_Scale, CC$CNS_Scale, CC$IndScale, CC$CollScale, CC$Party, CC$PI_Orientation)

length(CC$ATNS_Scale)
## [1] 5
length(CC$CCB_Scale)
## [1] 4
length(CC$CNS_Scale)
## [1] 3
length(CC$IndScale)
## [1] 4
length(CC$CollScale)
## [1] 4
length(CC$PartyFull)
## [1] 1007
length(CC$Orientation)
## [1] 1007
mydata.cor2 = cor(CC$corID, use = "pairwise.complete.obs")
head(round(mydata.cor2,2))
##             CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5 CC.CCB_1_48
## CC.ATNS_1        1.00       0.26      0.39      0.35      0.41       -0.21
## CC.ATNS_2R       0.26       1.00      0.55      0.54      0.49       -0.01
## CC.ATNS_3        0.39       0.55      1.00      0.70      0.61       -0.01
## CC.ATNS_4        0.35       0.54      0.70      1.00      0.61        0.01
## CC.ATNS_5        0.41       0.49      0.61      0.61      1.00        0.00
## CC.CCB_1_48     -0.21      -0.01     -0.01      0.01      0.00        1.00
##             CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1 CC.CNS_2 CC.CNS_3
## CC.ATNS_1         -0.20       -0.23       -0.27     0.04     0.01     0.10
## CC.ATNS_2R         0.02       -0.02       -0.03     0.20     0.15     0.18
## CC.ATNS_3          0.03        0.02       -0.01     0.20     0.17     0.28
## CC.ATNS_4          0.07        0.03        0.00     0.28     0.21     0.29
## CC.ATNS_5          0.06        0.04       -0.04     0.23     0.16     0.24
## CC.CCB_1_48        0.87        0.78        0.70     0.22     0.22     0.15
##             CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6 CC.Ind_3 CC.Ind_4 CC.Ind_7
## CC.ATNS_1       0.04     0.12     0.05     0.08     0.11     0.11     0.13
## CC.ATNS_2R      0.06     0.07     0.06    -0.01     0.05     0.06     0.01
## CC.ATNS_3       0.13     0.16     0.07     0.06     0.06     0.08     0.04
## CC.ATNS_4       0.12     0.15     0.08     0.07     0.06     0.08     0.06
## CC.ATNS_5       0.07     0.13     0.05     0.01     0.01     0.02     0.01
## CC.CCB_1_48     0.12    -0.07     0.07     0.07    -0.16    -0.13    -0.16
##             CC.Ind_8 CC.Party CC.PI_Orientation
## CC.ATNS_1       0.06     0.04             -0.22
## CC.ATNS_2R      0.06     0.05              0.01
## CC.ATNS_3       0.06     0.01              0.02
## CC.ATNS_4       0.06     0.03              0.03
## CC.ATNS_5       0.01     0.10              0.01
## CC.CCB_1_48    -0.08     0.11              0.56
library("Hmisc")
mydata.rcorr2 = rcorr(as.matrix(mydata.cor2))
mydata.rcorr2
##                   CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5
## CC.ATNS_1              1.00       0.55      0.65      0.62      0.66
## CC.ATNS_2R             0.55       1.00      0.84      0.84      0.81
## CC.ATNS_3              0.65       0.84      1.00      0.94      0.89
## CC.ATNS_4              0.62       0.84      0.94      1.00      0.89
## CC.ATNS_5              0.66       0.81      0.89      0.89      1.00
## CC.CCB_1_48           -0.72      -0.35     -0.39     -0.36     -0.34
## CC.CCB_1_49           -0.70      -0.31     -0.33     -0.30     -0.28
## CC.CCB_1_50           -0.71      -0.32     -0.34     -0.31     -0.29
## CC.CCB_1_51           -0.74      -0.36     -0.38     -0.36     -0.35
## CC.CNS_1              -0.14       0.12      0.11      0.19      0.12
## CC.CNS_2              -0.22       0.01      0.00      0.06      0.00
## CC.CNS_3               0.00       0.13      0.20      0.24      0.17
## CC.Ind_1              -0.10      -0.23     -0.17     -0.18     -0.24
## CC.Ind_2               0.24       0.05      0.15      0.12      0.11
## CC.Ind_5              -0.07      -0.19     -0.17     -0.17     -0.20
## CC.Ind_6               0.00      -0.30     -0.23     -0.24     -0.31
## CC.Ind_3               0.24      -0.09     -0.07     -0.09     -0.16
## CC.Ind_4               0.22      -0.08     -0.07     -0.08     -0.16
## CC.Ind_7               0.30      -0.08     -0.05     -0.06     -0.12
## CC.Ind_8               0.16      -0.10     -0.10     -0.11     -0.19
## CC.Party              -0.12      -0.03     -0.08     -0.07      0.04
## CC.PI_Orientation     -0.64      -0.24     -0.27     -0.24     -0.21
##                   CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1
## CC.ATNS_1               -0.72       -0.70       -0.71       -0.74    -0.14
## CC.ATNS_2R              -0.35       -0.31       -0.32       -0.36     0.12
## CC.ATNS_3               -0.39       -0.33       -0.34       -0.38     0.11
## CC.ATNS_4               -0.36       -0.30       -0.31       -0.36     0.19
## CC.ATNS_5               -0.34       -0.28       -0.29       -0.35     0.12
## CC.CCB_1_48              1.00        0.99        0.98        0.96     0.16
## CC.CCB_1_49              0.99        1.00        0.99        0.98     0.18
## CC.CCB_1_50              0.98        0.99        1.00        0.98     0.15
## CC.CCB_1_51              0.96        0.98        0.98        1.00     0.17
## CC.CNS_1                 0.16        0.18        0.15        0.17     1.00
## CC.CNS_2                 0.21        0.23        0.20        0.23     0.90
## CC.CNS_3                -0.04       -0.01       -0.04       -0.01     0.80
## CC.Ind_1                -0.14       -0.17       -0.19       -0.17     0.01
## CC.Ind_2                -0.42       -0.43       -0.43       -0.43    -0.16
## CC.Ind_5                -0.14       -0.17       -0.17       -0.16     0.04
## CC.Ind_6                -0.31       -0.36       -0.37       -0.33    -0.05
## CC.Ind_3                -0.65       -0.67       -0.68       -0.61    -0.10
## CC.Ind_4                -0.62       -0.65       -0.66       -0.59     0.00
## CC.Ind_7                -0.67       -0.71       -0.71       -0.65    -0.23
## CC.Ind_8                -0.55       -0.58       -0.59       -0.51    -0.03
## CC.Party                 0.24        0.25        0.25        0.18    -0.13
## CC.PI_Orientation        0.89        0.91        0.92        0.89     0.16
##                   CC.CNS_2 CC.CNS_3 CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6
## CC.ATNS_1            -0.22     0.00    -0.10     0.24    -0.07     0.00
## CC.ATNS_2R            0.01     0.13    -0.23     0.05    -0.19    -0.30
## CC.ATNS_3             0.00     0.20    -0.17     0.15    -0.17    -0.23
## CC.ATNS_4             0.06     0.24    -0.18     0.12    -0.17    -0.24
## CC.ATNS_5             0.00     0.17    -0.24     0.11    -0.20    -0.31
## CC.CCB_1_48           0.21    -0.04    -0.14    -0.42    -0.14    -0.31
## CC.CCB_1_49           0.23    -0.01    -0.17    -0.43    -0.17    -0.36
## CC.CCB_1_50           0.20    -0.04    -0.19    -0.43    -0.17    -0.37
## CC.CCB_1_51           0.23    -0.01    -0.17    -0.43    -0.16    -0.33
## CC.CNS_1              0.90     0.80     0.01    -0.16     0.04    -0.05
## CC.CNS_2              1.00     0.76     0.03    -0.20     0.06     0.01
## CC.CNS_3              0.76     1.00     0.03    -0.08     0.04     0.04
## CC.Ind_1              0.03     0.03     1.00     0.50     0.87     0.69
## CC.Ind_2             -0.20    -0.08     0.50     1.00     0.48     0.27
## CC.Ind_5              0.06     0.04     0.87     0.48     1.00     0.57
## CC.Ind_6              0.01     0.04     0.69     0.27     0.57     1.00
## CC.Ind_3             -0.07     0.09     0.13     0.00     0.00     0.49
## CC.Ind_4              0.02     0.18     0.18    -0.03     0.05     0.51
## CC.Ind_7             -0.20    -0.05     0.07     0.09    -0.06     0.43
## CC.Ind_8              0.00     0.15     0.11    -0.07    -0.02     0.43
## CC.Party             -0.18    -0.22    -0.25    -0.01    -0.08    -0.48
## CC.PI_Orientation     0.19    -0.02    -0.15    -0.30    -0.10    -0.41
##                   CC.Ind_3 CC.Ind_4 CC.Ind_7 CC.Ind_8 CC.Party
## CC.ATNS_1             0.24     0.22     0.30     0.16    -0.12
## CC.ATNS_2R           -0.09    -0.08    -0.08    -0.10    -0.03
## CC.ATNS_3            -0.07    -0.07    -0.05    -0.10    -0.08
## CC.ATNS_4            -0.09    -0.08    -0.06    -0.11    -0.07
## CC.ATNS_5            -0.16    -0.16    -0.12    -0.19     0.04
## CC.CCB_1_48          -0.65    -0.62    -0.67    -0.55     0.24
## CC.CCB_1_49          -0.67    -0.65    -0.71    -0.58     0.25
## CC.CCB_1_50          -0.68    -0.66    -0.71    -0.59     0.25
## CC.CCB_1_51          -0.61    -0.59    -0.65    -0.51     0.18
## CC.CNS_1             -0.10     0.00    -0.23    -0.03    -0.13
## CC.CNS_2             -0.07     0.02    -0.20     0.00    -0.18
## CC.CNS_3              0.09     0.18    -0.05     0.15    -0.22
## CC.Ind_1              0.13     0.18     0.07     0.11    -0.25
## CC.Ind_2              0.00    -0.03     0.09    -0.07    -0.01
## CC.Ind_5              0.00     0.05    -0.06    -0.02    -0.08
## CC.Ind_6              0.49     0.51     0.43     0.43    -0.48
## CC.Ind_3              1.00     0.92     0.90     0.88    -0.61
## CC.Ind_4              0.92     1.00     0.81     0.93    -0.60
## CC.Ind_7              0.90     0.81     1.00     0.79    -0.54
## CC.Ind_8              0.88     0.93     0.79     1.00    -0.62
## CC.Party             -0.61    -0.60    -0.54    -0.62     1.00
## CC.PI_Orientation    -0.79    -0.78    -0.82    -0.73     0.38
##                   CC.PI_Orientation
## CC.ATNS_1                     -0.64
## CC.ATNS_2R                    -0.24
## CC.ATNS_3                     -0.27
## CC.ATNS_4                     -0.24
## CC.ATNS_5                     -0.21
## CC.CCB_1_48                    0.89
## CC.CCB_1_49                    0.91
## CC.CCB_1_50                    0.92
## CC.CCB_1_51                    0.89
## CC.CNS_1                       0.16
## CC.CNS_2                       0.19
## CC.CNS_3                      -0.02
## CC.Ind_1                      -0.15
## CC.Ind_2                      -0.30
## CC.Ind_5                      -0.10
## CC.Ind_6                      -0.41
## CC.Ind_3                      -0.79
## CC.Ind_4                      -0.78
## CC.Ind_7                      -0.82
## CC.Ind_8                      -0.73
## CC.Party                       0.38
## CC.PI_Orientation              1.00
## 
## n= 22 
## 
## 
## P
##                   CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5
## CC.ATNS_1                   0.0084     0.0010    0.0022    0.0009   
## CC.ATNS_2R        0.0084               0.0000    0.0000    0.0000   
## CC.ATNS_3         0.0010    0.0000               0.0000    0.0000   
## CC.ATNS_4         0.0022    0.0000     0.0000              0.0000   
## CC.ATNS_5         0.0009    0.0000     0.0000    0.0000             
## CC.CCB_1_48       0.0002    0.1063     0.0750    0.1014    0.1228   
## CC.CCB_1_49       0.0003    0.1672     0.1300    0.1731    0.2082   
## CC.CCB_1_50       0.0002    0.1479     0.1207    0.1538    0.1940   
## CC.CCB_1_51       0.0000    0.1044     0.0775    0.1016    0.1068   
## CC.CNS_1          0.5299    0.5916     0.6396    0.4064    0.5864   
## CC.CNS_2          0.3166    0.9627     0.9965    0.7819    0.9926   
## CC.CNS_3          0.9935    0.5492     0.3830    0.2910    0.4619   
## CC.Ind_1          0.6520    0.2998     0.4566    0.4143    0.2821   
## CC.Ind_2          0.2855    0.8282     0.5193    0.6009    0.6203   
## CC.Ind_5          0.7565    0.3941     0.4605    0.4371    0.3708   
## CC.Ind_6          0.9892    0.1764     0.3025    0.2789    0.1536   
## CC.Ind_3          0.2778    0.7065     0.7454    0.7024    0.4702   
## CC.Ind_4          0.3264    0.7170     0.7581    0.7311    0.4768   
## CC.Ind_7          0.1771    0.7329     0.8175    0.7895    0.5869   
## CC.Ind_8          0.4812    0.6672     0.6575    0.6285    0.4044   
## CC.Party          0.6001    0.9082     0.7148    0.7409    0.8510   
## CC.PI_Orientation 0.0013    0.2920     0.2327    0.2781    0.3367   
##                   CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1
## CC.ATNS_1         0.0002      0.0003      0.0002      0.0000      0.5299  
## CC.ATNS_2R        0.1063      0.1672      0.1479      0.1044      0.5916  
## CC.ATNS_3         0.0750      0.1300      0.1207      0.0775      0.6396  
## CC.ATNS_4         0.1014      0.1731      0.1538      0.1016      0.4064  
## CC.ATNS_5         0.1228      0.2082      0.1940      0.1068      0.5864  
## CC.CCB_1_48                   0.0000      0.0000      0.0000      0.4864  
## CC.CCB_1_49       0.0000                  0.0000      0.0000      0.4332  
## CC.CCB_1_50       0.0000      0.0000                  0.0000      0.5118  
## CC.CCB_1_51       0.0000      0.0000      0.0000                  0.4544  
## CC.CNS_1          0.4864      0.4332      0.5118      0.4544              
## CC.CNS_2          0.3478      0.3103      0.3757      0.3079      0.0000  
## CC.CNS_3          0.8589      0.9478      0.8738      0.9535      0.0000  
## CC.Ind_1          0.5309      0.4383      0.4058      0.4628      0.9740  
## CC.Ind_2          0.0532      0.0445      0.0470      0.0435      0.4748  
## CC.Ind_5          0.5269      0.4449      0.4473      0.4729      0.8536  
## CC.Ind_6          0.1639      0.1050      0.0907      0.1321      0.8180  
## CC.Ind_3          0.0011      0.0006      0.0006      0.0025      0.6643  
## CC.Ind_4          0.0019      0.0011      0.0009      0.0040      0.9955  
## CC.Ind_7          0.0006      0.0002      0.0002      0.0011      0.3039  
## CC.Ind_8          0.0074      0.0044      0.0041      0.0142      0.9046  
## CC.Party          0.2905      0.2691      0.2523      0.4228      0.5500  
## CC.PI_Orientation 0.0000      0.0000      0.0000      0.0000      0.4765  
##                   CC.CNS_2 CC.CNS_3 CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6
## CC.ATNS_1         0.3166   0.9935   0.6520   0.2855   0.7565   0.9892  
## CC.ATNS_2R        0.9627   0.5492   0.2998   0.8282   0.3941   0.1764  
## CC.ATNS_3         0.9965   0.3830   0.4566   0.5193   0.4605   0.3025  
## CC.ATNS_4         0.7819   0.2910   0.4143   0.6009   0.4371   0.2789  
## CC.ATNS_5         0.9926   0.4619   0.2821   0.6203   0.3708   0.1536  
## CC.CCB_1_48       0.3478   0.8589   0.5309   0.0532   0.5269   0.1639  
## CC.CCB_1_49       0.3103   0.9478   0.4383   0.0445   0.4449   0.1050  
## CC.CCB_1_50       0.3757   0.8738   0.4058   0.0470   0.4473   0.0907  
## CC.CCB_1_51       0.3079   0.9535   0.4628   0.0435   0.4729   0.1321  
## CC.CNS_1          0.0000   0.0000   0.9740   0.4748   0.8536   0.8180  
## CC.CNS_2                   0.0000   0.8807   0.3624   0.8060   0.9657  
## CC.CNS_3          0.0000            0.8934   0.7112   0.8557   0.8734  
## CC.Ind_1          0.8807   0.8934            0.0178   0.0000   0.0004  
## CC.Ind_2          0.3624   0.7112   0.0178            0.0224   0.2196  
## CC.Ind_5          0.8060   0.8557   0.0000   0.0224            0.0054  
## CC.Ind_6          0.9657   0.8734   0.0004   0.2196   0.0054           
## CC.Ind_3          0.7695   0.6834   0.5654   0.9950   0.9936   0.0198  
## CC.Ind_4          0.9365   0.4343   0.4335   0.8963   0.8107   0.0157  
## CC.Ind_7          0.3771   0.8220   0.7570   0.7068   0.7845   0.0449  
## CC.Ind_8          0.9833   0.5177   0.6215   0.7419   0.9287   0.0434  
## CC.Party          0.4149   0.3332   0.2613   0.9486   0.7326   0.0246  
## CC.PI_Orientation 0.4058   0.9171   0.4993   0.1812   0.6619   0.0578  
##                   CC.Ind_3 CC.Ind_4 CC.Ind_7 CC.Ind_8 CC.Party
## CC.ATNS_1         0.2778   0.3264   0.1771   0.4812   0.6001  
## CC.ATNS_2R        0.7065   0.7170   0.7329   0.6672   0.9082  
## CC.ATNS_3         0.7454   0.7581   0.8175   0.6575   0.7148  
## CC.ATNS_4         0.7024   0.7311   0.7895   0.6285   0.7409  
## CC.ATNS_5         0.4702   0.4768   0.5869   0.4044   0.8510  
## CC.CCB_1_48       0.0011   0.0019   0.0006   0.0074   0.2905  
## CC.CCB_1_49       0.0006   0.0011   0.0002   0.0044   0.2691  
## CC.CCB_1_50       0.0006   0.0009   0.0002   0.0041   0.2523  
## CC.CCB_1_51       0.0025   0.0040   0.0011   0.0142   0.4228  
## CC.CNS_1          0.6643   0.9955   0.3039   0.9046   0.5500  
## CC.CNS_2          0.7695   0.9365   0.3771   0.9833   0.4149  
## CC.CNS_3          0.6834   0.4343   0.8220   0.5177   0.3332  
## CC.Ind_1          0.5654   0.4335   0.7570   0.6215   0.2613  
## CC.Ind_2          0.9950   0.8963   0.7068   0.7419   0.9486  
## CC.Ind_5          0.9936   0.8107   0.7845   0.9287   0.7326  
## CC.Ind_6          0.0198   0.0157   0.0449   0.0434   0.0246  
## CC.Ind_3                   0.0000   0.0000   0.0000   0.0026  
## CC.Ind_4          0.0000            0.0000   0.0000   0.0033  
## CC.Ind_7          0.0000   0.0000            0.0000   0.0088  
## CC.Ind_8          0.0000   0.0000   0.0000            0.0023  
## CC.Party          0.0026   0.0033   0.0088   0.0023           
## CC.PI_Orientation 0.0000   0.0000   0.0000   0.0001   0.0798  
##                   CC.PI_Orientation
## CC.ATNS_1         0.0013           
## CC.ATNS_2R        0.2920           
## CC.ATNS_3         0.2327           
## CC.ATNS_4         0.2781           
## CC.ATNS_5         0.3367           
## CC.CCB_1_48       0.0000           
## CC.CCB_1_49       0.0000           
## CC.CCB_1_50       0.0000           
## CC.CCB_1_51       0.0000           
## CC.CNS_1          0.4765           
## CC.CNS_2          0.4058           
## CC.CNS_3          0.9171           
## CC.Ind_1          0.4993           
## CC.Ind_2          0.1812           
## CC.Ind_5          0.6619           
## CC.Ind_6          0.0578           
## CC.Ind_3          0.0000           
## CC.Ind_4          0.0000           
## CC.Ind_7          0.0000           
## CC.Ind_8          0.0001           
## CC.Party          0.0798           
## CC.PI_Orientation
library(corrplot)
corrplot(mydata.cor2, method="color")

corrplot(mydata.cor2, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Long Form

Rename Variables

#Renaming variables to fit pivot_longer command

## Benefit
CC$Ben.AFSCS <- CC$Ben_AFSCS
length(CC$Ben.AFSCS)
## [1] 1007
CC$Ben.BIO <- CC$Ben_BIO
length(CC$Ben.BIO)
## [1] 1007
CC$Ben.BECCS <- CC$Ben_BECCS
length(CC$Ben.BECCS) 
## [1] 1007
CC$Ben.DACCS <- CC$Ben_DACCS
length(CC$Ben.DACCS)
## [1] 1007
CC$Ben.EW <- CC$Ben_EW
length(CC$Ben.EW) 
## [1] 1007
CC$Ben.OF <- CC$Ben_OF
length(CC$Ben.OF) 
## [1] 1007
CC$Ben.BF <- CC$Ben_BF
length(CC$Ben.BF) 
## [1] 1007
CC$Ben.NE <- CC$Ben_NE
length(CC$Ben.NE) 
## [1] 1007
CC$Ben.SE <- CC$Ben_SE
length(CC$Ben.SE) 
## [1] 1007
CC$Ben.WE <- CC$Ben_WE
length(CC$Ben.WE) 
## [1] 1007
## Control
CC$Control.AFSCS <- CC$Control_AFSCS
length(CC$Control.AFSCS)
## [1] 1007
CC$Control.BIO <- CC$Control_BIO
length(CC$Control.BIO)
## [1] 1007
CC$Control.BECCS <- CC$Control_BECCS
length(CC$Control.BECCS)
## [1] 1007
CC$Control.DACCS <- CC$Control_DACCS
length(CC$Control.DACCS)
## [1] 1007
CC$Control.EW <- CC$Control_EW
length(CC$Control.EW)
## [1] 1007
CC$Control.OF <- CC$Control_OF
length(CC$Control.OF)
## [1] 1007
CC$Control.BF <- CC$Control_BF
length(CC$Control.BF)
## [1] 1007
CC$Control.NE <- CC$Control_NE
length(CC$Control.NE)
## [1] 1007
CC$Control.SE <- CC$Control_SE
length(CC$Control.SE)
## [1] 1007
CC$Control.WE <- CC$Control_WE
length(CC$Control.WE)
## [1] 1007
## Familiarity
CC$Familiar.AFSCS <- CC$Familiar_AFSCS
length(CC$Familiar.AFSCS)
## [1] 1007
CC$Familiar.BIO <- CC$Familiar_BIO
length(CC$Familiar.BIO)
## [1] 1007
CC$Familiar.BECCS <- CC$Familiar_BECCS
length(CC$Familiar.BECCS)
## [1] 1007
CC$Familiar.DACCS <- CC$Familiar_DACCS
length(CC$Familiar.DACCS)
## [1] 1007
CC$Familiar.EW <- CC$Familiar_EW
length(CC$Familiar.EW)
## [1] 1007
CC$Familiar.OF <- CC$Familiar_OF
length(CC$Familiar.OF)
## [1] 1007
CC$Familiar.BF <- CC$Familiar_BF
length(CC$Familiar.BF)
## [1] 1007
CC$Familiar.NE <- CC$Familiar_NE
length(CC$Familiar.NE)
## [1] 1007
CC$Familiar.SE <- CC$Familiar_SE
length(CC$Familiar.SE)
## [1] 1007
CC$Familiar.WE <- CC$Familiar_WE
length(CC$Familiar.WE)
## [1] 1007
## Naturalness
CC$Naturalness.AFSCS <- CC$Nat_Score_AFSCS
length(CC$Naturalness.AFSCS)
## [1] 1007
CC$Naturalness.BIO <- CC$Nat_Score_BIO
length(CC$Naturalness.BIO)
## [1] 1007
CC$Naturalness.BECCS <- CC$Nat_Score_BECCS
length(CC$Naturalness.BECCS)
## [1] 1007
CC$Naturalness.DACCS <- CC$Nat_Score_DACCS
length(CC$Naturalness.DACCS)
## [1] 1007
CC$Naturalness.EW <- CC$Nat_Score_EW
length(CC$Naturalness.EW)
## [1] 1007
CC$Naturalness.OF <- CC$Nat_Score_OF
length(CC$Naturalness.OF)
## [1] 1007
CC$Naturalness.BF <- CC$Nat_Score_BF
length(CC$Naturalness.BF)
## [1] 1007
CC$Naturalness.NE <- CC$Nat_Score_NE
length(CC$Naturalness.NE)
## [1] 1007
CC$Naturalness.SE <- CC$Nat_Score_SE
length(CC$Naturalness.SE)
## [1] 1007
CC$Naturalness.WE <- CC$Nat_Score_WE
length(CC$Naturalness.WE)
## [1] 1007
## Risk
CC$Risk.AFSCS <- CC$Risk_Score_AFSCS
length(CC$Risk.AFSCS)
## [1] 1007
CC$Risk.BIO <- CC$Risk_Score_BIO
length(CC$Risk.BIO)
## [1] 1007
CC$Risk.BECCS <- CC$Risk_Score_BECCS
length(CC$Risk.BECCS)
## [1] 1007
CC$Risk.DACCS <- CC$Risk_Score_DACCS
length(CC$Risk.DACCS)
## [1] 1007
CC$Risk.EW <- CC$Risk_Score_EW
length(CC$Risk.EW)
## [1] 1007
CC$Risk.OF <- CC$Risk_Score_OF
length(CC$Risk.OF)
## [1] 1007
CC$Risk.BF <- CC$Risk_Score_BF
length(CC$Risk.BF)
## [1] 1007
CC$Risk.NE <- CC$Risk_Score_NE
length(CC$Risk.NE)
## [1] 1007
CC$Risk.SE <- CC$Risk_Score_SE
length(CC$Risk.SE)
## [1] 1007
CC$Risk.WE <- CC$Risk_Score_WE
length(CC$Risk.WE)
## [1] 1007
## Support
CC$Support.AFSCS <- CC$Support_Score_AFSCS
length(CC$Support.AFSCS)
## [1] 1007
CC$Support.BIO <- CC$Support_Score_BIO
length(CC$Support.BIO)
## [1] 1007
CC$Support.BECCS <- CC$Support_Score_BECCS
length(CC$Support.BECCS)
## [1] 1007
CC$Support.DACCS <- CC$Support_Score_DACCS
length(CC$Support.DACCS)
## [1] 1007
CC$Support.EW <- CC$Support_Score_EW
length(CC$Support.EW)
## [1] 1007
CC$Support.OF <- CC$Support_Score_OF
length(CC$Support.OF)
## [1] 1007
CC$Support.BF <- CC$Support_Score_BF
length(CC$Support.BF)
## [1] 1007
CC$Support.NE <- CC$Support_Score_NE
length(CC$Support.NE)
## [1] 1007
CC$Support.SE <- CC$Support_Score_SE
length(CC$Support.SE)
## [1] 1007
CC$Support.WE <- CC$Support_Score_WE
length(CC$Support.WE)
## [1] 1007
## Understanding
CC$Understanding.AFSCS <- CC$Und_AFSCS
length(CC$Understanding.AFSCS)
## [1] 1007
CC$Understanding.BIO <- CC$Und_BIO
length(CC$Understanding.BIO)
## [1] 1007
CC$Understanding.BECCS <- CC$Und_BECCS
length(CC$Understanding.BECCS)
## [1] 1007
CC$Understanding.DACCS <- CC$Und_DACCS
length(CC$Understanding.DACCS)
## [1] 1007
CC$Understanding.EW <- CC$Und_EW
length(CC$Understanding.EW)
## [1] 1007
CC$Understanding.OF <- CC$Und_OF
length(CC$Understanding.OF)
## [1] 1007
CC$Understanding.BF <- CC$Und_BF
length(CC$Understanding.BF)
## [1] 1007
CC$Understanding.NE <- CC$Und_NE
length(CC$Understanding.NE)
## [1] 1007
CC$Understanding.SE <- CC$Und_SE
length(CC$Understanding.SE)
## [1] 1007
CC$Understanding.WE <- CC$Und_AFSCS
length(CC$Understanding.WE)
## [1] 1007
## Familiarity/Understanding (Mean)
length(CC$FR.AFSCS)
## [1] 1007
length(CC$FR.BIO)
## [1] 1007
length(CC$FR.BECCS)
## [1] 1007
length(CC$FR.DACCS)
## [1] 1007
length(CC$FR.EW)
## [1] 1007
length(CC$FR.OF)
## [1] 1007
length(CC$FR.BF)
## [1] 1007
length(CC$FR.NE)
## [1] 1007
length(CC$FR.SE)
## [1] 1007
length(CC$FR.WE)
## [1] 1007
#Benefit - Risk Difference Score
length(CC$BRDiff.AFSCS)
## [1] 1007
length(CC$BRDiff.BIO)
## [1] 1007
length(CC$BRDiff.BECCS)
## [1] 1007
length(CC$BRDiff.DACCS)
## [1] 1007
length(CC$BRDiff.EW)
## [1] 1007
length(CC$BRDiff.OF)
## [1] 1007
length(CC$BRDiff.BF)
## [1] 1007
length(CC$BRDiff.NE)
## [1] 1007
length(CC$BRDiff.SE)
## [1] 1007
length(CC$BRDiff.WE)
## [1] 1007

Transform: Wide to Long

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)

#Reshape to long form
CCvector <- c("Ben.AFSCS", "Ben.BIO", "Ben.BECCS", "Ben.DACCS", "Ben.EW", "Ben.OF" , "Ben.BF", "Ben.NE", "Ben.SE", "Ben.WE", "Control.AFSCS" , "Control.BIO" , "Control.BECCS" , "Control.DACCS", "Control.EW", "Control.OF", "Control.BF", "Control.NE", "Control.SE", "Control.WE", "Familiar.AFSCS" , "Familiar.BIO", "Familiar.BECCS" , "Familiar.DACCS", "Familiar.EW", "Familiar.OF", "Familiar.BF", "Familiar.NE", "Familiar.SE", "Familiar.WE", "Naturalness.AFSCS", "Naturalness.BIO" , "Naturalness.BECCS", "Naturalness.DACCS", "Naturalness.EW", "Naturalness.OF", "Naturalness.BF", "Naturalness.NE", "Naturalness.SE", "Naturalness.WE", "Risk.AFSCS", "Risk.BIO", "Risk.BECCS", "Risk.DACCS", "Risk.EW", "Risk.OF", "Risk.BF", "Risk.NE" , "Risk.SE", "Risk.WE", "Support.AFSCS", "Support.BIO", "Support.BECCS" , "Support.DACCS", "Support.EW" , "Support.OF", "Support.BF", "Support.NE", "Support.SE", "Support.WE", "Understanding.AFSCS", "Understanding.BIO", "Understanding.BECCS", "Understanding.DACCS", "Understanding.EW", "Understanding.OF", "Understanding.BF", "Understanding.NE","Understanding.SE","Understanding.WE", "FR.AFSCS", "FR.BIO", "FR.BECCS", "FR.DACCS", "FR.EW", "FR.OF", "FR.BF", "FR.NE", "FR.SE", "FR.WE", "BRDiff.AFSCS", "BRDiff.BIO", "BRDiff.BECCS", "BRDiff.DACCS", "BRDiff.EW", "BRDiff.OF", "BRDiff.BF", "BRDiff.NE", "BRDiff.SE", "BRDiff.WE")

L <- reshape(data = CC,
       varying = CCvector,
       timevar = "Type",
       direction = "long")

Mixed Effects Models

Center Variables

# Describe & Mean Center Long Variables 

## By Technology Measures
table(L$Type) 
## 
## AFSCS BECCS    BF   BIO DACCS    EW    NE    OF    SE    WE 
##  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007
describe(L$Ben) 
## L$Ben 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      101    0.999    57.98    29.92        5       20 
##      .25      .50      .75      .90      .95 
##       40       61       77       90      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Control) 
## L$Control 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      100    0.999    64.82    28.44       17       29 
##      .25      .50      .75      .90      .95 
##       50       69       85       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Familiar) 
## L$Familiar 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      101    0.997     46.4    39.99        0        0 
##      .25      .50      .75      .90      .95 
##       13       45       79       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Naturalness) 
## L$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      366        1    39.98    24.53     5.00    12.00 
##      .25      .50      .75      .90      .95 
##    24.75    39.00    54.25    70.25    75.00 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.00  98.75  99.50  99.75 100.00
describe(L$Risk) 
## L$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201    0.998    33.04    30.73      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      8.0     28.5     52.0     72.5     84.5 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$Support) 
## L$Support 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201    0.999    59.57    32.84      0.0     13.0 
##      .25      .50      .75      .90      .95 
##     41.5     62.5     82.5     99.0    100.0 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$Understanding) 
## L$Understanding 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3107     6963      101    0.999    57.74    34.27        4       12 
##      .25      .50      .75      .90      .95 
##       34       61       83       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$FR) 
## L$FR 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      201        1    52.39     34.4      4.0     11.0 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     78.0     94.0    100.0 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$BRDiff) 
## L$BRDiff 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3021     7049      364        1    24.94    49.58    -54.5    -31.0 
##      .25      .50      .75      .90      .95 
##     -3.5     26.0     58.5     82.0     91.5 
## 
## lowest : -100.0  -99.0  -93.0  -92.5  -92.0, highest:   98.0   98.5   99.0   99.5  100.0
L$Benefit.c <- L$Ben - 57.98
L$Control.c <- L$Control - 64.83
L$Familiarity <- L$Familiar
L$Familiarity.c <- L$Familiarity - 46.43
L$Naturalness.c <- L$Naturalness - 39.99 
L$Risk.c <- L$Risk - 33.1
L$Support.c <- L$Support - 59.7
L$Understanding.c <- L$Understanding - 57.62
L$FR.c <- L$FR - 52.35
L$BFDiff.c <- L$BRDiff - 24.88

## Individual Difference Measures 

describe(L$ATNS_Score)
## L$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      366        1    54.56    24.38     18.8     26.0 
##      .25      .50      .75      .90      .95 
##     40.2     54.4     69.0     82.0     92.4 
## 
## lowest :   0.0   2.0   3.0   4.0   6.4, highest:  97.6  98.8  99.2  99.8 100.0
L$ATNS_Score.c <- L$ATNS_Score - 54.69
describe(L$CCB_Score)
## L$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      250    0.987    81.61    23.21    25.00    46.75 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    99.00   100.00   100.00 
## 
## lowest :   0.00   2.00   3.75   4.00   4.75, highest:  99.00  99.25  99.50  99.75 100.00
L$CCBelief_Score.c <- L$CCB_Score -  81.61
describe(L$CNS_Score)
## L$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      322        1    63.36     18.7     35.0     43.0 
##      .25      .50      .75      .90      .95 
##     52.8     63.0     74.6     85.0     91.8 
## 
## lowest :   0.0   8.6  10.0  12.8  16.0, highest:  97.8  98.2  98.6  99.6 100.0
L$CNS_Score.c <- L$CNS_Score -63.42 
describe(L$Individualism_Score)
## L$Individualism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      266        1    70.77     18.9    40.25    50.00 
##      .25      .50      .75      .90      .95 
##    60.00    71.50    83.75    91.75    95.75 
## 
## lowest :   0.75   6.00   6.25   6.50  15.50, highest:  99.00  99.25  99.50  99.75 100.00
L$Individualism_Score.c <- L$Individualism_Score - 70.81
describe(L$Collectivism_Score)
## L$Collectivism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0      341        1    54.19    27.22    12.75    21.50 
##      .25      .50      .75      .90      .95 
##    38.50    54.50    72.00    86.00    93.25 
## 
## lowest :   0.00   0.25   0.50   1.00   1.75, highest:  98.25  98.50  99.50  99.75 100.00
L$Collectivism_Score.c <- L$Collectivism_Score - 54.17 
describe(L$Ideology)
## L$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10070        0       12    0.868    1.943   0.5666      1.0      1.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.0      2.5      3.0 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  2.5  3.0  3.5  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   5.0
## Frequency     10    40    40   110   530  2360  4920  1310   620   110    10
## Proportion 0.001 0.004 0.004 0.011 0.053 0.234 0.489 0.130 0.062 0.011 0.001
##                 
## Value        6.0
## Frequency     10
## Proportion 0.001
L$Ideology.c <- L$Ideology - 1.947

Contrast Codes (Deviation Coding)

#C1. Direct air capture and carbon sequestration vs. Grand mean
L$C1 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') +(1)*(L$Type == 'DACCS') +(0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C2. Nuclear Energy vs. Grand Mean
L$C2 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (1)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C3. Ocean Fertilization vs. Grand Mean
L$C3 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (1)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C4. BECCS vs. Grand Mean
L$C4 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (1)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C5. Enhanced Weathering vs. Grand Mean
L$C5 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (1)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C6. Biofuel vs. Grand Mean
L$C6 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (1)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C7. Wind Energy vs. Grand Mean
L$C7 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (1)*(L$Type == 'WE')
                                   
#C8. Solar Energy vs. Grand Mean
L$C8 <- (0)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (1)*(L$Type == 'SE') + (0)*(L$Type == 'WE')
                                   
#C9. Afforestation/reforestation and Soil Carbon Sequestration vs. Grand Mean
L$C9 <- (1)*(L$Type == 'AFSCS') + (-1)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

ANOVAs

Benefit

modA.4 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.4 <- lmer(Ben ~ 1 + (1|id), data = L)

summary(modA.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27683.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4246 -0.5150  0.0654  0.5678  3.1565 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.4    16.84   
##  Residual             381.8    19.54   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.2205     0.6407 1017.4032  90.874  < 2e-16 ***
## C1            -3.1843     1.1019 2386.9763  -2.890 0.003888 ** 
## C2             1.4717     1.2849 2490.3918   1.145 0.252168    
## C3            -4.3571     1.1337 2399.1210  -3.843 0.000125 ***
## C4            -2.9518     1.1284 2394.8266  -2.616 0.008955 ** 
## C5            -5.5747     1.1205 2392.8913  -4.975 6.98e-07 ***
## C6            -7.3526     1.3064 2491.1763  -5.628 2.02e-08 ***
## C7             7.5302     1.2847 2488.4305   5.862 5.19e-09 ***
## C8             8.7549     1.3138 2491.7176   6.664 3.28e-11 ***
## C9            10.4528     1.1080 2389.8849   9.434  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.028                                                        
## C2  0.023 -0.092                                                 
## C3 -0.016 -0.115 -0.073                                          
## C4 -0.018 -0.111 -0.098 -0.118                                   
## C5 -0.021 -0.107 -0.085 -0.116 -0.109                            
## C6  0.031 -0.094 -0.171 -0.110 -0.096 -0.097                     
## C7  0.023 -0.080 -0.169 -0.094 -0.092 -0.097 -0.171              
## C8  0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.172 -0.171       
## C9 -0.026 -0.110 -0.109 -0.110 -0.118 -0.111 -0.093 -0.088 -0.081
tab_model(modA.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.22 0.64 56.96 – 59.48 90.87 <0.001
C1 -3.18 1.10 -5.34 – -1.02 -2.89 0.004
C2 1.47 1.28 -1.05 – 3.99 1.15 0.252
C3 -4.36 1.13 -6.58 – -2.13 -3.84 <0.001
C4 -2.95 1.13 -5.16 – -0.74 -2.62 0.009
C5 -5.57 1.12 -7.77 – -3.38 -4.98 <0.001
C6 -7.35 1.31 -9.91 – -4.79 -5.63 <0.001
C7 7.53 1.28 5.01 – 10.05 5.86 <0.001
C8 8.75 1.31 6.18 – 11.33 6.66 <0.001
C9 10.45 1.11 8.28 – 12.63 9.43 <0.001
Random Effects
σ2 381.81
τ00 id 283.44
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.054 / 0.457
summary(modC.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27935.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0907 -0.5332  0.0524  0.6099  2.8266 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 273.3    16.53   
##  Residual             424.8    20.61   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   57.9752     0.6419 1006.0000   90.32   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.98 0.64 56.72 – 59.23 90.32 <0.001
Random Effects
σ2 424.79
τ00 id 273.30
ICC 0.39
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.392
anova(modC.4, modA.4)
## refitting model(s) with ML (instead of REML)

Difference Benefit/Risk Scores

modA.5 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.5 <- lmer(BRDiff ~ 1 + (1|id), data = L)

summary(modA.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30498.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8901 -0.5430  0.0446  0.5733  3.1036 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  584.4   24.17   
##  Residual             1032.4   32.13   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   25.7958     0.9639 1018.4237  26.762  < 2e-16 ***
## C1           -14.0197     1.7957 2450.9270  -7.808 8.57e-15 ***
## C2           -19.0289     2.0889 2564.5205  -9.110  < 2e-16 ***
## C3           -17.7845     1.8471 2464.5022  -9.628  < 2e-16 ***
## C4            -8.6096     1.8386 2459.9287  -4.683 2.98e-06 ***
## C5           -11.3284     1.8257 2457.6798  -6.205 6.40e-10 ***
## C6            -1.5867     2.1238 2565.7134  -0.747    0.455    
## C7            22.5093     2.0886 2562.6624  10.777  < 2e-16 ***
## C8            30.2190     2.1358 2566.3661  14.149  < 2e-16 ***
## C9            26.9722     1.8055 2454.0429  14.939  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.031                                                        
## C2  0.025 -0.094                                                 
## C3 -0.018 -0.113 -0.078                                          
## C4 -0.020 -0.110 -0.099 -0.117                                   
## C5 -0.023 -0.105 -0.088 -0.115 -0.108                            
## C6  0.034 -0.096 -0.167 -0.110 -0.098 -0.099                     
## C7  0.025 -0.083 -0.166 -0.096 -0.094 -0.099 -0.167              
## C8  0.037 -0.104 -0.168 -0.105 -0.095 -0.099 -0.169 -0.167       
## C9 -0.028 -0.109 -0.109 -0.108 -0.115 -0.110 -0.095 -0.091 -0.085
tab_model(modA.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.80 0.96 23.91 – 27.69 26.76 <0.001
C1 -14.02 1.80 -17.54 – -10.50 -7.81 <0.001
C2 -19.03 2.09 -23.12 – -14.93 -9.11 <0.001
C3 -17.78 1.85 -21.41 – -14.16 -9.63 <0.001
C4 -8.61 1.84 -12.21 – -5.00 -4.68 <0.001
C5 -11.33 1.83 -14.91 – -7.75 -6.20 <0.001
C6 -1.59 2.12 -5.75 – 2.58 -0.75 0.455
C7 22.51 2.09 18.41 – 26.60 10.78 <0.001
C8 30.22 2.14 26.03 – 34.41 14.15 <0.001
C9 26.97 1.81 23.43 – 30.51 14.94 <0.001
Random Effects
σ2 1032.43
τ00 id 584.41
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.163 / 0.466
summary(modC.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31187.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4840 -0.5778  0.0270  0.6663  2.7403 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  533.5   23.10   
##  Residual             1380.4   37.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   24.9358     0.9933 1005.9999    25.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 24.94 0.99 22.99 – 26.88 25.10 <0.001
Random Effects
σ2 1380.43
τ00 id 533.46
ICC 0.28
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.279
anova(modC.5, modA.5)
## refitting model(s) with ML (instead of REML)

Familiarity

modA.7 <- lmer(Familiarity ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.7 <- lmer(Familiarity ~ 1 + (1|id), data = L)
## boundary (singular) fit: see ?isSingular
summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27934.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5100 -0.6395 -0.0514  0.6158  3.4713 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 182.4    13.51   
##  Residual             475.1    21.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   49.1121     0.5845 1022.2933  84.025  < 2e-16 ***
## C1           -23.1499     1.2017 2544.1702 -19.264  < 2e-16 ***
## C2            20.2968     1.3931 2666.9288  14.570  < 2e-16 ***
## C3           -23.7279     1.2356 2559.3204 -19.203  < 2e-16 ***
## C4           -18.7593     1.2301 2554.5949 -15.250  < 2e-16 ***
## C5           -27.3208     1.2216 2551.9418 -22.365  < 2e-16 ***
## C6             7.9907     1.4163 2668.7543   5.642 1.86e-08 ***
## C7            32.6024     1.3930 2665.3983  23.404  < 2e-16 ***
## C8            39.4911     1.4243 2669.5537  27.726  < 2e-16 ***
## C9            13.9820     1.2082 2547.4228  11.573  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.035                                                        
## C2  0.029 -0.097                                                 
## C3 -0.020 -0.110 -0.084                                          
## C4 -0.022 -0.107 -0.102 -0.114                                   
## C5 -0.026 -0.104 -0.092 -0.112 -0.106                            
## C6  0.038 -0.099 -0.161 -0.111 -0.101 -0.102                     
## C7  0.029 -0.088 -0.160 -0.099 -0.097 -0.101 -0.161              
## C8  0.041 -0.106 -0.162 -0.107 -0.099 -0.102 -0.163 -0.162       
## C9 -0.032 -0.106 -0.109 -0.106 -0.112 -0.107 -0.098 -0.094 -0.090
tab_model(modA.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 49.11 0.58 47.97 – 50.26 84.03 <0.001
C1 -23.15 1.20 -25.51 – -20.79 -19.26 <0.001
C2 20.30 1.39 17.57 – 23.03 14.57 <0.001
C3 -23.73 1.24 -26.15 – -21.31 -19.20 <0.001
C4 -18.76 1.23 -21.17 – -16.35 -15.25 <0.001
C5 -27.32 1.22 -29.72 – -24.93 -22.37 <0.001
C6 7.99 1.42 5.21 – 10.77 5.64 <0.001
C7 32.60 1.39 29.87 – 35.33 23.40 <0.001
C8 39.49 1.42 36.70 – 42.28 27.73 <0.001
C9 13.98 1.21 11.61 – 16.35 11.57 <0.001
Random Effects
σ2 475.12
τ00 id 182.39
ICC 0.28
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.463 / 0.612
summary(modC.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30025.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.33178 -0.95865 -0.04018  0.93570  1.53844 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)    0      0.00   
##  Residual             1214     34.84   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   46.3999     0.6339 3020.0000    73.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(modC.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 46.40 0.63 45.16 – 47.64 73.20 <0.001
Random Effects
σ2 1213.86
τ00 id 0.00
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / NA
anova(modC.7, modA.7)
## refitting model(s) with ML (instead of REML)

Familiarity/Understanding Mean Scores (COMBINED)

modA.6 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.6 <- lmer(FR ~ 1 + (1|id), data = L)

summary(modA.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27119.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0412 -0.5869 -0.0111  0.5966  3.1013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.7    14.31   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   54.4788     0.5608 1019.6835  97.137  < 2e-16 ***
## C1           -18.6588     1.0176 2429.9000 -18.337  < 2e-16 ***
## C2            12.8814     1.1847 2540.1072  10.873  < 2e-16 ***
## C3           -16.1090     1.0468 2442.9867 -15.389  < 2e-16 ***
## C4           -16.5934     1.0420 2438.5014 -15.925  < 2e-16 ***
## C5           -22.1040     1.0346 2436.3623 -21.364  < 2e-16 ***
## C6             5.1720     1.2045 2541.1519   4.294 1.82e-05 ***
## C7            27.7437     1.1846 2538.2041  23.421  < 2e-16 ***
## C8            31.6044     1.2114 2541.7653  26.090  < 2e-16 ***
## C9            12.8248     1.0232 2432.9494  12.534  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.030                                                        
## C2  0.024 -0.093                                                 
## C3 -0.017 -0.113 -0.076                                          
## C4 -0.019 -0.110 -0.099 -0.117                                   
## C5 -0.022 -0.106 -0.087 -0.115 -0.108                            
## C6  0.033 -0.095 -0.169 -0.110 -0.098 -0.098                     
## C7  0.024 -0.082 -0.167 -0.095 -0.093 -0.098 -0.168              
## C8  0.036 -0.104 -0.169 -0.105 -0.095 -0.098 -0.170 -0.169       
## C9 -0.027 -0.109 -0.109 -0.109 -0.116 -0.110 -0.094 -0.090 -0.083
tab_model(modA.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.38 – 55.58 97.14 <0.001
C1 -18.66 1.02 -20.65 – -16.66 -18.34 <0.001
C2 12.88 1.18 10.56 – 15.20 10.87 <0.001
C3 -16.11 1.05 -18.16 – -14.06 -15.39 <0.001
C4 -16.59 1.04 -18.64 – -14.55 -15.93 <0.001
C5 -22.10 1.03 -24.13 – -20.08 -21.36 <0.001
C6 5.17 1.20 2.81 – 7.53 4.29 <0.001
C7 27.74 1.18 25.42 – 30.07 23.42 <0.001
C8 31.60 1.21 29.23 – 33.98 26.09 <0.001
C9 12.82 1.02 10.82 – 14.83 12.53 <0.001
Random Effects
σ2 329.45
τ00 id 204.67
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.403 / 0.632
summary(modC.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29062.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.94488 -0.79508 -0.04019  0.83609  1.81382 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  74.97    8.659  
##  Residual             813.70   28.525  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   52.3860     0.5863 1006.0000   89.34   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.39 0.59 51.24 – 53.54 89.34 <0.001
Random Effects
σ2 813.70
τ00 id 74.97
ICC 0.08
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.084
anova(modC.6, modA.6)
## refitting model(s) with ML (instead of REML)

Naturalness

modA.2 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.2 <- lmer(Naturalness ~ 1 + (1|id), data = L)

summary(modA.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 25882.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5623 -0.6131 -0.0219  0.6137  3.4124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.98    8.123  
##  Residual             256.42   16.013  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   40.3544     0.3901 1027.4504 103.457  < 2e-16 ***
## C1           -14.9730     0.8706 2633.0772 -17.198  < 2e-16 ***
## C2           -14.4713     1.0060 2757.7982 -14.386  < 2e-16 ***
## C3            -8.4667     0.8948 2649.1062  -9.462  < 2e-16 ***
## C4            -5.4749     0.8910 2644.5116  -6.145 9.20e-10 ***
## C5            -4.6006     0.8848 2641.5512  -5.199 2.15e-07 ***
## C6            -1.0643     1.0226 2760.2000  -1.041    0.298    
## C7            13.9641     1.0059 2756.7292  13.882  < 2e-16 ***
## C8            15.0008     1.0284 2761.1074  14.586  < 2e-16 ***
## C9            21.5355     0.8753 2636.2795  24.604  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.038                                                        
## C2  0.033 -0.100                                                 
## C3 -0.023 -0.107 -0.090                                          
## C4 -0.025 -0.105 -0.104 -0.111                                   
## C5 -0.029 -0.102 -0.096 -0.109 -0.104                            
## C6  0.043 -0.102 -0.155 -0.112 -0.104 -0.104                     
## C7  0.033 -0.093 -0.154 -0.102 -0.101 -0.103 -0.155              
## C8  0.046 -0.108 -0.156 -0.109 -0.103 -0.105 -0.157 -0.156       
## C9 -0.035 -0.103 -0.110 -0.104 -0.109 -0.105 -0.101 -0.098 -0.095
tab_model(modA.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.46 <0.001
C1 -14.97 0.87 -16.68 – -13.27 -17.20 <0.001
C2 -14.47 1.01 -16.44 – -12.50 -14.39 <0.001
C3 -8.47 0.89 -10.22 – -6.71 -9.46 <0.001
C4 -5.47 0.89 -7.22 – -3.73 -6.15 <0.001
C5 -4.60 0.88 -6.34 – -2.87 -5.20 <0.001
C6 -1.06 1.02 -3.07 – 0.94 -1.04 0.298
C7 13.96 1.01 11.99 – 15.94 13.88 <0.001
C8 15.00 1.03 12.98 – 17.02 14.59 <0.001
C9 21.54 0.88 19.82 – 23.25 24.60 <0.001
Random Effects
σ2 256.42
τ00 id 65.98
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.310 / 0.451
summary(modC.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27086.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.16770 -0.68297 -0.04925  0.61757  3.02331 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  52.22    7.227  
##  Residual             412.08   20.300  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   39.9817     0.4339 1006.0000   92.15   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.98 0.43 39.13 – 40.83 92.15 <0.001
Random Effects
σ2 412.08
τ00 id 52.22
ICC 0.11
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.112
anova(modC.2, modA.2)
## refitting model(s) with ML (instead of REML)

Risk

modA.3 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.3 <- lmer(Risk ~ 1 + (1|id), data = L)

summary(modA.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5812 -0.6117 -0.0694  0.5565  3.6749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   32.4243     0.5609 1018.7068  57.808  < 2e-16 ***
## C1            10.8426     1.0990 2495.8856   9.866  < 2e-16 ***
## C2            20.5519     1.2763 2615.0096  16.103  < 2e-16 ***
## C3            13.5376     1.1303 2510.3315  11.977  < 2e-16 ***
## C4             5.6756     1.1252 2505.6400   5.044 4.88e-07 ***
## C5             5.7300     1.1173 2503.1806   5.128 3.15e-07 ***
## C6            -5.7162     1.2976 2616.5136  -4.405 1.10e-05 ***
## C7           -14.9462     1.2762 2613.2863 -11.711  < 2e-16 ***
## C8           -21.6013     1.3050 2617.2425 -16.553  < 2e-16 ***
## C9           -16.5218     1.1050 2499.0970 -14.952  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.033                                                        
## C2  0.027 -0.095                                                 
## C3 -0.019 -0.111 -0.081                                          
## C4 -0.021 -0.108 -0.100 -0.115                                   
## C5 -0.025 -0.105 -0.090 -0.113 -0.107                            
## C6  0.036 -0.097 -0.164 -0.111 -0.100 -0.100                     
## C7  0.027 -0.085 -0.163 -0.097 -0.096 -0.100 -0.164              
## C8  0.039 -0.105 -0.165 -0.106 -0.097 -0.100 -0.166 -0.165       
## C9 -0.030 -0.107 -0.109 -0.107 -0.114 -0.109 -0.096 -0.092 -0.087
tab_model(modA.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.42 0.56 31.32 – 33.52 57.81 <0.001
C1 10.84 1.10 8.69 – 13.00 9.87 <0.001
C2 20.55 1.28 18.05 – 23.05 16.10 <0.001
C3 13.54 1.13 11.32 – 15.75 11.98 <0.001
C4 5.68 1.13 3.47 – 7.88 5.04 <0.001
C5 5.73 1.12 3.54 – 7.92 5.13 <0.001
C6 -5.72 1.30 -8.26 – -3.17 -4.41 <0.001
C7 -14.95 1.28 -17.45 – -12.44 -11.71 <0.001
C8 -21.60 1.30 -24.16 – -19.04 -16.55 <0.001
C9 -16.52 1.11 -18.69 – -14.36 -14.95 <0.001
Random Effects
σ2 391.88
τ00 id 183.49
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.472
summary(modC.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28382.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0398 -0.7447 -0.1323  0.6469  2.8048 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 172.9    13.15   
##  Residual             567.6    23.82   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   33.0394     0.5996 1006.0000    55.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 33.04 0.60 31.86 – 34.22 55.10 <0.001
Random Effects
σ2 567.55
τ00 id 172.87
ICC 0.23
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.233
anova(modC.3, modA.3)
## refitting model(s) with ML (instead of REML)

Support (Behavioral Intent)

modA.1 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)


modC.1 <- lmer(Support ~ 1 + (1|id), data = L)

summary(modA.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27888.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.5111  0.0607  0.5552  3.1022 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.7    17.60   
##  Residual             406.2    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.2345     0.6670 1016.3399  90.313  < 2e-16 ***
## C1            -7.7095     1.1375 2380.1041  -6.777 1.54e-11 ***
## C2            -9.3404     1.3268 2482.4889  -7.040 2.48e-12 ***
## C3            -9.9708     1.1705 2392.1093  -8.519  < 2e-16 ***
## C4            -5.8768     1.1650 2387.8451  -5.045 4.89e-07 ***
## C5           -10.0224     1.1568 2385.9393  -8.664  < 2e-16 ***
## C6            -0.7135     1.3490 2483.2374  -0.529    0.597    
## C7            15.6042     1.3266 2480.5218  11.763  < 2e-16 ***
## C8            19.4142     1.3567 2483.7684  14.310  < 2e-16 ***
## C9            15.9948     1.1439 2382.9907  13.983  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.028                                                        
## C2  0.023 -0.092                                                 
## C3 -0.016 -0.115 -0.073                                          
## C4 -0.018 -0.111 -0.098 -0.119                                   
## C5 -0.021 -0.107 -0.085 -0.116 -0.109                            
## C6  0.030 -0.094 -0.171 -0.110 -0.096 -0.097                     
## C7  0.022 -0.080 -0.170 -0.094 -0.092 -0.097 -0.171              
## C8  0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.173 -0.172       
## C9 -0.025 -0.111 -0.109 -0.110 -0.118 -0.112 -0.092 -0.088 -0.081
tab_model(modA.1,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 0.67 58.93 – 61.54 90.31 <0.001
C1 -7.71 1.14 -9.94 – -5.48 -6.78 <0.001
C2 -9.34 1.33 -11.94 – -6.74 -7.04 <0.001
C3 -9.97 1.17 -12.27 – -7.68 -8.52 <0.001
C4 -5.88 1.16 -8.16 – -3.59 -5.04 <0.001
C5 -10.02 1.16 -12.29 – -7.75 -8.66 <0.001
C6 -0.71 1.35 -3.36 – 1.93 -0.53 0.597
C7 15.60 1.33 13.00 – 18.21 11.76 <0.001
C8 19.41 1.36 16.75 – 22.07 14.31 <0.001
C9 15.99 1.14 13.75 – 18.24 13.98 <0.001
Random Effects
σ2 406.25
τ00 id 309.74
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.150 / 0.517
summary(modC.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28574.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.73591 -0.57170  0.06852  0.65552  2.42090 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 291.3    17.07   
##  Residual             546.1    23.37   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   59.5702     0.6856 1006.0000   86.89   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.1,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.57 0.69 58.23 – 60.91 86.89 <0.001
Random Effects
σ2 546.14
τ00 id 291.27
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.000 / 0.348
anova(modC.1, modA.1)
## refitting model(s) with ML (instead of REML)

Understanding

modA.8 <- lmer(Understanding ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.8  <- lmer(Understanding ~ 1 + (1|id), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28489.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9390 -0.5471  0.0421  0.5826  3.2060 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 377.4    19.43   
##  Residual             355.7    18.86   
## Number of obs: 3107, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.7078     0.7051 1006.2021  83.256  < 2e-16 ***
## C1           -13.2272     1.0864 2461.8225 -12.175  < 2e-16 ***
## C2             6.6323     1.2405 2434.0036   5.347 9.80e-08 ***
## C3            -7.1693     1.1147 2458.1470  -6.431 1.52e-10 ***
## C4           -13.4085     1.1121 2466.5262 -12.057  < 2e-16 ***
## C5           -15.5329     1.1016 2453.8665 -14.100  < 2e-16 ***
## C6             3.7536     1.2572 2419.6458   2.986  0.00286 ** 
## C7            12.5241     1.0707 2415.9724  11.697  < 2e-16 ***
## C8            24.6683     1.2620 2411.6040  19.547  < 2e-16 ***
## C9            12.5241     1.0707 2415.9724  11.697  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.036                                                        
## C2  0.027 -0.089                                                 
## C3 -0.022 -0.105 -0.071                                          
## C4 -0.026 -0.099 -0.097 -0.109                                   
## C5 -0.026 -0.094 -0.085 -0.108 -0.100                            
## C6  0.037 -0.095 -0.186 -0.114 -0.097 -0.100                     
## C7  0.007 -0.131 -0.134 -0.129 -0.139 -0.132 -0.116              
## C8  0.042 -0.106 -0.188 -0.108 -0.096 -0.100 -0.189 -0.104       
## C9  0.007 -0.131 -0.134 -0.129 -0.139 -0.132 -0.116  0.095 -0.104
tab_model(modA.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.71 0.71 57.33 – 60.09 83.26 <0.001
C1 -13.23 1.09 -15.36 – -11.10 -12.18 <0.001
C2 6.63 1.24 4.20 – 9.06 5.35 <0.001
C3 -7.17 1.11 -9.35 – -4.98 -6.43 <0.001
C4 -13.41 1.11 -15.59 – -11.23 -12.06 <0.001
C5 -15.53 1.10 -17.69 – -13.37 -14.10 <0.001
C6 3.75 1.26 1.29 – 6.22 2.99 0.003
C7 12.52 1.07 10.42 – 14.62 11.70 <0.001
C8 24.67 1.26 22.19 – 27.14 19.55 <0.001
C9 12.52 1.07 10.42 – 14.62 11.70 <0.001
Random Effects
σ2 355.73
τ00 id 377.43
ICC 0.51
N id 1007
Observations 3107
Marginal R2 / Conditional R2 0.187 / 0.606
summary(modC.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29465.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.02514 -0.64577  0.08639  0.61700  2.86170 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 360.5    18.99   
##  Residual             537.1    23.18   
## Number of obs: 3107, groups:  id, 1007
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)  56.9784     0.7323 992.7264   77.81   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.98 0.73 55.54 – 58.41 77.81 <0.001
Random Effects
σ2 537.10
τ00 id 360.49
ICC 0.40
N id 1007
Observations 3107
Marginal R2 / Conditional R2 0.000 / 0.402
anova(modC.8, modA.8)
## refitting model(s) with ML (instead of REML)

Mixed Models

Support

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict support?

modA.71 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.71)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27888.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.5111  0.0607  0.5552  3.1022 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.7    17.60   
##  Residual             406.2    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   60.2345     0.6670 1016.3399  90.313  < 2e-16 ***
## C1            -7.7095     1.1375 2380.1041  -6.777 1.54e-11 ***
## C2            -9.3404     1.3268 2482.4889  -7.040 2.48e-12 ***
## C3            -9.9708     1.1705 2392.1093  -8.519  < 2e-16 ***
## C4            -5.8768     1.1650 2387.8451  -5.045 4.89e-07 ***
## C5           -10.0224     1.1568 2385.9393  -8.664  < 2e-16 ***
## C6            -0.7135     1.3490 2483.2374  -0.529    0.597    
## C7            15.6042     1.3266 2480.5218  11.763  < 2e-16 ***
## C8            19.4142     1.3567 2483.7684  14.310  < 2e-16 ***
## C9            15.9948     1.1439 2382.9907  13.983  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.028                                                        
## C2  0.023 -0.092                                                 
## C3 -0.016 -0.115 -0.073                                          
## C4 -0.018 -0.111 -0.098 -0.119                                   
## C5 -0.021 -0.107 -0.085 -0.116 -0.109                            
## C6  0.030 -0.094 -0.171 -0.110 -0.096 -0.097                     
## C7  0.022 -0.080 -0.170 -0.094 -0.092 -0.097 -0.171              
## C8  0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.173 -0.172       
## C9 -0.025 -0.111 -0.109 -0.110 -0.118 -0.112 -0.092 -0.088 -0.081
tab_model(modA.71,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 0.67 58.93 – 61.54 90.31 <0.001
C1 -7.71 1.14 -9.94 – -5.48 -6.78 <0.001
C2 -9.34 1.33 -11.94 – -6.74 -7.04 <0.001
C3 -9.97 1.17 -12.27 – -7.68 -8.52 <0.001
C4 -5.88 1.16 -8.16 – -3.59 -5.04 <0.001
C5 -10.02 1.16 -12.29 – -7.75 -8.66 <0.001
C6 -0.71 1.35 -3.36 – 1.93 -0.53 0.597
C7 15.60 1.33 13.00 – 18.21 11.76 <0.001
C8 19.41 1.36 16.75 – 22.07 14.31 <0.001
C9 15.99 1.14 13.75 – 18.24 13.98 <0.001
Random Effects
σ2 406.25
τ00 id 309.74
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.150 / 0.517

Q.2: Does naturalness predict support, over and above climate change method contrasts?

modA.7 <- lmer(Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27555.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5008 -0.5399  0.0313  0.5419  3.2984 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.4    17.16   
##  Residual             356.4    18.88   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     60.07125    0.64251 1015.84563  93.495  < 2e-16 ***
## Naturalness.c    0.44546    0.02349 2795.60249  18.961  < 2e-16 ***
## C1              -0.99636    1.12542 2415.54374  -0.885  0.37607    
## C2              -2.77864    1.29367 2496.67042  -2.148  0.03182 *  
## C3              -6.26532    1.11661 2383.86521  -5.611 2.24e-08 ***
## C4              -3.49410    1.10092 2369.62157  -3.174  0.00152 ** 
## C5              -7.91475    1.09171 2372.39824  -7.250 5.62e-13 ***
## C6              -0.28951    1.26777 2460.26450  -0.228  0.81939    
## C7               9.42505    1.28868 2480.04873   7.314 3.49e-13 ***
## C8              12.62230    1.32421 2499.36106   9.532  < 2e-16 ***
## C9               6.37199    1.18798 2455.76384   5.364 8.92e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c -0.013                                                        
## C1          -0.030  0.315                                                 
## C2           0.017  0.267  0.001                                          
## C3          -0.017  0.176 -0.052 -0.021                                   
## C4          -0.018  0.113 -0.070 -0.063 -0.097                            
## C5          -0.021  0.100 -0.069 -0.054 -0.097 -0.097                     
## C6           0.029  0.019 -0.083 -0.161 -0.105 -0.093 -0.094              
## C7           0.024 -0.254 -0.152 -0.227 -0.133 -0.116 -0.118 -0.171       
## C8           0.034 -0.271 -0.179 -0.233 -0.146 -0.119 -0.120 -0.172 -0.092
## C9          -0.016 -0.427 -0.230 -0.209 -0.173 -0.154 -0.144 -0.091  0.032
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.046
tab_model(modA.7,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.07 0.64 58.81 – 61.33 93.50 <0.001
Naturalness c 0.45 0.02 0.40 – 0.49 18.96 <0.001
C1 -1.00 1.13 -3.20 – 1.21 -0.89 0.376
C2 -2.78 1.29 -5.32 – -0.24 -2.15 0.032
C3 -6.27 1.12 -8.45 – -4.08 -5.61 <0.001
C4 -3.49 1.10 -5.65 – -1.34 -3.17 0.002
C5 -7.91 1.09 -10.06 – -5.77 -7.25 <0.001
C6 -0.29 1.27 -2.78 – 2.20 -0.23 0.819
C7 9.43 1.29 6.90 – 11.95 7.31 <0.001
C8 12.62 1.32 10.03 – 15.22 9.53 <0.001
C9 6.37 1.19 4.04 – 8.70 5.36 <0.001
Random Effects
σ2 356.37
τ00 id 294.39
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.224 / 0.575

Q.3: Does perceived naturalness predict support, over and above risk perception and climate change method contrasts?

modA.9 <- lmer(Support ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26638.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6736 -0.4985  0.0353  0.5226  3.9571 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 244.0    15.62   
##  Residual             252.4    15.89   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.79153    0.57248 1014.82481 104.443  < 2e-16 ***
## Naturalness.c    0.18833    0.02146 2788.91181   8.778  < 2e-16 ***
## Risk.c          -0.55425    0.01681 2921.67549 -32.972  < 2e-16 ***
## C1               1.16611    0.95462 2378.05637   1.222 0.222003    
## C2               4.86585    1.11999 2468.91997   4.345 1.45e-05 ***
## C3              -1.05074    0.95793 2358.02983  -1.097 0.272801    
## C4              -1.74710    0.93245 2332.70023  -1.874 0.061101 .  
## C5              -5.94283    0.92510 2335.63836  -6.424 1.60e-10 ***
## C6              -3.66618    1.07809 2417.08535  -3.401 0.000683 ***
## C7               4.50373    1.10182 2457.86421   4.088 4.50e-05 ***
## C8               4.70222    1.14726 2461.24057   4.099 4.29e-05 ***
## C9               2.72283    1.01192 2418.67540   2.691 0.007178 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c -0.007                                                        
## Risk.c       0.015  0.363                                                 
## C1          -0.029  0.270 -0.069                                          
## C2           0.013  0.170 -0.206  0.017                                   
## C3          -0.019  0.102 -0.167 -0.040  0.017                            
## C4          -0.018  0.085 -0.055 -0.066 -0.049 -0.087                     
## C5          -0.021  0.071 -0.063 -0.065 -0.038 -0.085 -0.093              
## C6           0.029  0.052  0.093 -0.087 -0.178 -0.118 -0.097 -0.098       
## C7           0.025 -0.186  0.137 -0.159 -0.251 -0.153 -0.122 -0.125 -0.158
## C8           0.035 -0.172  0.209 -0.190 -0.268 -0.176 -0.126 -0.129 -0.150
## C9          -0.014 -0.358  0.110 -0.238 -0.228 -0.189 -0.161 -0.151 -0.079
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.061       
## C9           0.049  0.071
tab_model(modA.9,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.79 0.57 58.67 – 60.91 104.44 <0.001
Naturalness c 0.19 0.02 0.15 – 0.23 8.78 <0.001
Risk c -0.55 0.02 -0.59 – -0.52 -32.97 <0.001
C1 1.17 0.95 -0.71 – 3.04 1.22 0.222
C2 4.87 1.12 2.67 – 7.06 4.34 <0.001
C3 -1.05 0.96 -2.93 – 0.83 -1.10 0.273
C4 -1.75 0.93 -3.58 – 0.08 -1.87 0.061
C5 -5.94 0.93 -7.76 – -4.13 -6.42 <0.001
C6 -3.67 1.08 -5.78 – -1.55 -3.40 0.001
C7 4.50 1.10 2.34 – 6.66 4.09 <0.001
C8 4.70 1.15 2.45 – 6.95 4.10 <0.001
C9 2.72 1.01 0.74 – 4.71 2.69 0.007
Random Effects
σ2 252.41
τ00 id 244.03
ICC 0.49
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.407 / 0.698

Q.4: Does perceived benefit predict behavioral intent, over and above naturalness and climate change method contrasts?

modA.10 <- lmer(Support ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26360.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8012 -0.5020  0.0076  0.5082  4.1558 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 166.9    12.92   
##  Residual             251.5    15.86   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.98546    0.50078 1010.09428 119.784  < 2e-16 ***
## Naturalness.c    0.30458    0.01976 2851.71099  15.415  < 2e-16 ***
## Benefit.c        0.57313    0.01486 3007.05817  38.576  < 2e-16 ***
## C1              -1.28362    0.93785 2465.07388  -1.369 0.171225    
## C2              -5.74966    1.07898 2553.19087  -5.329 1.08e-07 ***
## C3              -4.88346    0.93165 2436.10395  -5.242 1.73e-07 ***
## C4              -2.61507    0.91854 2417.13603  -2.847 0.004451 ** 
## C5              -5.44603    0.91288 2422.79449  -5.966 2.79e-09 ***
## C6               3.86400    1.06069 2531.65727   3.643 0.000275 ***
## C7               7.02406    1.07420 2545.73917   6.539 7.46e-11 ***
## C8               9.77263    1.10413 2567.17871   8.851  < 2e-16 ***
## C9               3.42868    0.99210 2522.10203   3.456 0.000557 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c -0.013                                                        
## Benefit.c   -0.004 -0.185                                                 
## C1          -0.032  0.308 -0.009                                          
## C2           0.020  0.272 -0.070 -0.002                                   
## C3          -0.019  0.165  0.036 -0.052 -0.027                            
## C4          -0.020  0.105  0.027 -0.069 -0.066 -0.094                     
## C5          -0.023  0.084  0.072 -0.070 -0.061 -0.093 -0.094              
## C6           0.031  0.001  0.099 -0.085 -0.164 -0.101 -0.091 -0.088       
## C7           0.027 -0.237 -0.056 -0.153 -0.219 -0.136 -0.119 -0.123 -0.173
## C8           0.037 -0.250 -0.067 -0.177 -0.223 -0.148 -0.122 -0.125 -0.175
## C9          -0.018 -0.401 -0.077 -0.225 -0.201 -0.174 -0.154 -0.147 -0.100
##             C7     C8    
## Naturlnss.c              
## Benefit.c                
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.086       
## C9           0.033  0.046
tab_model(modA.10,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.99 0.50 59.00 – 60.97 119.78 <0.001
Naturalness c 0.30 0.02 0.27 – 0.34 15.41 <0.001
Benefit c 0.57 0.01 0.54 – 0.60 38.58 <0.001
C1 -1.28 0.94 -3.12 – 0.56 -1.37 0.171
C2 -5.75 1.08 -7.87 – -3.63 -5.33 <0.001
C3 -4.88 0.93 -6.71 – -3.06 -5.24 <0.001
C4 -2.62 0.92 -4.42 – -0.81 -2.85 0.004
C5 -5.45 0.91 -7.24 – -3.66 -5.97 <0.001
C6 3.86 1.06 1.78 – 5.94 3.64 <0.001
C7 7.02 1.07 4.92 – 9.13 6.54 <0.001
C8 9.77 1.10 7.61 – 11.94 8.85 <0.001
C9 3.43 0.99 1.48 – 5.37 3.46 0.001
Random Effects
σ2 251.48
τ00 id 166.93
ICC 0.40
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.490 / 0.693

Q.5: Does perceived benefit predict support, over and above perceived risk, naturalness, and climate change method contrasts?

modA.101 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.101)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25689.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4550 -0.5095  0.0335  0.5025  3.7798 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.6    12.07   
##  Residual             195.7    13.99   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.79137    0.45919 1003.65962 130.211  < 2e-16 ***
## Naturalness.c    0.14095    0.01857 2863.29821   7.590 4.31e-14 ***
## Risk.c          -0.41425    0.01501 2990.28692 -27.599  < 2e-16 ***
## Benefit.c        0.46634    0.01381 3007.84868  33.764  < 2e-16 ***
## C1               0.42091    0.83319 2432.47909   0.505   0.6135    
## C2               0.55870    0.98316 2540.76780   0.568   0.5699    
## C3              -1.17842    0.83619 2410.74493  -1.409   0.1589    
## C4              -1.45967    0.81447 2383.74279  -1.792   0.0732 .  
## C5              -4.42861    0.80929 2389.20448  -5.472 4.91e-08 ***
## C6               0.57440    0.94768 2502.85410   0.606   0.5445    
## C7               3.80039    0.95962 2525.91992   3.960 7.69e-05 ***
## C8               4.29501    0.99893 2529.50674   4.300 1.78e-05 ***
## C9               1.20536    0.88309 2486.72827   1.365   0.1724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.101,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.79 0.46 58.89 – 60.69 130.21 <0.001
Naturalness c 0.14 0.02 0.10 – 0.18 7.59 <0.001
Risk c -0.41 0.02 -0.44 – -0.38 -27.60 <0.001
Benefit c 0.47 0.01 0.44 – 0.49 33.76 <0.001
C1 0.42 0.83 -1.21 – 2.05 0.51 0.613
C2 0.56 0.98 -1.37 – 2.49 0.57 0.570
C3 -1.18 0.84 -2.82 – 0.46 -1.41 0.159
C4 -1.46 0.81 -3.06 – 0.14 -1.79 0.073
C5 -4.43 0.81 -6.02 – -2.84 -5.47 <0.001
C6 0.57 0.95 -1.28 – 2.43 0.61 0.544
C7 3.80 0.96 1.92 – 5.68 3.96 <0.001
C8 4.30 1.00 2.34 – 6.25 4.30 <0.001
C9 1.21 0.88 -0.53 – 2.94 1.36 0.172
Random Effects
σ2 195.74
τ00 id 145.65
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.580 / 0.759

Q.6: Does perceived familiarity/understanding predict support, over and above perceived benefit, risk, naturalness, and climate change method contrasts?

modA.115 <- lmer(Support ~ FR.c + Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  (1|id), data = L)

summary(modA.115)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ FR.c + Naturalness.c + Risk.c + Benefit.c + C1 + C2 +  
##     C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25657.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4852 -0.5053  0.0383  0.5115  3.6947 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 143.2    11.96   
##  Residual             193.5    13.91   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     59.60843    0.45659 1008.59412 130.552  < 2e-16 ***
## FR.c             0.09437    0.01499 3006.96174   6.295 3.53e-10 ***
## Naturalness.c    0.11838    0.01880 2895.51251   6.296 3.51e-10 ***
## Risk.c          -0.40292    0.01502 2990.80080 -26.821  < 2e-16 ***
## Benefit.c        0.45790    0.01379 3006.62058  33.202  < 2e-16 ***
## C1               1.69096    0.85251 2466.18843   1.984  0.04742 *  
## C2              -1.21149    1.01682 2619.16689  -1.191  0.23359    
## C3              -0.03470    0.85083 2446.50902  -0.041  0.96747    
## C4              -0.10504    0.83785 2438.15755  -0.125  0.90024    
## C5              -2.55639    0.85779 2515.04425  -2.980  0.00291 ** 
## C6               0.06658    0.94553 2509.69888   0.070  0.94387    
## C7               1.73440    1.00884 2585.03325   1.719  0.08570 .  
## C8               1.97172    1.05936 2607.97944   1.861  0.06282 .  
## C9               0.75609    0.88075 2487.46739   0.858  0.39072    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.115,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.61 0.46 58.71 – 60.50 130.55 <0.001
FR c 0.09 0.01 0.06 – 0.12 6.29 <0.001
Naturalness c 0.12 0.02 0.08 – 0.16 6.30 <0.001
Risk c -0.40 0.02 -0.43 – -0.37 -26.82 <0.001
Benefit c 0.46 0.01 0.43 – 0.48 33.20 <0.001
C1 1.69 0.85 0.02 – 3.36 1.98 0.047
C2 -1.21 1.02 -3.21 – 0.78 -1.19 0.234
C3 -0.03 0.85 -1.70 – 1.63 -0.04 0.967
C4 -0.11 0.84 -1.75 – 1.54 -0.13 0.900
C5 -2.56 0.86 -4.24 – -0.87 -2.98 0.003
C6 0.07 0.95 -1.79 – 1.92 0.07 0.944
C7 1.73 1.01 -0.24 – 3.71 1.72 0.086
C8 1.97 1.06 -0.11 – 4.05 1.86 0.063
C9 0.76 0.88 -0.97 – 2.48 0.86 0.391
Random Effects
σ2 193.52
τ00 id 143.16
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.585 / 0.761

Naturalness

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict naturalness perception?

modA.89 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.89)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 25882.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5623 -0.6131 -0.0219  0.6137  3.4124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.98    8.123  
##  Residual             256.42   16.013  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   40.3544     0.3901 1027.4504 103.457  < 2e-16 ***
## C1           -14.9730     0.8706 2633.0772 -17.198  < 2e-16 ***
## C2           -14.4713     1.0060 2757.7982 -14.386  < 2e-16 ***
## C3            -8.4667     0.8948 2649.1062  -9.462  < 2e-16 ***
## C4            -5.4749     0.8910 2644.5116  -6.145 9.20e-10 ***
## C5            -4.6006     0.8848 2641.5512  -5.199 2.15e-07 ***
## C6            -1.0643     1.0226 2760.2000  -1.041    0.298    
## C7            13.9641     1.0059 2756.7292  13.882  < 2e-16 ***
## C8            15.0008     1.0284 2761.1074  14.586  < 2e-16 ***
## C9            21.5355     0.8753 2636.2795  24.604  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.038                                                        
## C2  0.033 -0.100                                                 
## C3 -0.023 -0.107 -0.090                                          
## C4 -0.025 -0.105 -0.104 -0.111                                   
## C5 -0.029 -0.102 -0.096 -0.109 -0.104                            
## C6  0.043 -0.102 -0.155 -0.112 -0.104 -0.104                     
## C7  0.033 -0.093 -0.154 -0.102 -0.101 -0.103 -0.155              
## C8  0.046 -0.108 -0.156 -0.109 -0.103 -0.105 -0.157 -0.156       
## C9 -0.035 -0.103 -0.110 -0.104 -0.109 -0.105 -0.101 -0.098 -0.095
tab_model(modA.89,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.46 <0.001
C1 -14.97 0.87 -16.68 – -13.27 -17.20 <0.001
C2 -14.47 1.01 -16.44 – -12.50 -14.39 <0.001
C3 -8.47 0.89 -10.22 – -6.71 -9.46 <0.001
C4 -5.47 0.89 -7.22 – -3.73 -6.15 <0.001
C5 -4.60 0.88 -6.34 – -2.87 -5.20 <0.001
C6 -1.06 1.02 -3.07 – 0.94 -1.04 0.298
C7 13.96 1.01 11.99 – 15.94 13.88 <0.001
C8 15.00 1.03 12.98 – 17.02 14.59 <0.001
C9 21.54 0.88 19.82 – 23.25 24.60 <0.001
Random Effects
σ2 256.42
τ00 id 65.98
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.310 / 0.451

Q.2: Does understanding/familiarity (mean score) predict naturalness perception, over and above climate change method contrasts?

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.94 <- lmer(Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.94)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25711.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6726 -0.6020 -0.0055  0.5870  3.4727 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  75.23    8.674  
##  Residual             233.53   15.282  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   39.93852    0.39309 1010.66033 101.600  < 2e-16 ***
## FR.c           0.19551    0.01429 2905.25270  13.678  < 2e-16 ***
## C1           -11.34817    0.87875 2670.25450 -12.914  < 2e-16 ***
## C2           -17.02598    0.98645 2731.53037 -17.260  < 2e-16 ***
## C3            -5.30225    0.89102 2658.68685  -5.951 3.02e-09 ***
## C4            -2.17434    0.88959 2649.34015  -2.444   0.0146 *  
## C5            -0.32442    0.90701 2723.22672  -0.358   0.7206    
## C6            -2.08562    0.98818 2705.34944  -2.111   0.0349 *  
## C7             8.52841    1.04729 2812.13953   8.143 5.72e-16 ***
## C8             8.88119    1.08865 2843.00505   8.158 5.06e-16 ***
## C9            19.06727    0.86114 2634.03019  22.142  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr) FR.c   C1     C2     C3     C4     C5     C6     C7     C8    
## FR.c -0.077                                                               
## C1   -0.058  0.303                                                        
## C2    0.044 -0.186 -0.148                                                 
## C3   -0.041  0.258 -0.022 -0.130                                          
## C4   -0.043  0.268 -0.016 -0.147 -0.035                                   
## C5   -0.052  0.346  0.013 -0.151 -0.011 -0.003                            
## C6    0.046 -0.076 -0.118 -0.141 -0.127 -0.119 -0.122                     
## C7    0.057 -0.379 -0.194 -0.072 -0.187 -0.190 -0.219 -0.118              
## C8    0.072 -0.414 -0.218 -0.065 -0.202 -0.199 -0.231 -0.114  0.023       
## C9   -0.016 -0.211 -0.162 -0.066 -0.154 -0.161 -0.170 -0.081 -0.007  0.005
tab_model(modA.94,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.94 0.39 39.17 – 40.71 101.60 <0.001
FR c 0.20 0.01 0.17 – 0.22 13.68 <0.001
C1 -11.35 0.88 -13.07 – -9.63 -12.91 <0.001
C2 -17.03 0.99 -18.96 – -15.09 -17.26 <0.001
C3 -5.30 0.89 -7.05 – -3.56 -5.95 <0.001
C4 -2.17 0.89 -3.92 – -0.43 -2.44 0.015
C5 -0.32 0.91 -2.10 – 1.45 -0.36 0.721
C6 -2.09 0.99 -4.02 – -0.15 -2.11 0.035
C7 8.53 1.05 6.47 – 10.58 8.14 <0.001
C8 8.88 1.09 6.75 – 11.02 8.16 <0.001
C9 19.07 0.86 17.38 – 20.76 22.14 <0.001
Random Effects
σ2 233.53
τ00 id 75.23
ICC 0.24
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.348 / 0.507

Q.3: Does familiarity predict naturalness perception, over and above familiarity and climate change method contrasts?

modA.9433 <- lmer(Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  (1|id), data = L)

summary(modA.9433)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 24256
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7129 -0.6039 -0.0013  0.5788  3.4411 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  78.47    8.858  
##  Residual             227.11   15.070  
## Number of obs: 2854, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       39.87336    0.41889 1152.16172  95.188  < 2e-16 ***
## Familiarity.c      0.13698    0.01531 2840.25728   8.950  < 2e-16 ***
## Understanding.c    0.05301    0.01530 2679.18271   3.465 0.000538 ***
## C1               -11.04399    0.89415 2547.18305 -12.351  < 2e-16 ***
## C2               -17.59892    1.00678 2554.27233 -17.480  < 2e-16 ***
## C3                -4.80210    0.92091 2547.26223  -5.215 1.99e-07 ***
## C4                -2.10442    0.89746 2518.90027  -2.345 0.019112 *  
## C5                -0.06607    0.92410 2587.37355  -0.071 0.943009    
## C6                -2.29141    0.99062 2502.12545  -2.313 0.020797 *  
## C7                 8.30957    1.63819 2624.31878   5.072 4.20e-07 ***
## C8                 8.40101    1.11290 2661.49025   7.549 6.00e-14 ***
## C9                19.01212    0.85692 2385.63368  22.186  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Fmlrt. Undrs. C1     C2     C3     C4     C5     C6    
## Familirty.c -0.064                                                        
## Undrstndng.  0.006 -0.553                                                 
## C1          -0.115  0.268  0.008                                          
## C2          -0.001 -0.258  0.075 -0.145                                   
## C3          -0.098  0.322 -0.092  0.040 -0.143                            
## C4          -0.100  0.187  0.056  0.023 -0.131  0.010                     
## C5          -0.107  0.305  0.009  0.064 -0.153  0.053  0.036              
## C6          -0.003 -0.099  0.017 -0.100 -0.101 -0.114 -0.097 -0.107       
## C7           0.295 -0.213  0.030 -0.262 -0.134 -0.261 -0.253 -0.272 -0.177
## C8           0.026 -0.358 -0.037 -0.213 -0.001 -0.211 -0.182 -0.231 -0.074
## C9          -0.042 -0.130 -0.081 -0.150 -0.042 -0.142 -0.147 -0.160 -0.062
##             C7     C8    
## Familirty.c              
## Undrstndng.              
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.074       
## C9          -0.069  0.030
tab_model(modA.9433,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.87 0.42 39.05 – 40.69 95.19 <0.001
Familiarity c 0.14 0.02 0.11 – 0.17 8.95 <0.001
Understanding c 0.05 0.02 0.02 – 0.08 3.47 0.001
C1 -11.04 0.89 -12.80 – -9.29 -12.35 <0.001
C2 -17.60 1.01 -19.57 – -15.62 -17.48 <0.001
C3 -4.80 0.92 -6.61 – -3.00 -5.21 <0.001
C4 -2.10 0.90 -3.86 – -0.34 -2.34 0.019
C5 -0.07 0.92 -1.88 – 1.75 -0.07 0.943
C6 -2.29 0.99 -4.23 – -0.35 -2.31 0.021
C7 8.31 1.64 5.10 – 11.52 5.07 <0.001
C8 8.40 1.11 6.22 – 10.58 7.55 <0.001
C9 19.01 0.86 17.33 – 20.69 22.19 <0.001
Random Effects
σ2 227.11
τ00 id 78.47
ICC 0.26
N id 1007
Observations 2854
Marginal R2 / Conditional R2 0.343 / 0.512

Risk

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict risk perception?

modA.82 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.82)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5812 -0.6117 -0.0694  0.5565  3.6749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   32.4243     0.5609 1018.7068  57.808  < 2e-16 ***
## C1            10.8426     1.0990 2495.8856   9.866  < 2e-16 ***
## C2            20.5519     1.2763 2615.0096  16.103  < 2e-16 ***
## C3            13.5376     1.1303 2510.3315  11.977  < 2e-16 ***
## C4             5.6756     1.1252 2505.6400   5.044 4.88e-07 ***
## C5             5.7300     1.1173 2503.1806   5.128 3.15e-07 ***
## C6            -5.7162     1.2976 2616.5136  -4.405 1.10e-05 ***
## C7           -14.9462     1.2762 2613.2863 -11.711  < 2e-16 ***
## C8           -21.6013     1.3050 2617.2425 -16.553  < 2e-16 ***
## C9           -16.5218     1.1050 2499.0970 -14.952  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.033                                                        
## C2  0.027 -0.095                                                 
## C3 -0.019 -0.111 -0.081                                          
## C4 -0.021 -0.108 -0.100 -0.115                                   
## C5 -0.025 -0.105 -0.090 -0.113 -0.107                            
## C6  0.036 -0.097 -0.164 -0.111 -0.100 -0.100                     
## C7  0.027 -0.085 -0.163 -0.097 -0.096 -0.100 -0.164              
## C8  0.039 -0.105 -0.165 -0.106 -0.097 -0.100 -0.166 -0.165       
## C9 -0.030 -0.107 -0.109 -0.107 -0.114 -0.109 -0.096 -0.092 -0.087
tab_model(modA.82,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.42 0.56 31.32 – 33.52 57.81 <0.001
C1 10.84 1.10 8.69 – 13.00 9.87 <0.001
C2 20.55 1.28 18.05 – 23.05 16.10 <0.001
C3 13.54 1.13 11.32 – 15.75 11.98 <0.001
C4 5.68 1.13 3.47 – 7.88 5.04 <0.001
C5 5.73 1.12 3.54 – 7.92 5.13 <0.001
C6 -5.72 1.30 -8.26 – -3.17 -4.41 <0.001
C7 -14.95 1.28 -17.45 – -12.44 -11.71 <0.001
C8 -21.60 1.30 -24.16 – -19.04 -16.55 <0.001
C9 -16.52 1.11 -18.69 – -14.36 -14.95 <0.001
Random Effects
σ2 391.88
τ00 id 183.49
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.472

Q.2: Does naturalness predict risk perception, over and above climate change method contrasts?

modA.8 <- lmer(Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27070.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3272 -0.6040 -0.0230  0.5668  3.7072 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.2    13.43   
##  Residual             333.2    18.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     32.5919     0.5400 1016.6237  60.353  < 2e-16 ***
## Naturalness.c   -0.4576     0.0220 2923.4729 -20.801  < 2e-16 ***
## C1               3.9747     1.0710 2522.2842   3.711 0.000211 ***
## C2              13.8649     1.2273 2616.1275  11.297  < 2e-16 ***
## C3               9.6591     1.0639 2486.6509   9.079  < 2e-16 ***
## C4               3.1917     1.0495 2470.5141   3.041 0.002381 ** 
## C5               3.5831     1.0406 2473.4781   3.443 0.000584 ***
## C6              -6.1464     1.2044 2576.1166  -5.103 3.58e-07 ***
## C7              -8.6654     1.2233 2598.2314  -7.083 1.80e-12 ***
## C8             -14.6155     1.2561 2619.6555 -11.635  < 2e-16 ***
## C9              -6.6652     1.1288 2567.9794  -5.904 4.01e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c -0.015                                                        
## C1          -0.034  0.309                                                 
## C2           0.021  0.262 -0.005                                          
## C3          -0.020  0.174 -0.052 -0.029                                   
## C4          -0.021  0.112 -0.069 -0.066 -0.094                            
## C5          -0.025  0.098 -0.069 -0.059 -0.095 -0.096                     
## C6           0.034  0.019 -0.086 -0.156 -0.105 -0.096 -0.097              
## C7           0.028 -0.251 -0.154 -0.220 -0.135 -0.119 -0.120 -0.166       
## C8           0.040 -0.266 -0.178 -0.225 -0.146 -0.122 -0.121 -0.167 -0.089
## C9          -0.020 -0.421 -0.224 -0.206 -0.170 -0.151 -0.140 -0.094  0.026
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.037
tab_model(modA.8,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.59 0.54 31.53 – 33.65 60.35 <0.001
Naturalness c -0.46 0.02 -0.50 – -0.41 -20.80 <0.001
C1 3.97 1.07 1.87 – 6.07 3.71 <0.001
C2 13.86 1.23 11.46 – 16.27 11.30 <0.001
C3 9.66 1.06 7.57 – 11.75 9.08 <0.001
C4 3.19 1.05 1.13 – 5.25 3.04 0.002
C5 3.58 1.04 1.54 – 5.62 3.44 0.001
C6 -6.15 1.20 -8.51 – -3.78 -5.10 <0.001
C7 -8.67 1.22 -11.06 – -6.27 -7.08 <0.001
C8 -14.62 1.26 -17.08 – -12.15 -11.64 <0.001
C9 -6.67 1.13 -8.88 – -4.45 -5.90 <0.001
Random Effects
σ2 333.24
τ00 id 180.23
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.312 / 0.554

Q.3: Does benefit predict risk perception, over and above climate change method contrasts?

modA.88 <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.88)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27157.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4711 -0.6153 -0.0514  0.5895  3.5733 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.1    13.19   
##  Residual             348.6    18.67   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   32.49743    0.53913 1014.83213  60.278  < 2e-16 ***
## Benefit.c     -0.30315    0.01662 2963.05117 -18.237  < 2e-16 ***
## C1             9.90027    1.04021 2481.76069   9.518  < 2e-16 ***
## C2            21.02454    1.20745 2595.07549  17.412  < 2e-16 ***
## C3            12.23551    1.07085 2500.31944  11.426  < 2e-16 ***
## C4             4.75139    1.06481 2488.48710   4.462 8.47e-06 ***
## C5             4.00716    1.06039 2489.75535   3.779 0.000161 ***
## C6            -7.87076    1.23312 2612.78201  -6.383 2.05e-10 ***
## C7           -12.75032    1.21330 2609.62119 -10.509  < 2e-16 ***
## C8           -18.96017    1.24263 2615.52667 -15.258  < 2e-16 ***
## C9           -13.37406    1.05882 2513.88731 -12.631  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c C1     C2     C3     C4     C5     C6     C7     C8    
## Benefit.c -0.007                                                               
## C1        -0.032  0.050                                                        
## C2         0.027 -0.021 -0.096                                                 
## C3        -0.019  0.066 -0.108 -0.081                                          
## C4        -0.021  0.047 -0.106 -0.101 -0.112                                   
## C5        -0.025  0.089 -0.100 -0.091 -0.107 -0.103                            
## C6         0.034  0.097 -0.092 -0.167 -0.103 -0.094 -0.090                     
## C7         0.027 -0.101 -0.089 -0.161 -0.103 -0.099 -0.107 -0.173              
## C8         0.039 -0.116 -0.110 -0.162 -0.113 -0.101 -0.109 -0.176 -0.152       
## C9        -0.028 -0.163 -0.114 -0.104 -0.117 -0.120 -0.122 -0.110 -0.073 -0.066
tab_model(modA.88,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.50 0.54 31.44 – 33.55 60.28 <0.001
Benefit c -0.30 0.02 -0.34 – -0.27 -18.24 <0.001
C1 9.90 1.04 7.86 – 11.94 9.52 <0.001
C2 21.02 1.21 18.66 – 23.39 17.41 <0.001
C3 12.24 1.07 10.14 – 14.34 11.43 <0.001
C4 4.75 1.06 2.66 – 6.84 4.46 <0.001
C5 4.01 1.06 1.93 – 6.09 3.78 <0.001
C6 -7.87 1.23 -10.29 – -5.45 -6.38 <0.001
C7 -12.75 1.21 -15.13 – -10.37 -10.51 <0.001
C8 -18.96 1.24 -21.40 – -16.52 -15.26 <0.001
C9 -13.37 1.06 -15.45 – -11.30 -12.63 <0.001
Random Effects
σ2 348.59
τ00 id 174.09
ICC 0.33
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.302 / 0.535

Q.4: Does benefit predict risk perception, over and above naturalness and climate change method contrasts?

modA.99 <- lmer(Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.99)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26845
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1133 -0.5867 -0.0161  0.5774  3.7285 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 175.8    13.26   
##  Residual             304.5    17.45   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.62968    0.52677 1011.71369  61.943  < 2e-16 ***
## Naturalness.c   -0.39588    0.02151 2892.93622 -18.400  < 2e-16 ***
## Benefit.c       -0.24981    0.01609 2994.53357 -15.529  < 2e-16 ***
## C1               4.12154    1.02646 2501.49389   4.015 6.11e-05 ***
## C2              15.14426    1.17969 2593.51166  12.837  < 2e-16 ***
## C3               9.09503    1.02001 2471.38800   8.917  < 2e-16 ***
## C4               2.76589    1.00587 2451.91888   2.750  0.00601 ** 
## C5               2.45397    0.99960 2457.63302   2.455  0.01416 *  
## C6              -7.86802    1.16000 2571.01255  -6.783 1.46e-11 ***
## C7              -7.71224    1.17457 2585.57224  -6.566 6.22e-11 ***
## C8             -13.35513    1.20699 2607.60143 -11.065  < 2e-16 ***
## C9              -5.39958    1.08511 2560.07989  -4.976 6.92e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c -0.014                                                        
## Benefit.c   -0.005 -0.187                                                 
## C1          -0.034  0.306 -0.009                                          
## C2           0.021  0.271 -0.071 -0.004                                   
## C3          -0.020  0.165  0.035 -0.052 -0.030                            
## C4          -0.021  0.105  0.026 -0.069 -0.067 -0.094                     
## C5          -0.024  0.083  0.072 -0.070 -0.063 -0.092 -0.094              
## C6           0.033  0.001  0.097 -0.086 -0.162 -0.101 -0.092 -0.089       
## C7           0.028 -0.236 -0.054 -0.153 -0.216 -0.137 -0.120 -0.123 -0.171
## C8           0.039 -0.249 -0.065 -0.177 -0.221 -0.148 -0.123 -0.125 -0.173
## C9          -0.019 -0.399 -0.075 -0.223 -0.200 -0.172 -0.153 -0.145 -0.100
##             C7     C8    
## Naturlnss.c              
## Benefit.c                
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.086       
## C9           0.031  0.043
tab_model(modA.99,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.63 0.53 31.60 – 33.66 61.94 <0.001
Naturalness c -0.40 0.02 -0.44 – -0.35 -18.40 <0.001
Benefit c -0.25 0.02 -0.28 – -0.22 -15.53 <0.001
C1 4.12 1.03 2.11 – 6.13 4.02 <0.001
C2 15.14 1.18 12.83 – 17.46 12.84 <0.001
C3 9.10 1.02 7.10 – 11.10 8.92 <0.001
C4 2.77 1.01 0.79 – 4.74 2.75 0.006
C5 2.45 1.00 0.49 – 4.41 2.45 0.014
C6 -7.87 1.16 -10.14 – -5.59 -6.78 <0.001
C7 -7.71 1.17 -10.02 – -5.41 -6.57 <0.001
C8 -13.36 1.21 -15.72 – -10.99 -11.06 <0.001
C9 -5.40 1.09 -7.53 – -3.27 -4.98 <0.001
Random Effects
σ2 304.49
τ00 id 175.78
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.364 / 0.597

Q.5: Does understanding/familiarity predict risk perception, over and above naturalness, benefit, and climate change method contrasts?

modA.100 <- lmer(Risk ~ Naturalness.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.100)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26808.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5539 -0.6058 -0.0052  0.5672  3.9418 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.2    13.20   
##  Residual             299.9    17.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     32.86610    0.52502 1018.55041  62.600  < 2e-16 ***
## Naturalness.c   -0.36268    0.02195 2934.01779 -16.520  < 2e-16 ***
## Benefit.c       -0.23569    0.01612 2992.23158 -14.620  < 2e-16 ***
## FR.c            -0.11835    0.01802 2992.51333  -6.569 5.96e-11 ***
## C1               2.45813    1.04989 2536.25081   2.341   0.0193 *  
## C2              17.13221    1.20962 2663.12734  14.163  < 2e-16 ***
## C3               7.52683    1.04019 2512.50253   7.236 6.11e-13 ***
## C4               1.01914    1.03321 2506.20951   0.986   0.3240    
## C5               0.07287    1.05631 2584.33815   0.069   0.9450    
## C6              -7.11631    1.15719 2577.56329  -6.150 8.97e-10 ***
## C7              -4.99995    1.23706 2653.33980  -4.042 5.45e-05 ***
## C8             -10.23919    1.28841 2690.85251  -7.947 2.78e-15 ***
## C9              -4.74780    1.08171 2559.01865  -4.389 1.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.100,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.87 0.53 31.84 – 33.90 62.60 <0.001
Naturalness c -0.36 0.02 -0.41 – -0.32 -16.52 <0.001
Benefit c -0.24 0.02 -0.27 – -0.20 -14.62 <0.001
FR c -0.12 0.02 -0.15 – -0.08 -6.57 <0.001
C1 2.46 1.05 0.40 – 4.52 2.34 0.019
C2 17.13 1.21 14.76 – 19.50 14.16 <0.001
C3 7.53 1.04 5.49 – 9.57 7.24 <0.001
C4 1.02 1.03 -1.01 – 3.05 0.99 0.324
C5 0.07 1.06 -2.00 – 2.14 0.07 0.945
C6 -7.12 1.16 -9.39 – -4.85 -6.15 <0.001
C7 -5.00 1.24 -7.43 – -2.57 -4.04 <0.001
C8 -10.24 1.29 -12.77 – -7.71 -7.95 <0.001
C9 -4.75 1.08 -6.87 – -2.63 -4.39 <0.001
Random Effects
σ2 299.90
τ00 id 174.19
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.371 / 0.602

Benefit

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict perceived benefit?

modA.109 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.109)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27683.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4246 -0.5150  0.0654  0.5678  3.1565 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.4    16.84   
##  Residual             381.8    19.54   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.2205     0.6407 1017.4032  90.874  < 2e-16 ***
## C1            -3.1843     1.1019 2386.9763  -2.890 0.003888 ** 
## C2             1.4717     1.2849 2490.3918   1.145 0.252168    
## C3            -4.3571     1.1337 2399.1210  -3.843 0.000125 ***
## C4            -2.9518     1.1284 2394.8266  -2.616 0.008955 ** 
## C5            -5.5747     1.1205 2392.8913  -4.975 6.98e-07 ***
## C6            -7.3526     1.3064 2491.1763  -5.628 2.02e-08 ***
## C7             7.5302     1.2847 2488.4305   5.862 5.19e-09 ***
## C8             8.7549     1.3138 2491.7176   6.664 3.28e-11 ***
## C9            10.4528     1.1080 2389.8849   9.434  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.028                                                        
## C2  0.023 -0.092                                                 
## C3 -0.016 -0.115 -0.073                                          
## C4 -0.018 -0.111 -0.098 -0.118                                   
## C5 -0.021 -0.107 -0.085 -0.116 -0.109                            
## C6  0.031 -0.094 -0.171 -0.110 -0.096 -0.097                     
## C7  0.023 -0.080 -0.169 -0.094 -0.092 -0.097 -0.171              
## C8  0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.172 -0.171       
## C9 -0.026 -0.110 -0.109 -0.110 -0.118 -0.111 -0.093 -0.088 -0.081
tab_model(modA.109,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.22 0.64 56.96 – 59.48 90.87 <0.001
C1 -3.18 1.10 -5.34 – -1.02 -2.89 0.004
C2 1.47 1.28 -1.05 – 3.99 1.15 0.252
C3 -4.36 1.13 -6.58 – -2.13 -3.84 <0.001
C4 -2.95 1.13 -5.16 – -0.74 -2.62 0.009
C5 -5.57 1.12 -7.77 – -3.38 -4.98 <0.001
C6 -7.35 1.31 -9.91 – -4.79 -5.63 <0.001
C7 7.53 1.28 5.01 – 10.05 5.86 <0.001
C8 8.75 1.31 6.18 – 11.33 6.66 <0.001
C9 10.45 1.11 8.28 – 12.63 9.43 <0.001
Random Effects
σ2 381.81
τ00 id 283.44
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.054 / 0.457

Q.2: How does naturalness predict benefit, over and above climate change method contrasts?

modA.110 <- lmer(Ben ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.110)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27584.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4756 -0.5126  0.0537  0.5631  3.2650 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.1    16.34   
##  Residual             371.7    19.28   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     58.13083    0.62517 1014.30504  92.984  < 2e-16 ***
## Naturalness.c    0.24492    0.02375 2842.27358  10.313  < 2e-16 ***
## C1               0.51260    1.14354 2449.15335   0.448 0.654009    
## C2               5.07346    1.31317 2535.18635   3.864 0.000115 ***
## C3              -2.29365    1.13504 2415.90554  -2.021 0.043413 *  
## C4              -1.65703    1.11928 2400.92320  -1.480 0.138884    
## C5              -4.43919    1.10987 2403.79126  -4.000 6.53e-05 ***
## C6              -7.08282    1.28747 2497.20915  -5.501 4.15e-08 ***
## C7               4.10696    1.30838 2517.95324   3.139 0.001715 ** 
## C8               5.01639    1.34413 2538.16006   3.732 0.000194 ***
## C9               5.15954    1.20652 2491.52085   4.276 1.97e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c -0.014                                                        
## C1          -0.031  0.313                                                 
## C2           0.019  0.265 -0.001                                          
## C3          -0.018  0.176 -0.052 -0.024                                   
## C4          -0.019  0.112 -0.069 -0.064 -0.096                            
## C5          -0.022  0.100 -0.069 -0.055 -0.096 -0.096                     
## C6           0.031  0.019 -0.084 -0.159 -0.105 -0.094 -0.095              
## C7           0.026 -0.253 -0.153 -0.225 -0.134 -0.117 -0.119 -0.170       
## C8           0.036 -0.269 -0.179 -0.230 -0.146 -0.120 -0.120 -0.171 -0.091
## C9          -0.017 -0.425 -0.228 -0.208 -0.172 -0.153 -0.143 -0.092  0.030
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.043
tab_model(modA.110,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.13 0.63 56.91 – 59.36 92.98 <0.001
Naturalness c 0.24 0.02 0.20 – 0.29 10.31 <0.001
C1 0.51 1.14 -1.73 – 2.75 0.45 0.654
C2 5.07 1.31 2.50 – 7.65 3.86 <0.001
C3 -2.29 1.14 -4.52 – -0.07 -2.02 0.043
C4 -1.66 1.12 -3.85 – 0.54 -1.48 0.139
C5 -4.44 1.11 -6.62 – -2.26 -4.00 <0.001
C6 -7.08 1.29 -9.61 – -4.56 -5.50 <0.001
C7 4.11 1.31 1.54 – 6.67 3.14 0.002
C8 5.02 1.34 2.38 – 7.65 3.73 <0.001
C9 5.16 1.21 2.79 – 7.53 4.28 <0.001
Random Effects
σ2 371.70
τ00 id 267.05
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.082 / 0.466

Q.3: How does risk perception predict benefit, over and above climate change method contrasts?

modA.113 <- lmer(Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 27367.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5767 -0.5166  0.0713  0.5419  3.2054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.8    16.27   
##  Residual             339.2    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   57.99879    0.61453 1017.59674  94.379  < 2e-16 ***
## Risk.c        -0.32860    0.01781 2947.72272 -18.451  < 2e-16 ***
## C1             0.39429    1.05821 2403.22100   0.373 0.709480    
## C2             8.21888    1.26760 2526.86263   6.484 1.07e-10 ***
## C3             0.04484    1.09679 2412.11753   0.041 0.967392    
## C4            -1.12268    1.06990 2384.12634  -1.049 0.294131    
## C5            -3.70706    1.06259 2384.19349  -3.489 0.000494 ***
## C6            -9.19352    1.23778 2475.99282  -7.427 1.52e-13 ***
## C7             2.52342    1.24352 2525.84295   2.029 0.042538 *  
## C8             1.72404    1.29829 2514.77457   1.328 0.184322    
## C9             5.00702    1.08694 2436.59516   4.607 4.30e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr) Risk.c C1     C2     C3     C4     C5     C6     C7     C8    
## Risk.c  0.020                                                               
## C1     -0.031 -0.184                                                        
## C2      0.016 -0.289 -0.033                                                 
## C3     -0.020 -0.218 -0.070 -0.005                                          
## C4     -0.019 -0.092 -0.092 -0.066 -0.095                                   
## C5     -0.022 -0.095 -0.087 -0.053 -0.093 -0.100                            
## C6      0.032  0.080 -0.107 -0.187 -0.124 -0.103 -0.104                     
## C7      0.026  0.219 -0.116 -0.222 -0.137 -0.109 -0.115 -0.149              
## C8      0.037  0.294 -0.151 -0.243 -0.161 -0.115 -0.120 -0.141 -0.096       
## C9     -0.019  0.272 -0.155 -0.179 -0.162 -0.138 -0.133 -0.067 -0.023  0.006
tab_model(modA.113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.00 0.61 56.79 – 59.20 94.38 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.45 <0.001
C1 0.39 1.06 -1.68 – 2.47 0.37 0.709
C2 8.22 1.27 5.73 – 10.70 6.48 <0.001
C3 0.04 1.10 -2.11 – 2.20 0.04 0.967
C4 -1.12 1.07 -3.22 – 0.98 -1.05 0.294
C5 -3.71 1.06 -5.79 – -1.62 -3.49 <0.001
C6 -9.19 1.24 -11.62 – -6.77 -7.43 <0.001
C7 2.52 1.24 0.09 – 4.96 2.03 0.043
C8 1.72 1.30 -0.82 – 4.27 1.33 0.184
C9 5.01 1.09 2.88 – 7.14 4.61 <0.001
Random Effects
σ2 339.21
τ00 id 264.75
ICC 0.44
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.141 / 0.518

Q.4: How does risk perception predict benefit, over and above naturalness and climate change method contrasts?

modA.114 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27354.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5827 -0.5132  0.0670  0.5443  3.3001 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 258.0    16.06   
##  Residual             339.3    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.98005    0.60907 1012.45913  95.195  < 2e-16 ***
## Naturalness.c    0.10591    0.02442 2869.77305   4.337 1.49e-05 ***
## Risk.c          -0.29888    0.01904 2978.41274 -15.697  < 2e-16 ***
## C1               1.66980    1.09741 2435.23479   1.522  0.12825    
## C2               9.16876    1.28488 2536.11022   7.136 1.25e-12 ***
## C3               0.54201    1.10170 2413.06293   0.492  0.62278    
## C4              -0.72811    1.07300 2385.32406  -0.679  0.49747    
## C5              -3.38484    1.06447 2388.48994  -3.180  0.00149 ** 
## C6              -8.91009    1.23825 2479.90081  -7.196 8.19e-13 ***
## C7               1.49863    1.26435 2523.79863   1.185  0.23601    
## C8               0.73745    1.31638 2528.12689   0.560  0.57539    
## C9               3.21040    1.16223 2480.08350   2.762  0.00578 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c -0.007                                                        
## Risk.c       0.016  0.359                                                 
## C1          -0.032  0.268 -0.069                                          
## C2           0.015  0.170 -0.204  0.013                                   
## C3          -0.020  0.102 -0.165 -0.040  0.012                            
## C4          -0.020  0.085 -0.055 -0.066 -0.051 -0.086                     
## C5          -0.023  0.071 -0.063 -0.065 -0.041 -0.085 -0.093              
## C6           0.031  0.051  0.093 -0.089 -0.175 -0.118 -0.098 -0.100       
## C7           0.027 -0.186  0.133 -0.160 -0.246 -0.153 -0.123 -0.126 -0.156
## C8           0.038 -0.171  0.209 -0.189 -0.264 -0.175 -0.128 -0.130 -0.148
## C9          -0.015 -0.356  0.109 -0.234 -0.225 -0.187 -0.159 -0.149 -0.081
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.061       
## C9           0.045  0.066
tab_model(modA.114,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.98 0.61 56.79 – 59.17 95.19 <0.001
Naturalness c 0.11 0.02 0.06 – 0.15 4.34 <0.001
Risk c -0.30 0.02 -0.34 – -0.26 -15.70 <0.001
C1 1.67 1.10 -0.48 – 3.82 1.52 0.128
C2 9.17 1.28 6.65 – 11.69 7.14 <0.001
C3 0.54 1.10 -1.62 – 2.70 0.49 0.623
C4 -0.73 1.07 -2.83 – 1.38 -0.68 0.497
C5 -3.38 1.06 -5.47 – -1.30 -3.18 0.001
C6 -8.91 1.24 -11.34 – -6.48 -7.20 <0.001
C7 1.50 1.26 -0.98 – 3.98 1.19 0.236
C8 0.74 1.32 -1.84 – 3.32 0.56 0.575
C9 3.21 1.16 0.93 – 5.49 2.76 0.006
Random Effects
σ2 339.29
τ00 id 257.97
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.145 / 0.514

Q.5: How does risk perception predict benefit, over and above naturalness and climate change method contrasts?

modA.114 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27354.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5827 -0.5132  0.0670  0.5443  3.3001 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 258.0    16.06   
##  Residual             339.3    18.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.98005    0.60907 1012.45913  95.195  < 2e-16 ***
## Naturalness.c    0.10591    0.02442 2869.77305   4.337 1.49e-05 ***
## Risk.c          -0.29888    0.01904 2978.41274 -15.697  < 2e-16 ***
## C1               1.66980    1.09741 2435.23479   1.522  0.12825    
## C2               9.16876    1.28488 2536.11022   7.136 1.25e-12 ***
## C3               0.54201    1.10170 2413.06293   0.492  0.62278    
## C4              -0.72811    1.07300 2385.32406  -0.679  0.49747    
## C5              -3.38484    1.06447 2388.48994  -3.180  0.00149 ** 
## C6              -8.91009    1.23825 2479.90081  -7.196 8.19e-13 ***
## C7               1.49863    1.26435 2523.79863   1.185  0.23601    
## C8               0.73745    1.31638 2528.12689   0.560  0.57539    
## C9               3.21040    1.16223 2480.08350   2.762  0.00578 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c -0.007                                                        
## Risk.c       0.016  0.359                                                 
## C1          -0.032  0.268 -0.069                                          
## C2           0.015  0.170 -0.204  0.013                                   
## C3          -0.020  0.102 -0.165 -0.040  0.012                            
## C4          -0.020  0.085 -0.055 -0.066 -0.051 -0.086                     
## C5          -0.023  0.071 -0.063 -0.065 -0.041 -0.085 -0.093              
## C6           0.031  0.051  0.093 -0.089 -0.175 -0.118 -0.098 -0.100       
## C7           0.027 -0.186  0.133 -0.160 -0.246 -0.153 -0.123 -0.126 -0.156
## C8           0.038 -0.171  0.209 -0.189 -0.264 -0.175 -0.128 -0.130 -0.148
## C9          -0.015 -0.356  0.109 -0.234 -0.225 -0.187 -0.159 -0.149 -0.081
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8          -0.061       
## C9           0.045  0.066
tab_model(modA.114,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.98 0.61 56.79 – 59.17 95.19 <0.001
Naturalness c 0.11 0.02 0.06 – 0.15 4.34 <0.001
Risk c -0.30 0.02 -0.34 – -0.26 -15.70 <0.001
C1 1.67 1.10 -0.48 – 3.82 1.52 0.128
C2 9.17 1.28 6.65 – 11.69 7.14 <0.001
C3 0.54 1.10 -1.62 – 2.70 0.49 0.623
C4 -0.73 1.07 -2.83 – 1.38 -0.68 0.497
C5 -3.38 1.06 -5.47 – -1.30 -3.18 0.001
C6 -8.91 1.24 -11.34 – -6.48 -7.20 <0.001
C7 1.50 1.26 -0.98 – 3.98 1.19 0.236
C8 0.74 1.32 -1.84 – 3.32 0.56 0.575
C9 3.21 1.16 0.93 – 5.49 2.76 0.006
Random Effects
σ2 339.29
τ00 id 257.97
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.145 / 0.514

Q.6: How does understanding/familiarity predict benefit, over and above risk perception, naturalness, and climate change method contrasts?

modA.117 <- lmer(Ben ~ FR.c + Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.117)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ FR.c + Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27330.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6121 -0.4980  0.0692  0.5470  3.3281 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 256.9    16.03   
##  Residual             335.6    18.32   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.77166    0.60832 1016.77851  94.969  < 2e-16 ***
## FR.c             0.10753    0.01972 3007.14629   5.452 5.37e-08 ***
## Naturalness.c    0.07893    0.02479 2896.03309   3.184  0.00147 ** 
## Risk.c          -0.28313    0.01917 2978.72943 -14.770  < 2e-16 ***
## C1               3.09707    1.12269 2464.89329   2.759  0.00585 ** 
## C2               7.06107    1.33519 2615.46207   5.288 1.34e-07 ***
## C3               1.83432    1.12134 2445.74170   1.636  0.10200    
## C4               0.82275    1.10459 2435.97833   0.745  0.45643    
## C5              -1.21656    1.13102 2512.02166  -1.076  0.28219    
## C6              -9.40672    1.23508 2480.43867  -7.616 3.69e-14 ***
## C7              -0.86640    1.33062 2580.74909  -0.651  0.51502    
## C8              -1.91176    1.39701 2604.22658  -1.368  0.17129    
## C9               2.67142    1.16040 2478.46802   2.302  0.02141 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.117,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.77 0.61 56.58 – 58.96 94.97 <0.001
FR c 0.11 0.02 0.07 – 0.15 5.45 <0.001
Naturalness c 0.08 0.02 0.03 – 0.13 3.18 0.001
Risk c -0.28 0.02 -0.32 – -0.25 -14.77 <0.001
C1 3.10 1.12 0.90 – 5.30 2.76 0.006
C2 7.06 1.34 4.44 – 9.68 5.29 <0.001
C3 1.83 1.12 -0.36 – 4.03 1.64 0.102
C4 0.82 1.10 -1.34 – 2.99 0.74 0.456
C5 -1.22 1.13 -3.43 – 1.00 -1.08 0.282
C6 -9.41 1.24 -11.83 – -6.99 -7.62 <0.001
C7 -0.87 1.33 -3.48 – 1.74 -0.65 0.515
C8 -1.91 1.40 -4.65 – 0.83 -1.37 0.171
C9 2.67 1.16 0.40 – 4.95 2.30 0.021
Random Effects
σ2 335.56
τ00 id 256.86
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.151 / 0.519

Difference Benefit - Risk

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict the difference between perceived benefit and risk?

modA.118 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.118)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30498.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8901 -0.5430  0.0446  0.5733  3.1036 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  584.4   24.17   
##  Residual             1032.4   32.13   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   25.7958     0.9639 1018.4237  26.762  < 2e-16 ***
## C1           -14.0197     1.7957 2450.9270  -7.808 8.57e-15 ***
## C2           -19.0289     2.0889 2564.5205  -9.110  < 2e-16 ***
## C3           -17.7845     1.8471 2464.5022  -9.628  < 2e-16 ***
## C4            -8.6096     1.8386 2459.9287  -4.683 2.98e-06 ***
## C5           -11.3284     1.8257 2457.6798  -6.205 6.40e-10 ***
## C6            -1.5867     2.1238 2565.7134  -0.747    0.455    
## C7            22.5093     2.0886 2562.6624  10.777  < 2e-16 ***
## C8            30.2190     2.1358 2566.3661  14.149  < 2e-16 ***
## C9            26.9722     1.8055 2454.0429  14.939  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.031                                                        
## C2  0.025 -0.094                                                 
## C3 -0.018 -0.113 -0.078                                          
## C4 -0.020 -0.110 -0.099 -0.117                                   
## C5 -0.023 -0.105 -0.088 -0.115 -0.108                            
## C6  0.034 -0.096 -0.167 -0.110 -0.098 -0.099                     
## C7  0.025 -0.083 -0.166 -0.096 -0.094 -0.099 -0.167              
## C8  0.037 -0.104 -0.168 -0.105 -0.095 -0.099 -0.169 -0.167       
## C9 -0.028 -0.109 -0.109 -0.108 -0.115 -0.110 -0.095 -0.091 -0.085
tab_model(modA.118,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.80 0.96 23.91 – 27.69 26.76 <0.001
C1 -14.02 1.80 -17.54 – -10.50 -7.81 <0.001
C2 -19.03 2.09 -23.12 – -14.93 -9.11 <0.001
C3 -17.78 1.85 -21.41 – -14.16 -9.63 <0.001
C4 -8.61 1.84 -12.21 – -5.00 -4.68 <0.001
C5 -11.33 1.83 -14.91 – -7.75 -6.20 <0.001
C6 -1.59 2.12 -5.75 – 2.58 -0.75 0.455
C7 22.51 2.09 18.41 – 26.60 10.78 <0.001
C8 30.22 2.14 26.03 – 34.41 14.15 <0.001
C9 26.97 1.81 23.43 – 30.51 14.94 <0.001
Random Effects
σ2 1032.43
τ00 id 584.41
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.163 / 0.466

Q.2: How does naturalness predict the difference between perceived benefit and risk, over and above climate change method contrasts?

modA.11 <- lmer(BRDiff ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30151.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3940 -0.5391  0.0308  0.5727  2.9142 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 532.1    23.07   
##  Residual             913.3    30.22   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     25.53690    0.91491 1017.84864  27.912  < 2e-16 ***
## Naturalness.c    0.70784    0.03663 2904.80064  19.323  < 2e-16 ***
## C1              -3.36870    1.77822 2504.30510  -1.894  0.05828 .  
## C2              -8.67566    2.03880 2596.19694  -4.255 2.16e-05 ***
## C3             -11.83652    1.76602 2469.26459  -6.702 2.53e-11 ***
## C4              -4.82208    1.74196 2453.41655  -2.768  0.00568 ** 
## C5              -8.02781    1.72724 2456.36087  -4.648 3.53e-06 ***
## C6              -0.86676    2.00028 2556.65812  -0.433  0.66482    
## C7              12.67374    2.03201 2578.44118   6.237 5.19e-10 ***
## C8              19.47237    2.08675 2599.57655   9.331  < 2e-16 ***
## C9              11.69956    1.87472 2549.16909   6.241 5.09e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c -0.015                                                        
## C1          -0.034  0.310                                                 
## C2           0.020  0.263 -0.004                                          
## C3          -0.020  0.174 -0.052 -0.027                                   
## C4          -0.021  0.112 -0.069 -0.066 -0.095                            
## C5          -0.024  0.099 -0.069 -0.058 -0.095 -0.096                     
## C6           0.033  0.019 -0.085 -0.157 -0.105 -0.095 -0.096              
## C7           0.028 -0.251 -0.154 -0.221 -0.135 -0.119 -0.120 -0.167       
## C8           0.039 -0.266 -0.178 -0.227 -0.146 -0.121 -0.121 -0.168 -0.090
## C9          -0.019 -0.422 -0.225 -0.207 -0.170 -0.152 -0.141 -0.094  0.027
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.039
tab_model(modA.11,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.54 0.91 23.74 – 27.33 27.91 <0.001
Naturalness c 0.71 0.04 0.64 – 0.78 19.32 <0.001
C1 -3.37 1.78 -6.86 – 0.12 -1.89 0.058
C2 -8.68 2.04 -12.67 – -4.68 -4.26 <0.001
C3 -11.84 1.77 -15.30 – -8.37 -6.70 <0.001
C4 -4.82 1.74 -8.24 – -1.41 -2.77 0.006
C5 -8.03 1.73 -11.41 – -4.64 -4.65 <0.001
C6 -0.87 2.00 -4.79 – 3.06 -0.43 0.665
C7 12.67 2.03 8.69 – 16.66 6.24 <0.001
C8 19.47 2.09 15.38 – 23.56 9.33 <0.001
C9 11.70 1.87 8.02 – 15.38 6.24 <0.001
Random Effects
σ2 913.26
τ00 id 532.06
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.247 / 0.524

Familiarity/Understanding (Mean score)

Q.1: (SIMPLE MODEL) How do climate change method contrasts predict understanding and familiarity (mean score)?

modA.12 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27119.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0412 -0.5869 -0.0111  0.5966  3.1013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.7    14.31   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   54.4788     0.5608 1019.6835  97.137  < 2e-16 ***
## C1           -18.6588     1.0176 2429.9000 -18.337  < 2e-16 ***
## C2            12.8814     1.1847 2540.1072  10.873  < 2e-16 ***
## C3           -16.1090     1.0468 2442.9867 -15.389  < 2e-16 ***
## C4           -16.5934     1.0420 2438.5014 -15.925  < 2e-16 ***
## C5           -22.1040     1.0346 2436.3623 -21.364  < 2e-16 ***
## C6             5.1720     1.2045 2541.1519   4.294 1.82e-05 ***
## C7            27.7437     1.1846 2538.2041  23.421  < 2e-16 ***
## C8            31.6044     1.2114 2541.7653  26.090  < 2e-16 ***
## C9            12.8248     1.0232 2432.9494  12.534  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.030                                                        
## C2  0.024 -0.093                                                 
## C3 -0.017 -0.113 -0.076                                          
## C4 -0.019 -0.110 -0.099 -0.117                                   
## C5 -0.022 -0.106 -0.087 -0.115 -0.108                            
## C6  0.033 -0.095 -0.169 -0.110 -0.098 -0.098                     
## C7  0.024 -0.082 -0.167 -0.095 -0.093 -0.098 -0.168              
## C8  0.036 -0.104 -0.169 -0.105 -0.095 -0.098 -0.170 -0.169       
## C9 -0.027 -0.109 -0.109 -0.109 -0.116 -0.110 -0.094 -0.090 -0.083
tab_model(modA.12,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.38 – 55.58 97.14 <0.001
C1 -18.66 1.02 -20.65 – -16.66 -18.34 <0.001
C2 12.88 1.18 10.56 – 15.20 10.87 <0.001
C3 -16.11 1.05 -18.16 – -14.06 -15.39 <0.001
C4 -16.59 1.04 -18.64 – -14.55 -15.93 <0.001
C5 -22.10 1.03 -24.13 – -20.08 -21.36 <0.001
C6 5.17 1.20 2.81 – 7.53 4.29 <0.001
C7 27.74 1.18 25.42 – 30.07 23.42 <0.001
C8 31.60 1.21 29.23 – 33.98 26.09 <0.001
C9 12.82 1.02 10.82 – 14.83 12.53 <0.001
Random Effects
σ2 329.45
τ00 id 204.67
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.403 / 0.632

Q.2: How does naturalness predict understanding and familiarity (mean score), over and above climate change method contrasts?

modA.130 <- lmer(FR ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.130)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26915.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9409 -0.5696  0.0042  0.5983  3.1937 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.5    14.61   
##  Residual             297.7    17.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.36322    0.55913 1014.65701  97.229  < 2e-16 ***
## Naturalness.c    0.31552    0.02125 2843.02165  14.848  < 2e-16 ***
## C1             -13.90200    1.02337 2449.90959 -13.585  < 2e-16 ***
## C2              17.52007    1.17515 2535.98030  14.909  < 2e-16 ***
## C3             -13.46299    1.01576 2416.65135 -13.254  < 2e-16 ***
## C4             -14.89955    1.00166 2401.66368 -14.875  < 2e-16 ***
## C5             -20.66833    0.99325 2404.53197 -20.809  < 2e-16 ***
## C6               5.48603    1.15217 2497.99616   4.761 2.03e-06 ***
## C7              23.34344    1.17088 2518.74575  19.937  < 2e-16 ***
## C8              26.81364    1.20286 2538.95709  22.292  < 2e-16 ***
## C9               6.03803    1.07972 2492.29200   5.592 2.49e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c -0.014                                                        
## C1          -0.031  0.313                                                 
## C2           0.019  0.265 -0.001                                          
## C3          -0.018  0.176 -0.052 -0.024                                   
## C4          -0.019  0.112 -0.069 -0.064 -0.096                            
## C5          -0.022  0.100 -0.069 -0.055 -0.096 -0.096                     
## C6           0.031  0.019 -0.084 -0.159 -0.105 -0.094 -0.095              
## C7           0.026 -0.253 -0.153 -0.225 -0.134 -0.117 -0.119 -0.170       
## C8           0.036 -0.269 -0.179 -0.230 -0.146 -0.120 -0.120 -0.171 -0.091
## C9          -0.017 -0.425 -0.228 -0.208 -0.172 -0.153 -0.143 -0.092  0.030
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.043
tab_model(modA.130,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.36 0.56 53.27 – 55.46 97.23 <0.001
Naturalness c 0.32 0.02 0.27 – 0.36 14.85 <0.001
C1 -13.90 1.02 -15.91 – -11.90 -13.58 <0.001
C2 17.52 1.18 15.22 – 19.82 14.91 <0.001
C3 -13.46 1.02 -15.45 – -11.47 -13.25 <0.001
C4 -14.90 1.00 -16.86 – -12.94 -14.87 <0.001
C5 -20.67 0.99 -22.62 – -18.72 -20.81 <0.001
C6 5.49 1.15 3.23 – 7.75 4.76 <0.001
C7 23.34 1.17 21.05 – 25.64 19.94 <0.001
C8 26.81 1.20 24.46 – 29.17 22.29 <0.001
C9 6.04 1.08 3.92 – 8.16 5.59 <0.001
Random Effects
σ2 297.73
τ00 id 213.46
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.434 / 0.670

Moderators

Support

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict support, over and above climate change method contrasts?

modA.8901 <- lmer(Support ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8+ C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 +  (1|id), data = L)

summary(modA.8901)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27815.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4472 -0.5236  0.0573  0.5493  3.3694 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 282.6    16.81   
##  Residual             399.0    19.98   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      6.023e+01  6.447e-01  1.015e+03  93.421  < 2e-16 ***
## ATNS_Score.c    -2.437e-01  3.001e-02  1.016e+03  -8.120 1.34e-15 ***
## C1              -7.703e+00  1.125e+00  2.388e+03  -6.848 9.50e-12 ***
## C2              -9.206e+00  1.311e+00  2.493e+03  -7.021 2.84e-12 ***
## C3              -9.713e+00  1.159e+00  2.401e+03  -8.381  < 2e-16 ***
## C4              -6.210e+00  1.154e+00  2.399e+03  -5.383 8.02e-08 ***
## C5              -1.007e+01  1.144e+00  2.396e+03  -8.804  < 2e-16 ***
## C6              -6.625e-01  1.334e+00  2.494e+03  -0.497  0.61950    
## C7               1.547e+01  1.312e+00  2.492e+03  11.794  < 2e-16 ***
## C8               1.951e+01  1.342e+00  2.496e+03  14.540  < 2e-16 ***
## C9               1.592e+01  1.131e+00  2.392e+03  14.069  < 2e-16 ***
## ATNS_Score.c:C1 -2.518e-03  5.305e-02  2.399e+03  -0.047  0.96214    
## ATNS_Score.c:C2 -2.706e-01  6.133e-02  2.494e+03  -4.411 1.07e-05 ***
## ATNS_Score.c:C3 -7.580e-02  5.607e-02  2.417e+03  -1.352  0.17652    
## ATNS_Score.c:C4 -1.272e-01  5.157e-02  2.386e+03  -2.467  0.01369 *  
## ATNS_Score.c:C5 -3.550e-02  5.212e-02  2.390e+03  -0.681  0.49587    
## ATNS_Score.c:C6  1.594e-01  6.153e-02  2.497e+03   2.592  0.00961 ** 
## ATNS_Score.c:C7  1.762e-01  6.173e-02  2.501e+03   2.854  0.00435 ** 
## ATNS_Score.c:C8  1.666e-01  6.207e-02  2.496e+03   2.684  0.00732 ** 
## ATNS_Score.c:C9  8.163e-02  5.262e-02  2.391e+03   1.551  0.12094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8901,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.23 0.64 58.96 – 61.49 93.42 <0.001
ATNS Score c -0.24 0.03 -0.30 – -0.18 -8.12 <0.001
C1 -7.70 1.12 -9.91 – -5.50 -6.85 <0.001
C2 -9.21 1.31 -11.78 – -6.63 -7.02 <0.001
C3 -9.71 1.16 -11.99 – -7.44 -8.38 <0.001
C4 -6.21 1.15 -8.47 – -3.95 -5.38 <0.001
C5 -10.07 1.14 -12.32 – -7.83 -8.80 <0.001
C6 -0.66 1.33 -3.28 – 1.95 -0.50 0.619
C7 15.47 1.31 12.90 – 18.04 11.79 <0.001
C8 19.51 1.34 16.88 – 22.14 14.54 <0.001
C9 15.92 1.13 13.70 – 18.14 14.07 <0.001
ATNS Score c * C1 -0.00 0.05 -0.11 – 0.10 -0.05 0.962
ATNS Score c * C2 -0.27 0.06 -0.39 – -0.15 -4.41 <0.001
ATNS Score c * C3 -0.08 0.06 -0.19 – 0.03 -1.35 0.176
ATNS Score c * C4 -0.13 0.05 -0.23 – -0.03 -2.47 0.014
ATNS Score c * C5 -0.04 0.05 -0.14 – 0.07 -0.68 0.496
ATNS Score c * C6 0.16 0.06 0.04 – 0.28 2.59 0.010
ATNS Score c * C7 0.18 0.06 0.06 – 0.30 2.85 0.004
ATNS Score c * C8 0.17 0.06 0.04 – 0.29 2.68 0.007
ATNS Score c * C9 0.08 0.05 -0.02 – 0.18 1.55 0.121
Random Effects
σ2 399.03
τ00 id 282.58
ICC 0.41
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.193 / 0.527

Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on naturalness in predicting support, over and above climate change method contrasts?

modA.89012 <- lmer(Support ~ ATNS_Score.c*Naturalness.c +C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8+ C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.89012)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c *  
##     C2 + ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c *  
##     C5 + ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c *  
##     C8 + ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27483.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5553 -0.5246  0.0338  0.5422  3.4309 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.3    16.35   
##  Residual             349.0    18.68   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 6.020e+01  6.197e-01  1.015e+03  97.141  < 2e-16
## ATNS_Score.c               -2.173e-01  2.886e-02  1.018e+03  -7.527 1.14e-13
## Naturalness.c               4.176e-01  2.334e-02  2.805e+03  17.893  < 2e-16
## C1                         -1.567e+00  1.113e+00  2.424e+03  -1.408  0.15913
## C2                         -2.826e+00  1.277e+00  2.507e+03  -2.213  0.02696
## C3                         -6.115e+00  1.104e+00  2.391e+03  -5.540 3.35e-08
## C4                         -3.560e+00  1.090e+00  2.381e+03  -3.265  0.00111
## C5                         -7.879e+00  1.079e+00  2.380e+03  -7.303 3.81e-13
## C6                         -3.945e-01  1.252e+00  2.469e+03  -0.315  0.75270
## C7                          9.596e+00  1.272e+00  2.488e+03   7.542 6.42e-14
## C8                          1.268e+01  1.310e+00  2.515e+03   9.683  < 2e-16
## C9                          6.794e+00  1.174e+00  2.465e+03   5.788 8.05e-09
## ATNS_Score.c:Naturalness.c  5.436e-03  9.222e-04  2.810e+03   5.895 4.20e-09
## ATNS_Score.c:C1             5.822e-02  5.195e-02  2.416e+03   1.121  0.26255
## ATNS_Score.c:C2            -1.459e-01  5.923e-02  2.510e+03  -2.463  0.01383
## ATNS_Score.c:C3            -9.782e-03  5.293e-02  2.393e+03  -0.185  0.85338
## ATNS_Score.c:C4            -4.361e-02  4.877e-02  2.367e+03  -0.894  0.37129
## ATNS_Score.c:C5             3.058e-02  4.922e-02  2.374e+03   0.621  0.53448
## ATNS_Score.c:C6             1.474e-01  5.775e-02  2.472e+03   2.553  0.01075
## ATNS_Score.c:C7             7.106e-02  5.965e-02  2.511e+03   1.191  0.23362
## ATNS_Score.c:C8             1.502e-02  6.019e-02  2.508e+03   0.249  0.80301
## ATNS_Score.c:C9            -5.357e-02  5.327e-02  2.426e+03  -1.006  0.31472
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                            
## C2                         *  
## C3                         ***
## C4                         ** 
## C5                         ***
## C6                            
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c ***
## ATNS_Score.c:C1               
## ATNS_Score.c:C2            *  
## ATNS_Score.c:C3               
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6            *  
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.89012,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.20 0.62 58.99 – 61.42 97.14 <0.001
ATNS Score c -0.22 0.03 -0.27 – -0.16 -7.53 <0.001
Naturalness c 0.42 0.02 0.37 – 0.46 17.89 <0.001
C1 -1.57 1.11 -3.75 – 0.61 -1.41 0.159
C2 -2.83 1.28 -5.33 – -0.32 -2.21 0.027
C3 -6.11 1.10 -8.28 – -3.95 -5.54 <0.001
C4 -3.56 1.09 -5.70 – -1.42 -3.27 0.001
C5 -7.88 1.08 -9.99 – -5.76 -7.30 <0.001
C6 -0.39 1.25 -2.85 – 2.06 -0.32 0.753
C7 9.60 1.27 7.10 – 12.09 7.54 <0.001
C8 12.68 1.31 10.12 – 15.25 9.68 <0.001
C9 6.79 1.17 4.49 – 9.10 5.79 <0.001
ATNS Score c *
Naturalness c
0.01 0.00 0.00 – 0.01 5.89 <0.001
ATNS Score c * C1 0.06 0.05 -0.04 – 0.16 1.12 0.263
ATNS Score c * C2 -0.15 0.06 -0.26 – -0.03 -2.46 0.014
ATNS Score c * C3 -0.01 0.05 -0.11 – 0.09 -0.18 0.853
ATNS Score c * C4 -0.04 0.05 -0.14 – 0.05 -0.89 0.371
ATNS Score c * C5 0.03 0.05 -0.07 – 0.13 0.62 0.534
ATNS Score c * C6 0.15 0.06 0.03 – 0.26 2.55 0.011
ATNS Score c * C7 0.07 0.06 -0.05 – 0.19 1.19 0.234
ATNS Score c * C8 0.02 0.06 -0.10 – 0.13 0.25 0.803
ATNS Score c * C9 -0.05 0.05 -0.16 – 0.05 -1.01 0.315
Random Effects
σ2 348.97
τ00 id 267.27
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.268 / 0.585

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict support, over and above climate change method contrasts?
modA.8971 <- lmer(Support ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8971)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27860.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3617 -0.5269  0.0514  0.5740  3.2352 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 303.5    17.42   
##  Residual             399.2    19.98   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      60.20810    0.66079 1014.12192  91.115  < 2e-16 ***
## CNS_Score.c       0.14383    0.03961 1016.19192   3.631 0.000296 ***
## C1               -7.47991    1.12818 2373.67490  -6.630 4.14e-11 ***
## C2               -9.22484    1.31597 2476.28284  -7.010 3.06e-12 ***
## C3              -10.01655    1.16234 2384.77043  -8.618  < 2e-16 ***
## C4               -5.81206    1.15694 2380.98009  -5.024 5.45e-07 ***
## C5              -10.15718    1.14736 2378.73946  -8.853  < 2e-16 ***
## C6               -0.56963    1.34167 2473.59180  -0.425 0.671189    
## C7               15.37456    1.31665 2471.29633  11.677  < 2e-16 ***
## C8               19.46287    1.34534 2476.13091  14.467  < 2e-16 ***
## C9               15.78009    1.13576 2374.42167  13.894  < 2e-16 ***
## CNS_Score.c:C1    0.01070    0.06556 2364.97486   0.163 0.870432    
## CNS_Score.c:C2   -0.47104    0.08141 2483.37194  -5.786 8.13e-09 ***
## CNS_Score.c:C3   -0.09782    0.06928 2381.22834  -1.412 0.158061    
## CNS_Score.c:C4   -0.06699    0.06686 2377.90567  -1.002 0.316466    
## CNS_Score.c:C5   -0.05658    0.07100 2393.30451  -0.797 0.425583    
## CNS_Score.c:C6    0.03732    0.07687 2475.99032   0.486 0.627363    
## CNS_Score.c:C7    0.23145    0.07966 2476.96009   2.905 0.003699 ** 
## CNS_Score.c:C8    0.24431    0.08118 2476.63443   3.010 0.002642 ** 
## CNS_Score.c:C9    0.18088    0.07161 2395.82469   2.526 0.011606 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8971,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.21 0.66 58.91 – 61.50 91.11 <0.001
CNS Score c 0.14 0.04 0.07 – 0.22 3.63 <0.001
C1 -7.48 1.13 -9.69 – -5.27 -6.63 <0.001
C2 -9.22 1.32 -11.81 – -6.64 -7.01 <0.001
C3 -10.02 1.16 -12.30 – -7.74 -8.62 <0.001
C4 -5.81 1.16 -8.08 – -3.54 -5.02 <0.001
C5 -10.16 1.15 -12.41 – -7.91 -8.85 <0.001
C6 -0.57 1.34 -3.20 – 2.06 -0.42 0.671
C7 15.37 1.32 12.79 – 17.96 11.68 <0.001
C8 19.46 1.35 16.82 – 22.10 14.47 <0.001
C9 15.78 1.14 13.55 – 18.01 13.89 <0.001
CNS Score c * C1 0.01 0.07 -0.12 – 0.14 0.16 0.870
CNS Score c * C2 -0.47 0.08 -0.63 – -0.31 -5.79 <0.001
CNS Score c * C3 -0.10 0.07 -0.23 – 0.04 -1.41 0.158
CNS Score c * C4 -0.07 0.07 -0.20 – 0.06 -1.00 0.316
CNS Score c * C5 -0.06 0.07 -0.20 – 0.08 -0.80 0.426
CNS Score c * C6 0.04 0.08 -0.11 – 0.19 0.49 0.627
CNS Score c * C7 0.23 0.08 0.08 – 0.39 2.91 0.004
CNS Score c * C8 0.24 0.08 0.09 – 0.40 3.01 0.003
CNS Score c * C9 0.18 0.07 0.04 – 0.32 2.53 0.012
Random Effects
σ2 399.20
τ00 id 303.54
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.167 / 0.527
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting support, over and above climate change method contrasts?
modA.897133 <- lmer(Support ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7  + CNS_Score.c*C8  + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.897133)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27540.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6307 -0.5299  0.0393  0.5437  3.3351 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 291.1    17.06   
##  Residual             349.4    18.69   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                6.007e+01  6.384e-01  1.010e+03  94.096  < 2e-16 ***
## CNS_Score.c                1.488e-01  3.827e-02  1.012e+03   3.888 0.000108 ***
## Naturalness.c              4.313e-01  2.340e-02  2.782e+03  18.430  < 2e-16 ***
## C1                        -9.699e-01  1.115e+00  2.400e+03  -0.870 0.384432    
## C2                        -2.642e+00  1.284e+00  2.485e+03  -2.058 0.039687 *  
## C3                        -6.291e+00  1.109e+00  2.370e+03  -5.674 1.56e-08 ***
## C4                        -3.477e+00  1.093e+00  2.356e+03  -3.182 0.001480 ** 
## C5                        -8.027e+00  1.082e+00  2.360e+03  -7.417 1.67e-13 ***
## C6                        -2.638e-01  1.260e+00  2.445e+03  -0.209 0.834208    
## C7                         9.253e+00  1.278e+00  2.465e+03   7.238 6.08e-13 ***
## C8                         1.269e+01  1.313e+00  2.486e+03   9.665  < 2e-16 ***
## C9                         6.452e+00  1.179e+00  2.440e+03   5.472 4.91e-08 ***
## CNS_Score.c:Naturalness.c  4.710e-03  1.313e-03  2.831e+03   3.588 0.000339 ***
## CNS_Score.c:C1             1.113e-01  6.567e-02  2.445e+03   1.695 0.090186 .  
## CNS_Score.c:C2            -3.220e-01  7.833e-02  2.488e+03  -4.111 4.07e-05 ***
## CNS_Score.c:C3            -2.474e-02  6.585e-02  2.359e+03  -0.376 0.707210    
## CNS_Score.c:C4            -2.512e-02  6.349e-02  2.360e+03  -0.396 0.692429    
## CNS_Score.c:C5            -8.112e-03  6.704e-02  2.370e+03  -0.121 0.903696    
## CNS_Score.c:C6             2.481e-02  7.221e-02  2.446e+03   0.344 0.731228    
## CNS_Score.c:C7             8.138e-02  7.759e-02  2.479e+03   1.049 0.294333    
## CNS_Score.c:C8             1.159e-01  7.875e-02  2.468e+03   1.472 0.141235    
## CNS_Score.c:C9             5.511e-02  7.425e-02  2.495e+03   0.742 0.458073    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.897133,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.07 0.64 58.82 – 61.32 94.10 <0.001
CNS Score c 0.15 0.04 0.07 – 0.22 3.89 <0.001
Naturalness c 0.43 0.02 0.39 – 0.48 18.43 <0.001
C1 -0.97 1.11 -3.16 – 1.22 -0.87 0.384
C2 -2.64 1.28 -5.16 – -0.12 -2.06 0.040
C3 -6.29 1.11 -8.47 – -4.12 -5.67 <0.001
C4 -3.48 1.09 -5.62 – -1.33 -3.18 0.001
C5 -8.03 1.08 -10.15 – -5.91 -7.42 <0.001
C6 -0.26 1.26 -2.73 – 2.21 -0.21 0.834
C7 9.25 1.28 6.75 – 11.76 7.24 <0.001
C8 12.69 1.31 10.12 – 15.27 9.66 <0.001
C9 6.45 1.18 4.14 – 8.76 5.47 <0.001
CNS Score c * Naturalness
c
0.00 0.00 0.00 – 0.01 3.59 <0.001
CNS Score c * C1 0.11 0.07 -0.02 – 0.24 1.70 0.090
CNS Score c * C2 -0.32 0.08 -0.48 – -0.17 -4.11 <0.001
CNS Score c * C3 -0.02 0.07 -0.15 – 0.10 -0.38 0.707
CNS Score c * C4 -0.03 0.06 -0.15 – 0.10 -0.40 0.692
CNS Score c * C5 -0.01 0.07 -0.14 – 0.12 -0.12 0.904
CNS Score c * C6 0.02 0.07 -0.12 – 0.17 0.34 0.731
CNS Score c * C7 0.08 0.08 -0.07 – 0.23 1.05 0.294
CNS Score c * C8 0.12 0.08 -0.04 – 0.27 1.47 0.141
CNS Score c * C9 0.06 0.07 -0.09 – 0.20 0.74 0.458
Random Effects
σ2 349.42
τ00 id 291.12
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.240 / 0.585

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict support, over and above climate change method contrasts?
modA.8961 <- lmer(Support ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.8961)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27521
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5156 -0.5188  0.0451  0.5806  3.3798 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 182.5    13.51   
##  Residual             395.7    19.89   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          6.019e+01  5.613e-01  1.015e+03 107.230  < 2e-16 ***
## CCBelief_Score.c     4.785e-01  2.386e-02  1.021e+03  20.057  < 2e-16 ***
## C1                  -7.573e+00  1.104e+00  2.489e+03  -6.860 8.65e-12 ***
## C2                  -9.522e+00  1.282e+00  2.610e+03  -7.425 1.52e-13 ***
## C3                  -9.686e+00  1.135e+00  2.504e+03  -8.530  < 2e-16 ***
## C4                  -5.593e+00  1.133e+00  2.500e+03  -4.936 8.52e-07 ***
## C5                  -1.051e+01  1.123e+00  2.498e+03  -9.358  < 2e-16 ***
## C6                  -5.156e-01  1.304e+00  2.610e+03  -0.396  0.69249    
## C7                   1.550e+01  1.282e+00  2.606e+03  12.091  < 2e-16 ***
## C8                   1.935e+01  1.311e+00  2.612e+03  14.762  < 2e-16 ***
## C9                   1.580e+01  1.111e+00  2.496e+03  14.221  < 2e-16 ***
## CCBelief_Score.c:C1 -1.988e-02  4.665e-02  2.490e+03  -0.426  0.67013    
## CCBelief_Score.c:C2 -4.187e-01  5.103e-02  2.602e+03  -8.205 3.58e-16 ***
## CCBelief_Score.c:C3 -2.946e-02  4.795e-02  2.503e+03  -0.614  0.53902    
## CCBelief_Score.c:C4 -8.328e-03  4.559e-02  2.477e+03  -0.183  0.85507    
## CCBelief_Score.c:C5 -7.694e-03  4.940e-02  2.517e+03  -0.156  0.87623    
## CCBelief_Score.c:C6 -7.573e-03  5.757e-02  2.617e+03  -0.132  0.89534    
## CCBelief_Score.c:C7  2.482e-01  5.542e-02  2.615e+03   4.479 7.82e-06 ***
## CCBelief_Score.c:C8  1.610e-01  5.660e-02  2.616e+03   2.844  0.00449 ** 
## CCBelief_Score.c:C9  8.782e-02  4.883e-02  2.515e+03   1.798  0.07224 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8961,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.19 0.56 59.09 – 61.29 107.23 <0.001
CCBelief Score c 0.48 0.02 0.43 – 0.53 20.06 <0.001
C1 -7.57 1.10 -9.74 – -5.41 -6.86 <0.001
C2 -9.52 1.28 -12.04 – -7.01 -7.43 <0.001
C3 -9.69 1.14 -11.91 – -7.46 -8.53 <0.001
C4 -5.59 1.13 -7.82 – -3.37 -4.94 <0.001
C5 -10.51 1.12 -12.72 – -8.31 -9.36 <0.001
C6 -0.52 1.30 -3.07 – 2.04 -0.40 0.692
C7 15.50 1.28 12.98 – 18.01 12.09 <0.001
C8 19.35 1.31 16.78 – 21.92 14.76 <0.001
C9 15.80 1.11 13.63 – 17.98 14.22 <0.001
CCBelief Score c * C1 -0.02 0.05 -0.11 – 0.07 -0.43 0.670
CCBelief Score c * C2 -0.42 0.05 -0.52 – -0.32 -8.21 <0.001
CCBelief Score c * C3 -0.03 0.05 -0.12 – 0.06 -0.61 0.539
CCBelief Score c * C4 -0.01 0.05 -0.10 – 0.08 -0.18 0.855
CCBelief Score c * C5 -0.01 0.05 -0.10 – 0.09 -0.16 0.876
CCBelief Score c * C6 -0.01 0.06 -0.12 – 0.11 -0.13 0.895
CCBelief Score c * C7 0.25 0.06 0.14 – 0.36 4.48 <0.001
CCBelief Score c * C8 0.16 0.06 0.05 – 0.27 2.84 0.004
CCBelief Score c * C9 0.09 0.05 -0.01 – 0.18 1.80 0.072
Random Effects
σ2 395.72
τ00 id 182.52
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.314 / 0.531
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perception sof naturalness in predicting support, over and above climate change method contrasts?
modA.89614 <- lmer(Support ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.89614)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27209.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8106 -0.5349  0.0525  0.5418  3.1129 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 176.2    13.27   
##  Residual             348.4    18.67   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     6.007e+01  5.416e-01  1.017e+03 110.929
## CCBelief_Score.c                4.572e-01  2.311e-02  1.034e+03  19.782
## Naturalness.c                   4.165e-01  2.250e-02  2.927e+03  18.515
## C1                             -1.349e+00  1.093e+00  2.529e+03  -1.234
## C2                             -3.493e+00  1.255e+00  2.630e+03  -2.784
## C3                             -6.235e+00  1.086e+00  2.493e+03  -5.743
## C4                             -3.366e+00  1.074e+00  2.478e+03  -3.134
## C5                             -8.517e+00  1.063e+00  2.482e+03  -8.014
## C6                             -8.487e-02  1.229e+00  2.586e+03  -0.069
## C7                              9.748e+00  1.249e+00  2.604e+03   7.807
## C8                              1.309e+01  1.282e+00  2.628e+03  10.210
## C9                              6.806e+00  1.154e+00  2.582e+03   5.899
## CCBelief_Score.c:Naturalness.c -1.095e-03  8.496e-04  2.939e+03  -1.289
## CCBelief_Score.c:C1            -2.310e-02  4.580e-02  2.522e+03  -0.504
## CCBelief_Score.c:C2            -3.852e-01  4.931e-02  2.598e+03  -7.812
## CCBelief_Score.c:C3            -2.657e-02  4.543e-02  2.484e+03  -0.585
## CCBelief_Score.c:C4            -4.439e-05  4.313e-02  2.451e+03  -0.001
## CCBelief_Score.c:C5            -1.467e-02  4.669e-02  2.489e+03  -0.314
## CCBelief_Score.c:C6            -3.071e-02  5.438e-02  2.613e+03  -0.565
## CCBelief_Score.c:C7             2.357e-01  5.358e-02  2.625e+03   4.398
## CCBelief_Score.c:C8             1.495e-01  5.433e-02  2.636e+03   2.752
## CCBelief_Score.c:C9             1.196e-01  5.086e-02  2.639e+03   2.351
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                < 2e-16 ***
## Naturalness.c                   < 2e-16 ***
## C1                              0.21731    
## C2                              0.00541 ** 
## C3                             1.04e-08 ***
## C4                              0.00174 ** 
## C5                             1.69e-15 ***
## C6                              0.94493    
## C7                             8.39e-15 ***
## C8                              < 2e-16 ***
## C9                             4.14e-09 ***
## CCBelief_Score.c:Naturalness.c  0.19764    
## CCBelief_Score.c:C1             0.61396    
## CCBelief_Score.c:C2            8.12e-15 ***
## CCBelief_Score.c:C3             0.55872    
## CCBelief_Score.c:C4             0.99918    
## CCBelief_Score.c:C5             0.75339    
## CCBelief_Score.c:C6             0.57226    
## CCBelief_Score.c:C7            1.13e-05 ***
## CCBelief_Score.c:C8             0.00597 ** 
## CCBelief_Score.c:C9             0.01878 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.89614,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.07 0.54 59.01 – 61.14 110.93 <0.001
CCBelief Score c 0.46 0.02 0.41 – 0.50 19.78 <0.001
Naturalness c 0.42 0.02 0.37 – 0.46 18.51 <0.001
C1 -1.35 1.09 -3.49 – 0.79 -1.23 0.217
C2 -3.49 1.25 -5.95 – -1.03 -2.78 0.005
C3 -6.24 1.09 -8.36 – -4.11 -5.74 <0.001
C4 -3.37 1.07 -5.47 – -1.26 -3.13 0.002
C5 -8.52 1.06 -10.60 – -6.43 -8.01 <0.001
C6 -0.08 1.23 -2.49 – 2.32 -0.07 0.945
C7 9.75 1.25 7.30 – 12.20 7.81 <0.001
C8 13.09 1.28 10.57 – 15.60 10.21 <0.001
C9 6.81 1.15 4.54 – 9.07 5.90 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -1.29 0.198
CCBelief Score c * C1 -0.02 0.05 -0.11 – 0.07 -0.50 0.614
CCBelief Score c * C2 -0.39 0.05 -0.48 – -0.29 -7.81 <0.001
CCBelief Score c * C3 -0.03 0.05 -0.12 – 0.06 -0.58 0.559
CCBelief Score c * C4 -0.00 0.04 -0.08 – 0.08 -0.00 0.999
CCBelief Score c * C5 -0.01 0.05 -0.11 – 0.08 -0.31 0.753
CCBelief Score c * C6 -0.03 0.05 -0.14 – 0.08 -0.56 0.572
CCBelief Score c * C7 0.24 0.05 0.13 – 0.34 4.40 <0.001
CCBelief Score c * C8 0.15 0.05 0.04 – 0.26 2.75 0.006
CCBelief Score c * C9 0.12 0.05 0.02 – 0.22 2.35 0.019
Random Effects
σ2 348.42
τ00 id 176.17
ICC 0.34
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.379 / 0.587

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict support, over and above climate change method contrasts?
modA.8951 <- lmer(Support ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 +Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.8951)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27910.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1181 -0.5127  0.0561  0.5639  3.2895 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 308.8    17.57   
##  Residual             404.5    20.11   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              6.027e+01  6.661e-01  1.016e+03  90.477  < 2e-16 ***
## Collectivism_Score.c    -6.800e-02  2.797e-02  1.019e+03  -2.432   0.0152 *  
## C1                      -7.713e+00  1.135e+00  2.371e+03  -6.793 1.38e-11 ***
## C2                      -9.260e+00  1.327e+00  2.473e+03  -6.978 3.82e-12 ***
## C3                      -1.002e+01  1.169e+00  2.383e+03  -8.573  < 2e-16 ***
## C4                      -5.878e+00  1.164e+00  2.380e+03  -5.050 4.75e-07 ***
## C5                      -1.007e+01  1.159e+00  2.378e+03  -8.685  < 2e-16 ***
## C6                      -8.403e-01  1.347e+00  2.474e+03  -0.624   0.5328    
## C7                       1.578e+01  1.327e+00  2.471e+03  11.895  < 2e-16 ***
## C8                       1.936e+01  1.354e+00  2.474e+03  14.293  < 2e-16 ***
## C9                       1.605e+01  1.142e+00  2.373e+03  14.050  < 2e-16 ***
## Collectivism_Score.c:C1 -7.187e-02  5.177e-02  2.405e+03  -1.388   0.1652    
## Collectivism_Score.c:C2  1.059e-01  5.366e-02  2.470e+03   1.974   0.0485 *  
## Collectivism_Score.c:C3  1.280e-02  4.955e-02  2.387e+03   0.258   0.7961    
## Collectivism_Score.c:C4 -4.879e-03  4.917e-02  2.383e+03  -0.099   0.9210    
## Collectivism_Score.c:C5  3.218e-02  4.719e-02  2.368e+03   0.682   0.4953    
## Collectivism_Score.c:C6  1.377e-01  5.676e-02  2.477e+03   2.426   0.0154 *  
## Collectivism_Score.c:C7 -1.039e-01  5.753e-02  2.477e+03  -1.806   0.0710 .  
## Collectivism_Score.c:C8 -4.367e-02  5.704e-02  2.482e+03  -0.766   0.4439    
## Collectivism_Score.c:C9 -7.764e-02  4.875e-02  2.383e+03  -1.593   0.1114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8951,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.27 0.67 58.96 – 61.58 90.48 <0.001
Collectivism Score c -0.07 0.03 -0.12 – -0.01 -2.43 0.015
C1 -7.71 1.14 -9.94 – -5.49 -6.79 <0.001
C2 -9.26 1.33 -11.86 – -6.66 -6.98 <0.001
C3 -10.02 1.17 -12.31 – -7.73 -8.57 <0.001
C4 -5.88 1.16 -8.16 – -3.60 -5.05 <0.001
C5 -10.07 1.16 -12.34 – -7.80 -8.68 <0.001
C6 -0.84 1.35 -3.48 – 1.80 -0.62 0.533
C7 15.78 1.33 13.18 – 18.39 11.90 <0.001
C8 19.36 1.35 16.70 – 22.01 14.29 <0.001
C9 16.05 1.14 13.81 – 18.29 14.05 <0.001
Collectivism Score c * C1 -0.07 0.05 -0.17 – 0.03 -1.39 0.165
Collectivism Score c * C2 0.11 0.05 0.00 – 0.21 1.97 0.049
Collectivism Score c * C3 0.01 0.05 -0.08 – 0.11 0.26 0.796
Collectivism Score c * C4 -0.00 0.05 -0.10 – 0.09 -0.10 0.921
Collectivism Score c * C5 0.03 0.05 -0.06 – 0.12 0.68 0.495
Collectivism Score c * C6 0.14 0.06 0.03 – 0.25 2.43 0.015
Collectivism Score c * C7 -0.10 0.06 -0.22 – 0.01 -1.81 0.071
Collectivism Score c * C8 -0.04 0.06 -0.16 – 0.07 -0.77 0.444
Collectivism Score c * C9 -0.08 0.05 -0.17 – 0.02 -1.59 0.111
Random Effects
σ2 404.48
τ00 id 308.83
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.155 / 0.521
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting support, over and above climate change method contrasts?
modA.89516 <- lmer(Support ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 +(1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.89516)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27587
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4611 -0.5395  0.0232  0.5424  3.3678 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.3    17.15   
##  Residual             354.1    18.82   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         6.012e+01  6.421e-01  1.015e+03  93.622
## Collectivism_Score.c               -6.337e-02  2.696e-02  1.019e+03  -2.351
## Naturalness.c                       4.437e-01  2.352e-02  2.788e+03  18.869
## C1                                 -1.056e+00  1.123e+00  2.406e+03  -0.940
## C2                                 -2.819e+00  1.293e+00  2.484e+03  -2.181
## C3                                 -6.270e+00  1.114e+00  2.374e+03  -5.627
## C4                                 -3.505e+00  1.099e+00  2.359e+03  -3.189
## C5                                 -7.840e+00  1.094e+00  2.363e+03  -7.166
## C6                                 -4.399e-01  1.265e+00  2.448e+03  -0.348
## C7                                  9.643e+00  1.288e+00  2.467e+03   7.487
## C8                                  1.254e+01  1.321e+00  2.487e+03   9.489
## C9                                  6.489e+00  1.188e+00  2.449e+03   5.461
## Collectivism_Score.c:Naturalness.c  1.441e-03  9.229e-04  2.781e+03   1.561
## Collectivism_Score.c:C1            -6.418e-02  5.128e-02  2.443e+03  -1.252
## Collectivism_Score.c:C2             1.030e-01  5.225e-02  2.496e+03   1.971
## Collectivism_Score.c:C3             4.508e-02  4.717e-02  2.368e+03   0.956
## Collectivism_Score.c:C4             9.408e-03  4.630e-02  2.364e+03   0.203
## Collectivism_Score.c:C5             6.814e-02  4.472e-02  2.351e+03   1.524
## Collectivism_Score.c:C6             1.314e-01  5.330e-02  2.450e+03   2.465
## Collectivism_Score.c:C7            -1.358e-01  5.607e-02  2.489e+03  -2.423
## Collectivism_Score.c:C8            -9.141e-02  5.600e-02  2.491e+03  -1.632
## Collectivism_Score.c:C9            -7.321e-02  4.997e-02  2.444e+03  -1.465
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.01893 *  
## Naturalness.c                       < 2e-16 ***
## C1                                  0.34737    
## C2                                  0.02931 *  
## C3                                 2.05e-08 ***
## C4                                  0.00144 ** 
## C5                                 1.03e-12 ***
## C6                                  0.72804    
## C7                                 9.72e-14 ***
## C8                                  < 2e-16 ***
## C9                                 5.22e-08 ***
## Collectivism_Score.c:Naturalness.c  0.11857    
## Collectivism_Score.c:C1             0.21085    
## Collectivism_Score.c:C2             0.04887 *  
## Collectivism_Score.c:C3             0.33935    
## Collectivism_Score.c:C4             0.83902    
## Collectivism_Score.c:C5             0.12775    
## Collectivism_Score.c:C6             0.01378 *  
## Collectivism_Score.c:C7             0.01547 *  
## Collectivism_Score.c:C8             0.10275    
## Collectivism_Score.c:C9             0.14297    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.89516,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.12 0.64 58.86 – 61.38 93.62 <0.001
Collectivism Score c -0.06 0.03 -0.12 – -0.01 -2.35 0.019
Naturalness c 0.44 0.02 0.40 – 0.49 18.87 <0.001
C1 -1.06 1.12 -3.26 – 1.15 -0.94 0.347
C2 -2.82 1.29 -5.35 – -0.28 -2.18 0.029
C3 -6.27 1.11 -8.46 – -4.09 -5.63 <0.001
C4 -3.51 1.10 -5.66 – -1.35 -3.19 0.001
C5 -7.84 1.09 -9.99 – -5.69 -7.17 <0.001
C6 -0.44 1.27 -2.92 – 2.04 -0.35 0.728
C7 9.64 1.29 7.12 – 12.17 7.49 <0.001
C8 12.54 1.32 9.95 – 15.13 9.49 <0.001
C9 6.49 1.19 4.16 – 8.82 5.46 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.56 0.119
Collectivism Score c * C1 -0.06 0.05 -0.16 – 0.04 -1.25 0.211
Collectivism Score c * C2 0.10 0.05 0.00 – 0.21 1.97 0.049
Collectivism Score c * C3 0.05 0.05 -0.05 – 0.14 0.96 0.339
Collectivism Score c * C4 0.01 0.05 -0.08 – 0.10 0.20 0.839
Collectivism Score c * C5 0.07 0.04 -0.02 – 0.16 1.52 0.128
Collectivism Score c * C6 0.13 0.05 0.03 – 0.24 2.46 0.014
Collectivism Score c * C7 -0.14 0.06 -0.25 – -0.03 -2.42 0.015
Collectivism Score c * C8 -0.09 0.06 -0.20 – 0.02 -1.63 0.103
Collectivism Score c * C9 -0.07 0.05 -0.17 – 0.02 -1.47 0.143
Random Effects
σ2 354.14
τ00 id 294.26
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.230 / 0.580

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict support, over and above climate change method contrasts?
modA.8941 <- lmer(Support ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9+ (1|id), data = L)

summary(modA.8941)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27913.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2170 -0.5222  0.0620  0.5538  3.2027 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.0    17.58   
##  Residual             406.3    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               6.026e+01  6.668e-01  1.016e+03  90.372  < 2e-16 ***
## Individualism_Score.c     5.466e-02  3.960e-02  1.021e+03   1.380   0.1678    
## C1                       -7.758e+00  1.138e+00  2.372e+03  -6.816 1.18e-11 ***
## C2                       -9.171e+00  1.332e+00  2.474e+03  -6.883 7.42e-12 ***
## C3                       -1.000e+01  1.172e+00  2.384e+03  -8.537  < 2e-16 ***
## C4                       -5.934e+00  1.166e+00  2.380e+03  -5.091 3.84e-07 ***
## C5                       -1.001e+01  1.157e+00  2.379e+03  -8.650  < 2e-16 ***
## C6                       -6.913e-01  1.353e+00  2.476e+03  -0.511   0.6094    
## C7                        1.556e+01  1.327e+00  2.472e+03  11.726  < 2e-16 ***
## C8                        1.950e+01  1.359e+00  2.475e+03  14.350  < 2e-16 ***
## C9                        1.595e+01  1.145e+00  2.375e+03  13.936  < 2e-16 ***
## Individualism_Score.c:C1 -7.227e-02  6.745e-02  2.372e+03  -1.071   0.2841    
## Individualism_Score.c:C2 -1.440e-01  7.520e-02  2.473e+03  -1.915   0.0556 .  
## Individualism_Score.c:C3 -2.612e-02  7.230e-02  2.402e+03  -0.361   0.7179    
## Individualism_Score.c:C4 -7.614e-02  6.959e-02  2.383e+03  -1.094   0.2740    
## Individualism_Score.c:C5  1.186e-01  6.932e-02  2.383e+03   1.711   0.0873 .  
## Individualism_Score.c:C6  2.672e-02  8.358e-02  2.481e+03   0.320   0.7492    
## Individualism_Score.c:C7  6.072e-02  8.377e-02  2.481e+03   0.725   0.4687    
## Individualism_Score.c:C8  6.832e-02  7.742e-02  2.475e+03   0.882   0.3777    
## Individualism_Score.c:C9 -8.782e-04  6.680e-02  2.373e+03  -0.013   0.9895    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8941,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.26 0.67 58.95 – 61.57 90.37 <0.001
Individualism Score c 0.05 0.04 -0.02 – 0.13 1.38 0.168
C1 -7.76 1.14 -9.99 – -5.53 -6.82 <0.001
C2 -9.17 1.33 -11.78 – -6.56 -6.88 <0.001
C3 -10.00 1.17 -12.30 – -7.70 -8.54 <0.001
C4 -5.93 1.17 -8.22 – -3.65 -5.09 <0.001
C5 -10.01 1.16 -12.28 – -7.74 -8.65 <0.001
C6 -0.69 1.35 -3.34 – 1.96 -0.51 0.609
C7 15.56 1.33 12.96 – 18.16 11.73 <0.001
C8 19.50 1.36 16.84 – 22.17 14.35 <0.001
C9 15.95 1.14 13.71 – 18.19 13.94 <0.001
Individualism Score c *
C1
-0.07 0.07 -0.20 – 0.06 -1.07 0.284
Individualism Score c *
C2
-0.14 0.08 -0.29 – 0.00 -1.91 0.056
Individualism Score c *
C3
-0.03 0.07 -0.17 – 0.12 -0.36 0.718
Individualism Score c *
C4
-0.08 0.07 -0.21 – 0.06 -1.09 0.274
Individualism Score c *
C5
0.12 0.07 -0.02 – 0.25 1.71 0.087
Individualism Score c *
C6
0.03 0.08 -0.14 – 0.19 0.32 0.749
Individualism Score c *
C7
0.06 0.08 -0.10 – 0.22 0.72 0.469
Individualism Score c *
C8
0.07 0.08 -0.08 – 0.22 0.88 0.378
Individualism Score c *
C9
-0.00 0.07 -0.13 – 0.13 -0.01 0.990
Random Effects
σ2 406.27
τ00 id 309.03
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.152 / 0.518
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting support, over and above climate change method contrasts?
modA.89417 <- lmer(Support ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.89417)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27587.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4987 -0.5329  0.0365  0.5396  3.2403 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 293.2    17.12   
##  Residual             355.8    18.86   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          6.011e+01  6.418e-01  1.016e+03  93.668
## Individualism_Score.c                6.421e-02  3.811e-02  1.020e+03   1.685
## Naturalness.c                        4.436e-01  2.364e-02  2.787e+03  18.765
## C1                                  -1.098e+00  1.126e+00  2.406e+03  -0.975
## C2                                  -2.645e+00  1.298e+00  2.484e+03  -2.037
## C3                                  -6.266e+00  1.117e+00  2.375e+03  -5.610
## C4                                  -3.544e+00  1.101e+00  2.360e+03  -3.220
## C5                                  -7.861e+00  1.092e+00  2.365e+03  -7.202
## C6                                  -2.683e-01  1.270e+00  2.452e+03  -0.211
## C7                                   9.388e+00  1.288e+00  2.469e+03   7.290
## C8                                   1.271e+01  1.326e+00  2.490e+03   9.583
## C9                                   6.358e+00  1.189e+00  2.444e+03   5.349
## Individualism_Score.c:Naturalness.c  2.142e-03  1.338e-03  2.833e+03   1.601
## Individualism_Score.c:C1            -4.784e-02  6.663e-02  2.407e+03  -0.718
## Individualism_Score.c:C2            -1.085e-01  7.348e-02  2.487e+03  -1.476
## Individualism_Score.c:C3             1.666e-02  6.889e-02  2.391e+03   0.242
## Individualism_Score.c:C4            -5.017e-02  6.583e-02  2.370e+03  -0.762
## Individualism_Score.c:C5             1.766e-01  6.554e-02  2.363e+03   2.695
## Individualism_Score.c:C6             3.519e-02  7.847e-02  2.456e+03   0.449
## Individualism_Score.c:C7            -4.913e-03  8.083e-02  2.476e+03  -0.061
## Individualism_Score.c:C8             2.133e-02  7.658e-02  2.498e+03   0.278
## Individualism_Score.c:C9            -6.002e-02  6.950e-02  2.449e+03  -0.864
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                0.09234 .  
## Naturalness.c                        < 2e-16 ***
## C1                                   0.32956    
## C2                                   0.04172 *  
## C3                                  2.25e-08 ***
## C4                                   0.00130 ** 
## C5                                  7.92e-13 ***
## C6                                   0.83279    
## C7                                  4.16e-13 ***
## C8                                   < 2e-16 ***
## C9                                  9.68e-08 ***
## Individualism_Score.c:Naturalness.c  0.10941    
## Individualism_Score.c:C1             0.47290    
## Individualism_Score.c:C2             0.13994    
## Individualism_Score.c:C3             0.80890    
## Individualism_Score.c:C4             0.44602    
## Individualism_Score.c:C5             0.00709 ** 
## Individualism_Score.c:C6             0.65382    
## Individualism_Score.c:C7             0.95153    
## Individualism_Score.c:C8             0.78067    
## Individualism_Score.c:C9             0.38790    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89417,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.11 0.64 58.86 – 61.37 93.67 <0.001
Individualism Score c 0.06 0.04 -0.01 – 0.14 1.68 0.092
Naturalness c 0.44 0.02 0.40 – 0.49 18.76 <0.001
C1 -1.10 1.13 -3.31 – 1.11 -0.98 0.330
C2 -2.64 1.30 -5.19 – -0.10 -2.04 0.042
C3 -6.27 1.12 -8.46 – -4.08 -5.61 <0.001
C4 -3.54 1.10 -5.70 – -1.39 -3.22 0.001
C5 -7.86 1.09 -10.00 – -5.72 -7.20 <0.001
C6 -0.27 1.27 -2.76 – 2.22 -0.21 0.833
C7 9.39 1.29 6.86 – 11.91 7.29 <0.001
C8 12.71 1.33 10.11 – 15.31 9.58 <0.001
C9 6.36 1.19 4.03 – 8.69 5.35 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.60 0.109
Individualism Score c *
C1
-0.05 0.07 -0.18 – 0.08 -0.72 0.473
Individualism Score c *
C2
-0.11 0.07 -0.25 – 0.04 -1.48 0.140
Individualism Score c *
C3
0.02 0.07 -0.12 – 0.15 0.24 0.809
Individualism Score c *
C4
-0.05 0.07 -0.18 – 0.08 -0.76 0.446
Individualism Score c *
C5
0.18 0.07 0.05 – 0.31 2.69 0.007
Individualism Score c *
C6
0.04 0.08 -0.12 – 0.19 0.45 0.654
Individualism Score c *
C7
-0.00 0.08 -0.16 – 0.15 -0.06 0.952
Individualism Score c *
C8
0.02 0.08 -0.13 – 0.17 0.28 0.781
Individualism Score c *
C9
-0.06 0.07 -0.20 – 0.08 -0.86 0.388
Random Effects
σ2 355.77
τ00 id 293.18
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.227 / 0.576

Political Ideology

Q.1 (Ideology) How does ideology predict support, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8931 <- lmer(Support ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6  + Ideology.c*C7  + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.8931)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 +  
##     Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c *  
##     C7 + Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27849
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2203 -0.5200  0.0609  0.5608  3.2137 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 310.0    17.61   
##  Residual             406.4    20.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     60.26058    0.66747 1016.23821  90.282  < 2e-16 ***
## Ideology.c       0.01963    1.17017 1018.12738   0.017   0.9866    
## C1              -7.73681    1.13957 2373.68452  -6.789 1.42e-11 ***
## C2              -9.32336    1.32729 2474.09924  -7.024 2.77e-12 ***
## C3              -9.90026    1.17193 2385.77892  -8.448  < 2e-16 ***
## C4              -5.83842    1.16553 2379.65315  -5.009 5.87e-07 ***
## C5             -10.09765    1.16080 2378.65854  -8.699  < 2e-16 ***
## C6              -0.70419    1.34937 2474.08789  -0.522   0.6018    
## C7              15.53447    1.32769 2473.69004  11.700  < 2e-16 ***
## C8              19.39169    1.35763 2476.56660  14.283  < 2e-16 ***
## C9              16.08420    1.15065 2378.15075  13.978  < 2e-16 ***
## Ideology.c:C1    1.25841    2.02762 2387.93291   0.621   0.5349    
## Ideology.c:C2   -2.29079    2.36267 2491.12419  -0.970   0.3324    
## Ideology.c:C3   -3.32891    2.09026 2409.55749  -1.593   0.1114    
## Ideology.c:C4   -1.51629    2.09392 2410.51681  -0.724   0.4691    
## Ideology.c:C5    0.85815    2.00598 2389.15417   0.428   0.6688    
## Ideology.c:C6   -1.86889    2.26974 2478.38281  -0.823   0.4104    
## Ideology.c:C7   -0.25652    2.45509 2484.38961  -0.104   0.9168    
## Ideology.c:C8    4.40536    2.32990 2482.85434   1.891   0.0588 .  
## Ideology.c:C9    2.26236    2.04520 2387.82732   1.106   0.2688    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8931,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.26 0.67 58.95 – 61.57 90.28 <0.001
Ideology c 0.02 1.17 -2.27 – 2.31 0.02 0.987
C1 -7.74 1.14 -9.97 – -5.50 -6.79 <0.001
C2 -9.32 1.33 -11.93 – -6.72 -7.02 <0.001
C3 -9.90 1.17 -12.20 – -7.60 -8.45 <0.001
C4 -5.84 1.17 -8.12 – -3.55 -5.01 <0.001
C5 -10.10 1.16 -12.37 – -7.82 -8.70 <0.001
C6 -0.70 1.35 -3.35 – 1.94 -0.52 0.602
C7 15.53 1.33 12.93 – 18.14 11.70 <0.001
C8 19.39 1.36 16.73 – 22.05 14.28 <0.001
C9 16.08 1.15 13.83 – 18.34 13.98 <0.001
Ideology c * C1 1.26 2.03 -2.72 – 5.23 0.62 0.535
Ideology c * C2 -2.29 2.36 -6.92 – 2.34 -0.97 0.332
Ideology c * C3 -3.33 2.09 -7.43 – 0.77 -1.59 0.111
Ideology c * C4 -1.52 2.09 -5.62 – 2.59 -0.72 0.469
Ideology c * C5 0.86 2.01 -3.08 – 4.79 0.43 0.669
Ideology c * C6 -1.87 2.27 -6.32 – 2.58 -0.82 0.410
Ideology c * C7 -0.26 2.46 -5.07 – 4.56 -0.10 0.917
Ideology c * C8 4.41 2.33 -0.16 – 8.97 1.89 0.059
Ideology c * C9 2.26 2.05 -1.75 – 6.27 1.11 0.269
Random Effects
σ2 406.36
τ00 id 310.02
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.151 / 0.518
Q.2 (Ideology) Does ideology depend on perceptions of naturalness in predicting support, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.89317 <- lmer(Support ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 +  Ideology.c*C6 +  Ideology.c*C7 +  Ideology.c*C8 +  Ideology.c*C9 + (1|id), data = L)

summary(modA.89317)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 27522
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5136 -0.5415  0.0304  0.5433  3.2958 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.5    17.16   
##  Residual             356.7    18.89   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               6.009e+01  6.430e-01  1.016e+03  93.457  < 2e-16 ***
## Ideology.c                3.151e-01  1.128e+00  1.021e+03   0.279  0.78008    
## Naturalness.c             4.457e-01  2.363e-02  2.791e+03  18.861  < 2e-16 ***
## C1                       -1.014e+00  1.129e+00  2.410e+03  -0.898  0.36909    
## C2                       -2.764e+00  1.295e+00  2.488e+03  -2.135  0.03287 *  
## C3                       -6.191e+00  1.119e+00  2.377e+03  -5.535 3.46e-08 ***
## C4                       -3.464e+00  1.102e+00  2.361e+03  -3.144  0.00169 ** 
## C5                       -7.938e+00  1.097e+00  2.366e+03  -7.239 6.09e-13 ***
## C6                       -2.859e-01  1.269e+00  2.451e+03  -0.225  0.82173    
## C7                        9.370e+00  1.291e+00  2.472e+03   7.258 5.23e-13 ***
## C8                        1.261e+01  1.326e+00  2.491e+03   9.513  < 2e-16 ***
## C9                        6.372e+00  1.197e+00  2.452e+03   5.325 1.10e-07 ***
## Ideology.c:Naturalness.c -6.074e-03  4.172e-02  2.745e+03  -0.146  0.88426    
## Ideology.c:C1             8.261e-01  1.979e+00  2.394e+03   0.417  0.67647    
## Ideology.c:C2            -1.167e+00  2.350e+00  2.576e+03  -0.496  0.61962    
## Ideology.c:C3            -3.332e+00  1.986e+00  2.400e+03  -1.678  0.09355 .  
## Ideology.c:C4            -1.010e+00  1.980e+00  2.409e+03  -0.510  0.60986    
## Ideology.c:C5            -1.217e-01  1.887e+00  2.369e+03  -0.064  0.94858    
## Ideology.c:C6            -2.442e+00  2.135e+00  2.451e+03  -1.144  0.25284    
## Ideology.c:C7             8.138e-01  2.404e+00  2.512e+03   0.338  0.73504    
## Ideology.c:C8             4.498e+00  2.266e+00  2.483e+03   1.985  0.04721 *  
## Ideology.c:C9             9.589e-01  2.100e+00  2.478e+03   0.457  0.64801    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89317,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 60.09 0.64 58.83 – 61.35 93.46 <0.001
Ideology c 0.32 1.13 -1.90 – 2.53 0.28 0.780
Naturalness c 0.45 0.02 0.40 – 0.49 18.86 <0.001
C1 -1.01 1.13 -3.23 – 1.20 -0.90 0.369
C2 -2.76 1.29 -5.30 – -0.23 -2.13 0.033
C3 -6.19 1.12 -8.38 – -4.00 -5.53 <0.001
C4 -3.46 1.10 -5.62 – -1.30 -3.14 0.002
C5 -7.94 1.10 -10.09 – -5.79 -7.24 <0.001
C6 -0.29 1.27 -2.77 – 2.20 -0.23 0.822
C7 9.37 1.29 6.84 – 11.90 7.26 <0.001
C8 12.61 1.33 10.01 – 15.21 9.51 <0.001
C9 6.37 1.20 4.03 – 8.72 5.32 <0.001
Ideology c * Naturalness
c
-0.01 0.04 -0.09 – 0.08 -0.15 0.884
Ideology c * C1 0.83 1.98 -3.06 – 4.71 0.42 0.676
Ideology c * C2 -1.17 2.35 -5.77 – 3.44 -0.50 0.620
Ideology c * C3 -3.33 1.99 -7.23 – 0.56 -1.68 0.094
Ideology c * C4 -1.01 1.98 -4.89 – 2.87 -0.51 0.610
Ideology c * C5 -0.12 1.89 -3.82 – 3.58 -0.06 0.949
Ideology c * C6 -2.44 2.14 -6.63 – 1.74 -1.14 0.253
Ideology c * C7 0.81 2.40 -3.90 – 5.53 0.34 0.735
Ideology c * C8 4.50 2.27 0.06 – 8.94 1.99 0.047
Ideology c * C9 0.96 2.10 -3.16 – 5.08 0.46 0.648
Random Effects
σ2 356.73
τ00 id 294.49
ICC 0.45
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.575

Naturalness

Q.1 How do climate change method contrasts predict naturalness perception?
modA.89 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.89)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 25882.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5623 -0.6131 -0.0219  0.6137  3.4124 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.98    8.123  
##  Residual             256.42   16.013  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   40.3544     0.3901 1027.4504 103.457  < 2e-16 ***
## C1           -14.9730     0.8706 2633.0772 -17.198  < 2e-16 ***
## C2           -14.4713     1.0060 2757.7982 -14.386  < 2e-16 ***
## C3            -8.4667     0.8948 2649.1062  -9.462  < 2e-16 ***
## C4            -5.4749     0.8910 2644.5116  -6.145 9.20e-10 ***
## C5            -4.6006     0.8848 2641.5512  -5.199 2.15e-07 ***
## C6            -1.0643     1.0226 2760.2000  -1.041    0.298    
## C7            13.9641     1.0059 2756.7292  13.882  < 2e-16 ***
## C8            15.0008     1.0284 2761.1074  14.586  < 2e-16 ***
## C9            21.5355     0.8753 2636.2795  24.604  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.038                                                        
## C2  0.033 -0.100                                                 
## C3 -0.023 -0.107 -0.090                                          
## C4 -0.025 -0.105 -0.104 -0.111                                   
## C5 -0.029 -0.102 -0.096 -0.109 -0.104                            
## C6  0.043 -0.102 -0.155 -0.112 -0.104 -0.104                     
## C7  0.033 -0.093 -0.154 -0.102 -0.101 -0.103 -0.155              
## C8  0.046 -0.108 -0.156 -0.109 -0.103 -0.105 -0.157 -0.156       
## C9 -0.035 -0.103 -0.110 -0.104 -0.109 -0.105 -0.101 -0.098 -0.095
tab_model(modA.89,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.46 <0.001
C1 -14.97 0.87 -16.68 – -13.27 -17.20 <0.001
C2 -14.47 1.01 -16.44 – -12.50 -14.39 <0.001
C3 -8.47 0.89 -10.22 – -6.71 -9.46 <0.001
C4 -5.47 0.89 -7.22 – -3.73 -6.15 <0.001
C5 -4.60 0.88 -6.34 – -2.87 -5.20 <0.001
C6 -1.06 1.02 -3.07 – 0.94 -1.04 0.298
C7 13.96 1.01 11.99 – 15.94 13.88 <0.001
C8 15.00 1.03 12.98 – 17.02 14.59 <0.001
C9 21.54 0.88 19.82 – 23.25 24.60 <0.001
Random Effects
σ2 256.42
τ00 id 65.98
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.310 / 0.451

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict naturalness perception, over and above climate change method contrasts?
modA.890 <- lmer(Naturalness ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.890)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25886.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3554 -0.6121 -0.0251  0.6130  3.4304 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  64.08    8.005  
##  Residual             254.33   15.948  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       40.36517    0.38687 1023.53993 104.339  < 2e-16 ***
## ATNS_Score.c      -0.05041    0.01801 1025.06480  -2.798  0.00523 ** 
## C1               -14.97989    0.86653 2626.40658 -17.287  < 2e-16 ***
## C2               -14.43113    1.00116 2751.32045 -14.414  < 2e-16 ***
## C3                -8.33854    0.89180 2643.36972  -9.350  < 2e-16 ***
## C4                -5.65731    0.88784 2641.25362  -6.372 2.19e-10 ***
## C5                -4.65034    0.88091 2637.40080  -5.279 1.40e-07 ***
## C6                -1.05901    1.01831 2754.13571  -1.040  0.29845    
## C7                13.92452    1.00162 2750.86436  13.902  < 2e-16 ***
## C8                15.13404    1.02429 2756.09437  14.775  < 2e-16 ***
## C9                21.51708    0.87136 2630.62585  24.694  < 2e-16 ***
## ATNS_Score.c:C1    0.05900    0.04083 2637.83599   1.445  0.14861    
## ATNS_Score.c:C2   -0.10189    0.04683 2751.54865  -2.176  0.02966 *  
## ATNS_Score.c:C3   -0.08860    0.04309 2663.28329  -2.056  0.03984 *  
## ATNS_Score.c:C4   -0.11514    0.03974 2621.67183  -2.897  0.00379 ** 
## ATNS_Score.c:C5   -0.08307    0.04015 2627.22976  -2.069  0.03862 *  
## ATNS_Score.c:C6    0.06676    0.04696 2755.11180   1.422  0.15523    
## ATNS_Score.c:C7    0.02993    0.04710 2758.35019   0.636  0.52515    
## ATNS_Score.c:C8    0.15325    0.04738 2755.18407   3.235  0.00123 ** 
## ATNS_Score.c:C9    0.04485    0.04052 2630.42446   1.107  0.26847    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.890,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.37 0.39 39.61 – 41.12 104.34 <0.001
ATNS Score c -0.05 0.02 -0.09 – -0.02 -2.80 0.005
C1 -14.98 0.87 -16.68 – -13.28 -17.29 <0.001
C2 -14.43 1.00 -16.39 – -12.47 -14.41 <0.001
C3 -8.34 0.89 -10.09 – -6.59 -9.35 <0.001
C4 -5.66 0.89 -7.40 – -3.92 -6.37 <0.001
C5 -4.65 0.88 -6.38 – -2.92 -5.28 <0.001
C6 -1.06 1.02 -3.06 – 0.94 -1.04 0.298
C7 13.92 1.00 11.96 – 15.89 13.90 <0.001
C8 15.13 1.02 13.13 – 17.14 14.78 <0.001
C9 21.52 0.87 19.81 – 23.23 24.69 <0.001
ATNS Score c * C1 0.06 0.04 -0.02 – 0.14 1.44 0.149
ATNS Score c * C2 -0.10 0.05 -0.19 – -0.01 -2.18 0.030
ATNS Score c * C3 -0.09 0.04 -0.17 – -0.00 -2.06 0.040
ATNS Score c * C4 -0.12 0.04 -0.19 – -0.04 -2.90 0.004
ATNS Score c * C5 -0.08 0.04 -0.16 – -0.00 -2.07 0.039
ATNS Score c * C6 0.07 0.05 -0.03 – 0.16 1.42 0.155
ATNS Score c * C7 0.03 0.05 -0.06 – 0.12 0.64 0.525
ATNS Score c * C8 0.15 0.05 0.06 – 0.25 3.23 0.001
ATNS Score c * C9 0.04 0.04 -0.03 – 0.12 1.11 0.268
Random Effects
σ2 254.33
τ00 id 64.08
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.319 / 0.456

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict naturalness perception, over and above climate change method contrasts?
modA.897 <- lmer(Naturalness ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.897)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25898.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5962 -0.6116 -0.0181  0.6040  3.4606 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.08    8.129  
##  Residual             254.78   15.962  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     4.034e+01  3.897e-01  1.027e+03 103.496  < 2e-16 ***
## CNS_Score.c    -8.003e-03  2.337e-02  1.030e+03  -0.342  0.73209    
## C1             -1.490e+01  8.683e-01  2.625e+03 -17.158  < 2e-16 ***
## C2             -1.442e+01  1.003e+00  2.749e+03 -14.367  < 2e-16 ***
## C3             -8.553e+00  8.937e-01  2.640e+03  -9.571  < 2e-16 ***
## C4             -5.467e+00  8.898e-01  2.636e+03  -6.144 9.28e-10 ***
## C5             -4.616e+00  8.826e-01  2.633e+03  -5.230 1.83e-07 ***
## C6             -9.951e-01  1.023e+00  2.749e+03  -0.973  0.33086    
## C7              1.384e+01  1.004e+00  2.746e+03  13.785  < 2e-16 ***
## C8              1.502e+01  1.026e+00  2.752e+03  14.640  < 2e-16 ***
## C9              2.152e+01  8.741e-01  2.627e+03  24.625  < 2e-16 ***
## CNS_Score.c:C1 -2.947e-02  5.051e-02  2.609e+03  -0.583  0.55961    
## CNS_Score.c:C2 -2.017e-01  6.203e-02  2.758e+03  -3.251  0.00116 ** 
## CNS_Score.c:C3 -9.618e-02  5.328e-02  2.635e+03  -1.805  0.07118 .  
## CNS_Score.c:C4 -2.504e-02  5.145e-02  2.626e+03  -0.487  0.62656    
## CNS_Score.c:C5 -5.227e-02  5.455e-02  2.651e+03  -0.958  0.33799    
## CNS_Score.c:C6  3.692e-02  5.862e-02  2.746e+03   0.630  0.52894    
## CNS_Score.c:C7  1.589e-01  6.073e-02  2.751e+03   2.617  0.00892 ** 
## CNS_Score.c:C8  1.518e-01  6.189e-02  2.752e+03   2.453  0.01424 *  
## CNS_Score.c:C9  2.682e-02  5.500e-02  2.654e+03   0.488  0.62585    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.897,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.34 0.39 39.57 – 41.10 103.50 <0.001
CNS Score c -0.01 0.02 -0.05 – 0.04 -0.34 0.732
C1 -14.90 0.87 -16.60 – -13.20 -17.16 <0.001
C2 -14.42 1.00 -16.38 – -12.45 -14.37 <0.001
C3 -8.55 0.89 -10.31 – -6.80 -9.57 <0.001
C4 -5.47 0.89 -7.21 – -3.72 -6.14 <0.001
C5 -4.62 0.88 -6.35 – -2.89 -5.23 <0.001
C6 -1.00 1.02 -3.00 – 1.01 -0.97 0.331
C7 13.84 1.00 11.88 – 15.81 13.79 <0.001
C8 15.02 1.03 13.00 – 17.03 14.64 <0.001
C9 21.52 0.87 19.81 – 23.24 24.63 <0.001
CNS Score c * C1 -0.03 0.05 -0.13 – 0.07 -0.58 0.560
CNS Score c * C2 -0.20 0.06 -0.32 – -0.08 -3.25 0.001
CNS Score c * C3 -0.10 0.05 -0.20 – 0.01 -1.81 0.071
CNS Score c * C4 -0.03 0.05 -0.13 – 0.08 -0.49 0.627
CNS Score c * C5 -0.05 0.05 -0.16 – 0.05 -0.96 0.338
CNS Score c * C6 0.04 0.06 -0.08 – 0.15 0.63 0.529
CNS Score c * C7 0.16 0.06 0.04 – 0.28 2.62 0.009
CNS Score c * C8 0.15 0.06 0.03 – 0.27 2.45 0.014
CNS Score c * C9 0.03 0.06 -0.08 – 0.13 0.49 0.626
Random Effects
σ2 254.78
τ00 id 66.08
ICC 0.21
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.314 / 0.455

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict naturalness perception, over and above climate change method contrasts?
modA.896 <- lmer(Naturalness ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 +(1|id), data = L)

summary(modA.896)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25912.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3221 -0.6173 -0.0148  0.6076  3.6334 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.4     8.087  
##  Residual             255.9    15.997  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           40.33495    0.38923 1022.61614 103.627  < 2e-16 ***
## CCBelief_Score.c       0.04448    0.01655 1029.01907   2.687  0.00732 ** 
## C1                   -14.95444    0.86964 2623.35271 -17.196  < 2e-16 ***
## C2                   -14.50160    1.00514 2749.48736 -14.427  < 2e-16 ***
## C3                    -8.45456    0.89390 2639.96439  -9.458  < 2e-16 ***
## C4                    -5.45790    0.89228 2636.14575  -6.117 1.10e-09 ***
## C5                    -4.64756    0.88463 2633.59490  -5.254 1.61e-07 ***
## C6                    -1.07428    1.02166 2750.98655  -1.052  0.29312    
## C7                    13.98781    1.00467 2746.96028  13.923  < 2e-16 ***
## C8                    14.99079    1.02726 2752.64456  14.593  < 2e-16 ***
## C9                    21.56269    0.87521 2630.16320  24.637  < 2e-16 ***
## CCBelief_Score.c:C1   -0.03175    0.03675 2623.32741  -0.864  0.38778    
## CCBelief_Score.c:C2   -0.10646    0.04002 2739.00119  -2.661  0.00785 ** 
## CCBelief_Score.c:C3   -0.02674    0.03775 2638.91669  -0.708  0.47889    
## CCBelief_Score.c:C4   -0.03222    0.03593 2608.96516  -0.897  0.36991    
## CCBelief_Score.c:C5    0.01011    0.03887 2653.06539   0.260  0.79479    
## CCBelief_Score.c:C6    0.02990    0.04510 2758.78778   0.663  0.50751    
## CCBelief_Score.c:C7    0.07591    0.04343 2754.36939   1.748  0.08058 .  
## CCBelief_Score.c:C8    0.05616    0.04435 2756.25944   1.266  0.20554    
## CCBelief_Score.c:C9   -0.00613    0.03843 2651.70728  -0.160  0.87326    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.896,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.33 0.39 39.57 – 41.10 103.63 <0.001
CCBelief Score c 0.04 0.02 0.01 – 0.08 2.69 0.007
C1 -14.95 0.87 -16.66 – -13.25 -17.20 <0.001
C2 -14.50 1.01 -16.47 – -12.53 -14.43 <0.001
C3 -8.45 0.89 -10.21 – -6.70 -9.46 <0.001
C4 -5.46 0.89 -7.21 – -3.71 -6.12 <0.001
C5 -4.65 0.88 -6.38 – -2.91 -5.25 <0.001
C6 -1.07 1.02 -3.08 – 0.93 -1.05 0.293
C7 13.99 1.00 12.02 – 15.96 13.92 <0.001
C8 14.99 1.03 12.98 – 17.00 14.59 <0.001
C9 21.56 0.88 19.85 – 23.28 24.64 <0.001
CCBelief Score c * C1 -0.03 0.04 -0.10 – 0.04 -0.86 0.388
CCBelief Score c * C2 -0.11 0.04 -0.18 – -0.03 -2.66 0.008
CCBelief Score c * C3 -0.03 0.04 -0.10 – 0.05 -0.71 0.479
CCBelief Score c * C4 -0.03 0.04 -0.10 – 0.04 -0.90 0.370
CCBelief Score c * C5 0.01 0.04 -0.07 – 0.09 0.26 0.795
CCBelief Score c * C6 0.03 0.05 -0.06 – 0.12 0.66 0.508
CCBelief Score c * C7 0.08 0.04 -0.01 – 0.16 1.75 0.081
CCBelief Score c * C8 0.06 0.04 -0.03 – 0.14 1.27 0.206
CCBelief Score c * C9 -0.01 0.04 -0.08 – 0.07 -0.16 0.873
Random Effects
σ2 255.90
τ00 id 65.40
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.314 / 0.454

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict naturalness perception, over and above climate change method contrasts?
modA.895 <- lmer(Naturalness ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.895)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25919.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5389 -0.6163 -0.0259  0.6125  3.3941 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.52    8.156  
##  Residual             255.82   15.994  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              4.035e+01  3.908e-01  1.026e+03 103.259  < 2e-16 ***
## Collectivism_Score.c    -8.400e-03  1.642e-02  1.032e+03  -0.512   0.6090    
## C1                      -1.497e+01  8.701e-01  2.621e+03 -17.208  < 2e-16 ***
## C2                      -1.438e+01  1.007e+00  2.746e+03 -14.275  < 2e-16 ***
## C3                      -8.502e+00  8.945e-01  2.638e+03  -9.504  < 2e-16 ***
## C4                      -5.431e+00  8.912e-01  2.634e+03  -6.094 1.26e-09 ***
## C5                      -4.751e+00  8.878e-01  2.631e+03  -5.351 9.49e-08 ***
## C6                      -1.077e+00  1.022e+00  2.749e+03  -1.053   0.2923    
## C7                       1.395e+01  1.008e+00  2.745e+03  13.841  < 2e-16 ***
## C8                       1.502e+01  1.028e+00  2.749e+03  14.614  < 2e-16 ***
## C9                       2.161e+01  8.751e-01  2.624e+03  24.692  < 2e-16 ***
## Collectivism_Score.c:C1  3.073e-02  3.955e-02  2.666e+03   0.777   0.4372    
## Collectivism_Score.c:C2  5.367e-02  4.075e-02  2.741e+03   1.317   0.1879    
## Collectivism_Score.c:C3 -2.664e-02  3.791e-02  2.644e+03  -0.703   0.4823    
## Collectivism_Score.c:C4 -2.945e-02  3.764e-02  2.639e+03  -0.782   0.4340    
## Collectivism_Score.c:C5 -5.772e-02  3.617e-02  2.616e+03  -1.596   0.1107    
## Collectivism_Score.c:C6  2.912e-02  4.307e-02  2.752e+03   0.676   0.4990    
## Collectivism_Score.c:C7  9.114e-03  4.366e-02  2.751e+03   0.209   0.8346    
## Collectivism_Score.c:C8  5.004e-02  4.327e-02  2.755e+03   1.157   0.2475    
## Collectivism_Score.c:C9 -7.927e-02  3.732e-02  2.635e+03  -2.124   0.0337 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.895,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.35 0.39 39.59 – 41.12 103.26 <0.001
Collectivism Score c -0.01 0.02 -0.04 – 0.02 -0.51 0.609
C1 -14.97 0.87 -16.68 – -13.27 -17.21 <0.001
C2 -14.38 1.01 -16.35 – -12.40 -14.27 <0.001
C3 -8.50 0.89 -10.26 – -6.75 -9.50 <0.001
C4 -5.43 0.89 -7.18 – -3.68 -6.09 <0.001
C5 -4.75 0.89 -6.49 – -3.01 -5.35 <0.001
C6 -1.08 1.02 -3.08 – 0.93 -1.05 0.292
C7 13.95 1.01 11.97 – 15.92 13.84 <0.001
C8 15.02 1.03 13.01 – 17.04 14.61 <0.001
C9 21.61 0.88 19.89 – 23.32 24.69 <0.001
Collectivism Score c * C1 0.03 0.04 -0.05 – 0.11 0.78 0.437
Collectivism Score c * C2 0.05 0.04 -0.03 – 0.13 1.32 0.188
Collectivism Score c * C3 -0.03 0.04 -0.10 – 0.05 -0.70 0.482
Collectivism Score c * C4 -0.03 0.04 -0.10 – 0.04 -0.78 0.434
Collectivism Score c * C5 -0.06 0.04 -0.13 – 0.01 -1.60 0.111
Collectivism Score c * C6 0.03 0.04 -0.06 – 0.11 0.68 0.499
Collectivism Score c * C7 0.01 0.04 -0.08 – 0.09 0.21 0.835
Collectivism Score c * C8 0.05 0.04 -0.03 – 0.13 1.16 0.248
Collectivism Score c * C9 -0.08 0.04 -0.15 – -0.01 -2.12 0.034
Random Effects
σ2 255.82
τ00 id 66.52
ICC 0.21
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.311 / 0.454

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict naturalness perception, over and above climate change method contrasts?
modA.894 <- lmer(Naturalness ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.894)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C5 + Individualism_Score.c * C6 + Individualism_Score.c *  
##     C7 + Individualism_Score.c * C8 + Individualism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 25915.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5577 -0.6241 -0.0221  0.6063  3.3612 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.66    8.103  
##  Residual             256.73   16.023  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                40.33556    0.39013 1025.01900 103.391  < 2e-16 ***
## Individualism_Score.c      -0.02360    0.02319 1031.78679  -1.018   0.3090    
## C1                        -14.93801    0.87141 2624.61407 -17.142  < 2e-16 ***
## C2                        -14.46476    1.01059 2749.14050 -14.313  < 2e-16 ***
## C3                         -8.50842    0.89596 2640.38207  -9.496  < 2e-16 ***
## C4                         -5.47312    0.89175 2635.51274  -6.137 9.65e-10 ***
## C5                         -4.57789    0.88544 2633.86150  -5.170 2.51e-07 ***
## C6                         -1.07380    1.02596 2752.04103  -1.047   0.2954    
## C7                         13.94925    1.00664 2747.59979  13.857  < 2e-16 ***
## C8                         15.02073    1.03055 2752.23394  14.575  < 2e-16 ***
## C9                         21.54978    0.87610 2626.98245  24.597  < 2e-16 ***
## Individualism_Score.c:C1    0.03411    0.05164 2623.08285   0.660   0.5090    
## Individualism_Score.c:C2    0.02092    0.05706 2742.06424   0.367   0.7139    
## Individualism_Score.c:C3   -0.06688    0.05521 2663.38516  -1.211   0.2258    
## Individualism_Score.c:C4   -0.03002    0.05322 2639.90270  -0.564   0.5728    
## Individualism_Score.c:C5   -0.09541    0.05302 2638.45194  -1.799   0.0721 .  
## Individualism_Score.c:C6   -0.01937    0.06334 2759.33754  -0.306   0.7598    
## Individualism_Score.c:C7    0.05956    0.06349 2759.34064   0.938   0.3483    
## Individualism_Score.c:C8    0.01010    0.05872 2748.37389   0.172   0.8635    
## Individualism_Score.c:C9    0.01058    0.05115 2620.09621   0.207   0.8361    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.894,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.34 0.39 39.57 – 41.10 103.39 <0.001
Individualism Score c -0.02 0.02 -0.07 – 0.02 -1.02 0.309
C1 -14.94 0.87 -16.65 – -13.23 -17.14 <0.001
C2 -14.46 1.01 -16.45 – -12.48 -14.31 <0.001
C3 -8.51 0.90 -10.27 – -6.75 -9.50 <0.001
C4 -5.47 0.89 -7.22 – -3.72 -6.14 <0.001
C5 -4.58 0.89 -6.31 – -2.84 -5.17 <0.001
C6 -1.07 1.03 -3.09 – 0.94 -1.05 0.295
C7 13.95 1.01 11.98 – 15.92 13.86 <0.001
C8 15.02 1.03 13.00 – 17.04 14.58 <0.001
C9 21.55 0.88 19.83 – 23.27 24.60 <0.001
Individualism Score c *
C1
0.03 0.05 -0.07 – 0.14 0.66 0.509
Individualism Score c *
C2
0.02 0.06 -0.09 – 0.13 0.37 0.714
Individualism Score c *
C3
-0.07 0.06 -0.18 – 0.04 -1.21 0.226
Individualism Score c *
C4
-0.03 0.05 -0.13 – 0.07 -0.56 0.573
Individualism Score c *
C5
-0.10 0.05 -0.20 – 0.01 -1.80 0.072
Individualism Score c *
C6
-0.02 0.06 -0.14 – 0.10 -0.31 0.760
Individualism Score c *
C7
0.06 0.06 -0.06 – 0.18 0.94 0.348
Individualism Score c *
C8
0.01 0.06 -0.11 – 0.13 0.17 0.863
Individualism Score c *
C9
0.01 0.05 -0.09 – 0.11 0.21 0.836
Random Effects
σ2 256.73
τ00 id 65.66
ICC 0.20
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.311 / 0.451

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does individualism predict naturalness perception, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.893 <- lmer(Naturalness ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.893)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 25847.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5601 -0.6154 -0.0239  0.6158  3.4188 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.5     8.155  
##  Residual             256.1    16.002  
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     40.36007    0.39083 1026.24080 103.268  < 2e-16 ***
## Ideology.c      -0.64349    0.68542 1029.15599  -0.939   0.3480    
## C1             -14.98484    0.87154 2623.56403 -17.193  < 2e-16 ***
## C2             -14.47462    1.00576 2746.50524 -14.392  < 2e-16 ***
## C3              -8.46632    0.89529 2639.72334  -9.457  < 2e-16 ***
## C4              -5.46242    0.89085 2633.37109  -6.132 1.00e-09 ***
## C5              -4.67983    0.88732 2631.85826  -5.274 1.44e-07 ***
## C6              -1.05619    1.02243 2748.21661  -1.033   0.3017    
## C7              13.91382    1.00607 2746.95960  13.830  < 2e-16 ***
## C8              14.97721    1.02845 2751.13613  14.563  < 2e-16 ***
## C9              21.71419    0.87966 2629.40609  24.685  < 2e-16 ***
## Ideology.c:C1    0.69660    1.54893 2637.81470   0.450   0.6529    
## Ideology.c:C2   -2.21791    1.78796 2759.34273  -1.240   0.2149    
## Ideology.c:C3   -0.13495    1.59389 2660.52547  -0.085   0.9325    
## Ideology.c:C4   -0.70555    1.59645 2663.17662  -0.442   0.6586    
## Ideology.c:C5    1.89206    1.53244 2635.19627   1.235   0.2171    
## Ideology.c:C6    0.97770    1.71946 2747.98441   0.569   0.5697    
## Ideology.c:C7   -2.51397    1.85852 2759.19112  -1.353   0.1763    
## Ideology.c:C8    0.02545    1.76434 2752.63655   0.014   0.9885    
## Ideology.c:C9    3.20372    1.56218 2641.17392   2.051   0.0404 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.893,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 40.36 0.39 39.59 – 41.13 103.27 <0.001
Ideology c -0.64 0.69 -1.99 – 0.70 -0.94 0.348
C1 -14.98 0.87 -16.69 – -13.28 -17.19 <0.001
C2 -14.47 1.01 -16.45 – -12.50 -14.39 <0.001
C3 -8.47 0.90 -10.22 – -6.71 -9.46 <0.001
C4 -5.46 0.89 -7.21 – -3.72 -6.13 <0.001
C5 -4.68 0.89 -6.42 – -2.94 -5.27 <0.001
C6 -1.06 1.02 -3.06 – 0.95 -1.03 0.302
C7 13.91 1.01 11.94 – 15.89 13.83 <0.001
C8 14.98 1.03 12.96 – 16.99 14.56 <0.001
C9 21.71 0.88 19.99 – 23.44 24.68 <0.001
Ideology c * C1 0.70 1.55 -2.34 – 3.73 0.45 0.653
Ideology c * C2 -2.22 1.79 -5.72 – 1.29 -1.24 0.215
Ideology c * C3 -0.13 1.59 -3.26 – 2.99 -0.08 0.933
Ideology c * C4 -0.71 1.60 -3.84 – 2.42 -0.44 0.659
Ideology c * C5 1.89 1.53 -1.11 – 4.90 1.23 0.217
Ideology c * C6 0.98 1.72 -2.39 – 4.35 0.57 0.570
Ideology c * C7 -2.51 1.86 -6.16 – 1.13 -1.35 0.176
Ideology c * C8 0.03 1.76 -3.43 – 3.48 0.01 0.988
Ideology c * C9 3.20 1.56 0.14 – 6.27 2.05 0.040
Random Effects
σ2 256.07
τ00 id 66.50
ICC 0.21
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.311 / 0.453

Risk

Q.1 How do climate change method contrasts predict risk perception?
modA.860 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.860)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5812 -0.6117 -0.0694  0.5565  3.6749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             391.9    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   32.4243     0.5609 1018.7068  57.808  < 2e-16 ***
## C1            10.8426     1.0990 2495.8856   9.866  < 2e-16 ***
## C2            20.5519     1.2763 2615.0096  16.103  < 2e-16 ***
## C3            13.5376     1.1303 2510.3315  11.977  < 2e-16 ***
## C4             5.6756     1.1252 2505.6400   5.044 4.88e-07 ***
## C5             5.7300     1.1173 2503.1806   5.128 3.15e-07 ***
## C6            -5.7162     1.2976 2616.5136  -4.405 1.10e-05 ***
## C7           -14.9462     1.2762 2613.2863 -11.711  < 2e-16 ***
## C8           -21.6013     1.3050 2617.2425 -16.553  < 2e-16 ***
## C9           -16.5218     1.1050 2499.0970 -14.952  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.033                                                        
## C2  0.027 -0.095                                                 
## C3 -0.019 -0.111 -0.081                                          
## C4 -0.021 -0.108 -0.100 -0.115                                   
## C5 -0.025 -0.105 -0.090 -0.113 -0.107                            
## C6  0.036 -0.097 -0.164 -0.111 -0.100 -0.100                     
## C7  0.027 -0.085 -0.163 -0.097 -0.096 -0.100 -0.164              
## C8  0.039 -0.105 -0.165 -0.106 -0.097 -0.100 -0.166 -0.165       
## C9 -0.030 -0.107 -0.109 -0.107 -0.114 -0.109 -0.096 -0.092 -0.087
tab_model(modA.860,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.42 0.56 31.32 – 33.52 57.81 <0.001
C1 10.84 1.10 8.69 – 13.00 9.87 <0.001
C2 20.55 1.28 18.05 – 23.05 16.10 <0.001
C3 13.54 1.13 11.32 – 15.75 11.98 <0.001
C4 5.68 1.13 3.47 – 7.88 5.04 <0.001
C5 5.73 1.12 3.54 – 7.92 5.13 <0.001
C6 -5.72 1.30 -8.26 – -3.17 -4.41 <0.001
C7 -14.95 1.28 -17.45 – -12.44 -11.71 <0.001
C8 -21.60 1.30 -24.16 – -19.04 -16.55 <0.001
C9 -16.52 1.11 -18.69 – -14.36 -14.95 <0.001
Random Effects
σ2 391.88
τ00 id 183.49
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.225 / 0.472

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict risk perception, over and above climate change method contrasts?
modA.861 <- lmer(Risk ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.861)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27331.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1012 -0.5982 -0.0857  0.5966  3.6474 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 147.7    12.16   
##  Residual             384.6    19.61   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       32.46753    0.52613 1018.60753  61.710  < 2e-16 ***
## ATNS_Score.c       0.27267    0.02449 1019.94321  11.132  < 2e-16 ***
## C1                10.83119    1.08127 2533.08463  10.017  < 2e-16 ***
## C2                20.40756    1.25363 2656.04884  16.279  < 2e-16 ***
## C3                13.38151    1.11329 2549.07193  12.020  < 2e-16 ***
## C4                 6.11637    1.10829 2547.17700   5.519 3.76e-08 ***
## C5                 5.77784    1.09952 2543.42325   5.255 1.60e-07 ***
## C6                -5.73268    1.27521 2658.23283  -4.495 7.24e-06 ***
## C7               -14.76121    1.25418 2655.13110 -11.770  < 2e-16 ***
## C8               -21.81600    1.28277 2660.24627 -17.007  < 2e-16 ***
## C9               -16.46949    1.08741 2537.44978 -15.146  < 2e-16 ***
## ATNS_Score.c:C1    0.08984    0.05097 2544.99643   1.763 0.078056 .  
## ATNS_Score.c:C2    0.13866    0.05864 2656.41771   2.365 0.018115 *  
## ATNS_Score.c:C3   -0.01524    0.05382 2568.16817  -0.283 0.777002    
## ATNS_Score.c:C4    0.19404    0.04958 2529.44133   3.914 9.33e-05 ***
## ATNS_Score.c:C5    0.10513    0.05010 2534.73476   2.099 0.035952 *  
## ATNS_Score.c:C6   -0.06786    0.05881 2659.91735  -1.154 0.248657    
## ATNS_Score.c:C7   -0.18671    0.05899 2663.87770  -3.165 0.001569 ** 
## ATNS_Score.c:C8   -0.21320    0.05933 2659.40768  -3.593 0.000332 ***
## ATNS_Score.c:C9   -0.07539    0.05057 2537.08330  -1.491 0.136168    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.861,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.47 0.53 31.44 – 33.50 61.71 <0.001
ATNS Score c 0.27 0.02 0.22 – 0.32 11.13 <0.001
C1 10.83 1.08 8.71 – 12.95 10.02 <0.001
C2 20.41 1.25 17.95 – 22.87 16.28 <0.001
C3 13.38 1.11 11.20 – 15.56 12.02 <0.001
C4 6.12 1.11 3.94 – 8.29 5.52 <0.001
C5 5.78 1.10 3.62 – 7.93 5.25 <0.001
C6 -5.73 1.28 -8.23 – -3.23 -4.50 <0.001
C7 -14.76 1.25 -17.22 – -12.30 -11.77 <0.001
C8 -21.82 1.28 -24.33 – -19.30 -17.01 <0.001
C9 -16.47 1.09 -18.60 – -14.34 -15.15 <0.001
ATNS Score c * C1 0.09 0.05 -0.01 – 0.19 1.76 0.078
ATNS Score c * C2 0.14 0.06 0.02 – 0.25 2.36 0.018
ATNS Score c * C3 -0.02 0.05 -0.12 – 0.09 -0.28 0.777
ATNS Score c * C4 0.19 0.05 0.10 – 0.29 3.91 <0.001
ATNS Score c * C5 0.11 0.05 0.01 – 0.20 2.10 0.036
ATNS Score c * C6 -0.07 0.06 -0.18 – 0.05 -1.15 0.249
ATNS Score c * C7 -0.19 0.06 -0.30 – -0.07 -3.16 0.002
ATNS Score c * C8 -0.21 0.06 -0.33 – -0.10 -3.59 <0.001
ATNS Score c * C9 -0.08 0.05 -0.17 – 0.02 -1.49 0.136
Random Effects
σ2 384.57
τ00 id 147.75
ICC 0.28
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.285 / 0.484
Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
modA.8617 <- lmer(Risk ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8617)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26941.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0924 -0.6033 -0.0406  0.5643  3.6474 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.7    12.07   
##  Residual             326.8    18.08   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 3.251e+01  5.057e-01  1.017e+03  64.276  < 2e-16
## ATNS_Score.c                2.463e-01  2.356e-02  1.020e+03  10.456  < 2e-16
## Naturalness.c              -4.257e-01  2.167e-02  2.949e+03 -19.643  < 2e-16
## C1                          4.589e+00  1.055e+00  2.560e+03   4.352 1.40e-05
## C2                          1.400e+01  1.205e+00  2.658e+03  11.616  < 2e-16
## C3                          9.657e+00  1.047e+00  2.524e+03   9.219  < 2e-16
## C4                          3.403e+00  1.035e+00  2.511e+03   3.288 0.001024
## C5                          3.564e+00  1.024e+00  2.511e+03   3.479 0.000511
## C6                         -5.999e+00  1.184e+00  2.616e+03  -5.067 4.32e-07
## C7                         -8.853e+00  1.202e+00  2.637e+03  -7.366 2.34e-13
## C8                         -1.491e+01  1.236e+00  2.666e+03 -12.068  < 2e-16
## C9                         -7.211e+00  1.110e+00  2.607e+03  -6.494 9.97e-11
## ATNS_Score.c:Naturalness.c -4.955e-03  8.559e-04  2.952e+03  -5.789 7.81e-09
## ATNS_Score.c:C1             3.505e-02  4.925e-02  2.551e+03   0.712 0.476657
## ATNS_Score.c:C2             2.326e-02  5.590e-02  2.660e+03   0.416 0.677371
## ATNS_Score.c:C3            -8.171e-02  5.023e-02  2.527e+03  -1.627 0.103907
## ATNS_Score.c:C4             1.113e-01  4.634e-02  2.494e+03   2.401 0.016419
## ATNS_Score.c:C5             3.916e-02  4.675e-02  2.502e+03   0.838 0.402348
## ATNS_Score.c:C6            -5.163e-02  5.461e-02  2.618e+03  -0.945 0.344505
## ATNS_Score.c:C7            -9.297e-02  5.629e-02  2.661e+03  -1.652 0.098702
## ATNS_Score.c:C8            -6.984e-02  5.681e-02  2.658e+03  -1.229 0.219001
## ATNS_Score.c:C9             5.162e-02  5.048e-02  2.563e+03   1.023 0.306578
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                         ***
## C2                         ***
## C3                         ***
## C4                         ** 
## C5                         ***
## C6                         ***
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c ***
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3               
## ATNS_Score.c:C4            *  
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7            .  
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8617,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.51 0.51 31.52 – 33.50 64.28 <0.001
ATNS Score c 0.25 0.02 0.20 – 0.29 10.46 <0.001
Naturalness c -0.43 0.02 -0.47 – -0.38 -19.64 <0.001
C1 4.59 1.05 2.52 – 6.66 4.35 <0.001
C2 14.00 1.21 11.64 – 16.36 11.62 <0.001
C3 9.66 1.05 7.60 – 11.71 9.22 <0.001
C4 3.40 1.04 1.37 – 5.43 3.29 0.001
C5 3.56 1.02 1.56 – 5.57 3.48 0.001
C6 -6.00 1.18 -8.32 – -3.68 -5.07 <0.001
C7 -8.85 1.20 -11.21 – -6.50 -7.37 <0.001
C8 -14.91 1.24 -17.34 – -12.49 -12.07 <0.001
C9 -7.21 1.11 -9.39 – -5.03 -6.49 <0.001
ATNS Score c *
Naturalness c
-0.00 0.00 -0.01 – -0.00 -5.79 <0.001
ATNS Score c * C1 0.04 0.05 -0.06 – 0.13 0.71 0.477
ATNS Score c * C2 0.02 0.06 -0.09 – 0.13 0.42 0.677
ATNS Score c * C3 -0.08 0.05 -0.18 – 0.02 -1.63 0.104
ATNS Score c * C4 0.11 0.05 0.02 – 0.20 2.40 0.016
ATNS Score c * C5 0.04 0.05 -0.05 – 0.13 0.84 0.402
ATNS Score c * C6 -0.05 0.05 -0.16 – 0.06 -0.95 0.344
ATNS Score c * C7 -0.09 0.06 -0.20 – 0.02 -1.65 0.099
ATNS Score c * C8 -0.07 0.06 -0.18 – 0.04 -1.23 0.219
ATNS Score c * C9 0.05 0.05 -0.05 – 0.15 1.02 0.307
Random Effects
σ2 326.83
τ00 id 145.70
ICC 0.31
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.369 / 0.564

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict risk perception, over and above climate change method contrasts?
modA.863 <- lmer(Risk ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.863)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27466.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9641 -0.6024 -0.0726  0.5780  3.9963 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 181.9    13.49   
##  Residual             388.4    19.71   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     3.248e+01  5.588e-01  1.017e+03  58.122  < 2e-16 ***
## CNS_Score.c    -2.138e-03  3.350e-02  1.020e+03  -0.064 0.949132    
## C1              1.069e+01  1.095e+00  2.489e+03   9.766  < 2e-16 ***
## C2              2.044e+01  1.271e+00  2.608e+03  16.082  < 2e-16 ***
## C3              1.357e+01  1.127e+00  2.503e+03  12.038  < 2e-16 ***
## C4              5.735e+00  1.122e+00  2.499e+03   5.111 3.45e-07 ***
## C5              5.745e+00  1.113e+00  2.496e+03   5.162 2.63e-07 ***
## C6             -5.742e+00  1.296e+00  2.607e+03  -4.430 9.82e-06 ***
## C7             -1.473e+01  1.272e+00  2.604e+03 -11.582  < 2e-16 ***
## C8             -2.168e+01  1.300e+00  2.609e+03 -16.679  < 2e-16 ***
## C9             -1.643e+01  1.102e+00  2.491e+03 -14.912  < 2e-16 ***
## CNS_Score.c:C1 -7.767e-03  6.364e-02  2.477e+03  -0.122 0.902864    
## CNS_Score.c:C2  2.847e-01  7.862e-02  2.617e+03   3.621 0.000300 ***
## CNS_Score.c:C3  7.460e-02  6.719e-02  2.499e+03   1.110 0.267005    
## CNS_Score.c:C4  1.510e-01  6.486e-02  2.493e+03   2.328 0.020006 *  
## CNS_Score.c:C5  5.511e-02  6.883e-02  2.513e+03   0.801 0.423431    
## CNS_Score.c:C6  1.619e-02  7.426e-02  2.607e+03   0.218 0.827437    
## CNS_Score.c:C7 -2.724e-01  7.695e-02  2.609e+03  -3.540 0.000408 ***
## CNS_Score.c:C8 -1.877e-01  7.841e-02  2.610e+03  -2.393 0.016767 *  
## CNS_Score.c:C9 -1.335e-01  6.942e-02  2.516e+03  -1.923 0.054649 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.863,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.48 0.56 31.38 – 33.57 58.12 <0.001
CNS Score c -0.00 0.03 -0.07 – 0.06 -0.06 0.949
C1 10.69 1.09 8.54 – 12.84 9.77 <0.001
C2 20.44 1.27 17.95 – 22.94 16.08 <0.001
C3 13.57 1.13 11.36 – 15.78 12.04 <0.001
C4 5.73 1.12 3.53 – 7.94 5.11 <0.001
C5 5.75 1.11 3.56 – 7.93 5.16 <0.001
C6 -5.74 1.30 -8.28 – -3.20 -4.43 <0.001
C7 -14.73 1.27 -17.23 – -12.24 -11.58 <0.001
C8 -21.68 1.30 -24.22 – -19.13 -16.68 <0.001
C9 -16.43 1.10 -18.59 – -14.27 -14.91 <0.001
CNS Score c * C1 -0.01 0.06 -0.13 – 0.12 -0.12 0.903
CNS Score c * C2 0.28 0.08 0.13 – 0.44 3.62 <0.001
CNS Score c * C3 0.07 0.07 -0.06 – 0.21 1.11 0.267
CNS Score c * C4 0.15 0.06 0.02 – 0.28 2.33 0.020
CNS Score c * C5 0.06 0.07 -0.08 – 0.19 0.80 0.423
CNS Score c * C6 0.02 0.07 -0.13 – 0.16 0.22 0.827
CNS Score c * C7 -0.27 0.08 -0.42 – -0.12 -3.54 <0.001
CNS Score c * C8 -0.19 0.08 -0.34 – -0.03 -2.39 0.017
CNS Score c * C9 -0.13 0.07 -0.27 – 0.00 -1.92 0.055
Random Effects
σ2 388.38
τ00 id 181.93
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.233 / 0.478
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
modA.8638 <- lmer(Risk ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8638)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27093.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7838 -0.6068 -0.0263  0.5625  3.9387 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 178.9    13.38   
##  Residual             331.6    18.21   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                3.263e+01  5.386e-01  1.014e+03  60.576  < 2e-16 ***
## CNS_Score.c               -6.460e-03  3.229e-02  1.017e+03  -0.200 0.841448    
## Naturalness.c             -4.480e-01  2.206e-02  2.915e+03 -20.310  < 2e-16 ***
## C1                         3.980e+00  1.069e+00  2.512e+03   3.724 0.000200 ***
## C2                         1.379e+01  1.226e+00  2.610e+03  11.251  < 2e-16 ***
## C3                         9.677e+00  1.064e+00  2.478e+03   9.096  < 2e-16 ***
## C4                         3.289e+00  1.049e+00  2.462e+03   3.136 0.001731 ** 
## C5                         3.600e+00  1.039e+00  2.467e+03   3.466 0.000537 ***
## C6                        -6.103e+00  1.205e+00  2.566e+03  -5.062 4.43e-07 ***
## C7                        -8.540e+00  1.222e+00  2.588e+03  -6.988 3.52e-12 ***
## C8                        -1.473e+01  1.254e+00  2.611e+03 -11.743  < 2e-16 ***
## C9                        -6.779e+00  1.128e+00  2.558e+03  -6.008 2.14e-09 ***
## CNS_Score.c:Naturalness.c -2.458e-03  1.234e-03  2.949e+03  -1.992 0.046472 *  
## CNS_Score.c:C1            -6.699e-02  6.283e-02  2.559e+03  -1.066 0.286427    
## CNS_Score.c:C2             1.623e-01  7.480e-02  2.612e+03   2.170 0.030074 *  
## CNS_Score.c:C3             1.622e-02  6.321e-02  2.466e+03   0.257 0.797502    
## CNS_Score.c:C4             1.225e-01  6.094e-02  2.464e+03   2.009 0.044601 *  
## CNS_Score.c:C5             1.564e-02  6.432e-02  2.478e+03   0.243 0.807886    
## CNS_Score.c:C6             2.857e-02  6.907e-02  2.565e+03   0.414 0.679159    
## CNS_Score.c:C7            -1.543e-01  7.412e-02  2.603e+03  -2.081 0.037502 *  
## CNS_Score.c:C8            -8.888e-02  7.526e-02  2.591e+03  -1.181 0.237752    
## CNS_Score.c:C9            -6.074e-02  7.090e-02  2.618e+03  -0.857 0.391658    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8638,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.63 0.54 31.57 – 33.68 60.58 <0.001
CNS Score c -0.01 0.03 -0.07 – 0.06 -0.20 0.841
Naturalness c -0.45 0.02 -0.49 – -0.40 -20.31 <0.001
C1 3.98 1.07 1.88 – 6.07 3.72 <0.001
C2 13.79 1.23 11.39 – 16.20 11.25 <0.001
C3 9.68 1.06 7.59 – 11.76 9.10 <0.001
C4 3.29 1.05 1.23 – 5.35 3.14 0.002
C5 3.60 1.04 1.56 – 5.64 3.47 0.001
C6 -6.10 1.21 -8.47 – -3.74 -5.06 <0.001
C7 -8.54 1.22 -10.94 – -6.14 -6.99 <0.001
C8 -14.73 1.25 -17.19 – -12.27 -11.74 <0.001
C9 -6.78 1.13 -8.99 – -4.57 -6.01 <0.001
CNS Score c * Naturalness
c
-0.00 0.00 -0.00 – -0.00 -1.99 0.046
CNS Score c * C1 -0.07 0.06 -0.19 – 0.06 -1.07 0.286
CNS Score c * C2 0.16 0.07 0.02 – 0.31 2.17 0.030
CNS Score c * C3 0.02 0.06 -0.11 – 0.14 0.26 0.797
CNS Score c * C4 0.12 0.06 0.00 – 0.24 2.01 0.045
CNS Score c * C5 0.02 0.06 -0.11 – 0.14 0.24 0.808
CNS Score c * C6 0.03 0.07 -0.11 – 0.16 0.41 0.679
CNS Score c * C7 -0.15 0.07 -0.30 – -0.01 -2.08 0.037
CNS Score c * C8 -0.09 0.08 -0.24 – 0.06 -1.18 0.238
CNS Score c * C9 -0.06 0.07 -0.20 – 0.08 -0.86 0.392
Random Effects
σ2 331.61
τ00 id 178.92
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.317 / 0.556

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict risk perception, over and above climate change method contrasts?
modA.864 <- lmer(Risk ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.864)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27420.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7357 -0.6093 -0.0569  0.5761  3.6883 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 168.8    12.99   
##  Residual             386.7    19.66   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.245e+01  5.463e-01  1.016e+03  59.402  < 2e-16 ***
## CCBelief_Score.c    -1.574e-01  2.322e-02  1.021e+03  -6.780 2.03e-11 ***
## C1                   1.081e+01  1.089e+00  2.502e+03   9.921  < 2e-16 ***
## C2                   2.068e+01  1.265e+00  2.624e+03  16.353  < 2e-16 ***
## C3                   1.351e+01  1.120e+00  2.517e+03  12.057  < 2e-16 ***
## C4                   5.535e+00  1.118e+00  2.513e+03   4.951 7.88e-07 ***
## C5                   5.867e+00  1.108e+00  2.511e+03   5.294 1.30e-07 ***
## C6                  -5.743e+00  1.285e+00  2.625e+03  -4.468 8.24e-06 ***
## C7                  -1.493e+01  1.264e+00  2.621e+03 -11.812  < 2e-16 ***
## C8                  -2.166e+01  1.293e+00  2.626e+03 -16.753  < 2e-16 ***
## C9                  -1.645e+01  1.096e+00  2.509e+03 -15.007  < 2e-16 ***
## CCBelief_Score.c:C1 -1.917e-02  4.603e-02  2.503e+03  -0.417    0.677    
## CCBelief_Score.c:C2  2.819e-01  5.033e-02  2.616e+03   5.601 2.36e-08 ***
## CCBelief_Score.c:C3 -8.351e-03  4.731e-02  2.517e+03  -0.177    0.860    
## CCBelief_Score.c:C4  2.324e-02  4.498e-02  2.490e+03   0.517    0.605    
## CCBelief_Score.c:C5 -1.042e-02  4.873e-02  2.531e+03  -0.214    0.831    
## CCBelief_Score.c:C6  1.906e-02  5.677e-02  2.632e+03   0.336    0.737    
## CCBelief_Score.c:C7 -2.452e-01  5.465e-02  2.630e+03  -4.487 7.55e-06 ***
## CCBelief_Score.c:C8  2.985e-02  5.582e-02  2.630e+03   0.535    0.593    
## CCBelief_Score.c:C9 -5.454e-02  4.818e-02  2.529e+03  -1.132    0.258    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.864,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.45 0.55 31.38 – 33.52 59.40 <0.001
CCBelief Score c -0.16 0.02 -0.20 – -0.11 -6.78 <0.001
C1 10.81 1.09 8.67 – 12.94 9.92 <0.001
C2 20.68 1.26 18.20 – 23.16 16.35 <0.001
C3 13.51 1.12 11.31 – 15.70 12.06 <0.001
C4 5.54 1.12 3.34 – 7.73 4.95 <0.001
C5 5.87 1.11 3.69 – 8.04 5.29 <0.001
C6 -5.74 1.29 -8.26 – -3.22 -4.47 <0.001
C7 -14.93 1.26 -17.41 – -12.45 -11.81 <0.001
C8 -21.66 1.29 -24.19 – -19.12 -16.75 <0.001
C9 -16.45 1.10 -18.60 – -14.30 -15.01 <0.001
CCBelief Score c * C1 -0.02 0.05 -0.11 – 0.07 -0.42 0.677
CCBelief Score c * C2 0.28 0.05 0.18 – 0.38 5.60 <0.001
CCBelief Score c * C3 -0.01 0.05 -0.10 – 0.08 -0.18 0.860
CCBelief Score c * C4 0.02 0.04 -0.06 – 0.11 0.52 0.605
CCBelief Score c * C5 -0.01 0.05 -0.11 – 0.09 -0.21 0.831
CCBelief Score c * C6 0.02 0.06 -0.09 – 0.13 0.34 0.737
CCBelief Score c * C7 -0.25 0.05 -0.35 – -0.14 -4.49 <0.001
CCBelief Score c * C8 0.03 0.06 -0.08 – 0.14 0.53 0.593
CCBelief Score c * C9 -0.05 0.05 -0.15 – 0.04 -1.13 0.258
Random Effects
σ2 386.70
τ00 id 168.84
ICC 0.30
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.254 / 0.481
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
modA.8649 <- lmer(Risk ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8649)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27049.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3372 -0.6084 -0.0147  0.5659  3.7259 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 168.3    12.97   
##  Residual             329.6    18.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     3.258e+01  5.283e-01  1.016e+03  61.666
## CCBelief_Score.c               -1.346e-01  2.254e-02  1.033e+03  -5.971
## Naturalness.c                  -4.436e-01  2.190e-02  2.924e+03 -20.258
## C1                              4.183e+00  1.064e+00  2.527e+03   3.933
## C2                              1.428e+01  1.221e+00  2.627e+03  11.693
## C3                              9.761e+00  1.056e+00  2.491e+03   9.240
## C4                              3.157e+00  1.045e+00  2.475e+03   3.022
## C5                              3.758e+00  1.034e+00  2.479e+03   3.634
## C6                             -6.198e+00  1.195e+00  2.583e+03  -5.184
## C7                             -8.885e+00  1.215e+00  2.602e+03  -7.313
## C8                             -1.493e+01  1.247e+00  2.625e+03 -11.969
## C9                             -6.880e+00  1.123e+00  2.579e+03  -6.128
## CCBelief_Score.c:Naturalness.c  1.236e-03  8.270e-04  2.937e+03   1.495
## CCBelief_Score.c:C1            -1.600e-02  4.456e-02  2.519e+03  -0.359
## CCBelief_Score.c:C2             2.484e-01  4.798e-02  2.595e+03   5.177
## CCBelief_Score.c:C3            -9.809e-03  4.421e-02  2.482e+03  -0.222
## CCBelief_Score.c:C4             1.609e-02  4.196e-02  2.449e+03   0.383
## CCBelief_Score.c:C5            -2.080e-03  4.543e-02  2.486e+03  -0.046
## CCBelief_Score.c:C6             4.118e-02  5.291e-02  2.610e+03   0.778
## CCBelief_Score.c:C7            -2.286e-01  5.214e-02  2.622e+03  -4.384
## CCBelief_Score.c:C8             3.819e-02  5.287e-02  2.633e+03   0.722
## CCBelief_Score.c:C9            -9.172e-02  4.949e-02  2.636e+03  -1.853
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c               3.25e-09 ***
## Naturalness.c                   < 2e-16 ***
## C1                             8.63e-05 ***
## C2                              < 2e-16 ***
## C3                              < 2e-16 ***
## C4                             0.002540 ** 
## C5                             0.000284 ***
## C6                             2.34e-07 ***
## C7                             3.46e-13 ***
## C8                              < 2e-16 ***
## C9                             1.03e-09 ***
## CCBelief_Score.c:Naturalness.c 0.135053    
## CCBelief_Score.c:C1            0.719572    
## CCBelief_Score.c:C2            2.43e-07 ***
## CCBelief_Score.c:C3            0.824422    
## CCBelief_Score.c:C4            0.701440    
## CCBelief_Score.c:C5            0.963491    
## CCBelief_Score.c:C6            0.436442    
## CCBelief_Score.c:C7            1.21e-05 ***
## CCBelief_Score.c:C8            0.470089    
## CCBelief_Score.c:C9            0.063948 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8649,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.58 0.53 31.54 – 33.61 61.67 <0.001
CCBelief Score c -0.13 0.02 -0.18 – -0.09 -5.97 <0.001
Naturalness c -0.44 0.02 -0.49 – -0.40 -20.26 <0.001
C1 4.18 1.06 2.10 – 6.27 3.93 <0.001
C2 14.28 1.22 11.88 – 16.67 11.69 <0.001
C3 9.76 1.06 7.69 – 11.83 9.24 <0.001
C4 3.16 1.04 1.11 – 5.21 3.02 0.003
C5 3.76 1.03 1.73 – 5.79 3.63 <0.001
C6 -6.20 1.20 -8.54 – -3.85 -5.18 <0.001
C7 -8.89 1.22 -11.27 – -6.50 -7.31 <0.001
C8 -14.93 1.25 -17.37 – -12.48 -11.97 <0.001
C9 -6.88 1.12 -9.08 – -4.68 -6.13 <0.001
CCBelief Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.49 0.135
CCBelief Score c * C1 -0.02 0.04 -0.10 – 0.07 -0.36 0.720
CCBelief Score c * C2 0.25 0.05 0.15 – 0.34 5.18 <0.001
CCBelief Score c * C3 -0.01 0.04 -0.10 – 0.08 -0.22 0.824
CCBelief Score c * C4 0.02 0.04 -0.07 – 0.10 0.38 0.701
CCBelief Score c * C5 -0.00 0.05 -0.09 – 0.09 -0.05 0.963
CCBelief Score c * C6 0.04 0.05 -0.06 – 0.14 0.78 0.436
CCBelief Score c * C7 -0.23 0.05 -0.33 – -0.13 -4.38 <0.001
CCBelief Score c * C8 0.04 0.05 -0.07 – 0.14 0.72 0.470
CCBelief Score c * C9 -0.09 0.05 -0.19 – 0.01 -1.85 0.064
Random Effects
σ2 329.63
τ00 id 168.31
ICC 0.34
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.336 / 0.560

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict risk perception, over and above climate change method contrasts?
modA.866 <- lmer(Risk ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.866)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27487.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6337 -0.6157 -0.0667  0.5684  3.6895 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 179.2    13.39   
##  Residual             392.1    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               32.38425    0.55746 1017.85949  58.092  < 2e-16 ***
## Collectivism_Score.c       0.08139    0.02341 1022.64884   3.477 0.000529 ***
## C1                        10.84721    1.09856 2492.17043   9.874  < 2e-16 ***
## C2                        20.45178    1.27799 2611.83582  16.003  < 2e-16 ***
## C3                        13.64331    1.13014 2507.53418  12.072  < 2e-16 ***
## C4                         5.70815    1.12577 2503.54281   5.070 4.26e-07 ***
## C5                         5.79114    1.12138 2501.35160   5.164 2.60e-07 ***
## C6                        -5.71116    1.29730 2613.47197  -4.402 1.11e-05 ***
## C7                       -15.07214    1.27813 2610.12661 -11.792  < 2e-16 ***
## C8                       -21.57848    1.30436 2613.70242 -16.543  < 2e-16 ***
## C9                       -16.52935    1.10501 2494.98911 -14.959  < 2e-16 ***
## Collectivism_Score.c:C1    0.07503    0.05002 2533.55970   1.500 0.133740    
## Collectivism_Score.c:C2   -0.12852    0.05169 2608.05965  -2.486 0.012966 *  
## Collectivism_Score.c:C3    0.04732    0.04791 2512.85061   0.988 0.323419    
## Collectivism_Score.c:C4   -0.01909    0.04755 2508.08859  -0.401 0.688120    
## Collectivism_Score.c:C5   -0.03596    0.04567 2488.50826  -0.788 0.431040    
## Collectivism_Score.c:C6    0.01206    0.05465 2616.98541   0.221 0.825397    
## Collectivism_Score.c:C7    0.07502    0.05540 2617.01591   1.354 0.175768    
## Collectivism_Score.c:C8   -0.02668    0.05491 2621.38925  -0.486 0.627158    
## Collectivism_Score.c:C9    0.01753    0.04714 2506.27642   0.372 0.710103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.866,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.38 0.56 31.29 – 33.48 58.09 <0.001
Collectivism Score c 0.08 0.02 0.04 – 0.13 3.48 0.001
C1 10.85 1.10 8.69 – 13.00 9.87 <0.001
C2 20.45 1.28 17.95 – 22.96 16.00 <0.001
C3 13.64 1.13 11.43 – 15.86 12.07 <0.001
C4 5.71 1.13 3.50 – 7.92 5.07 <0.001
C5 5.79 1.12 3.59 – 7.99 5.16 <0.001
C6 -5.71 1.30 -8.25 – -3.17 -4.40 <0.001
C7 -15.07 1.28 -17.58 – -12.57 -11.79 <0.001
C8 -21.58 1.30 -24.14 – -19.02 -16.54 <0.001
C9 -16.53 1.11 -18.70 – -14.36 -14.96 <0.001
Collectivism Score c * C1 0.08 0.05 -0.02 – 0.17 1.50 0.134
Collectivism Score c * C2 -0.13 0.05 -0.23 – -0.03 -2.49 0.013
Collectivism Score c * C3 0.05 0.05 -0.05 – 0.14 0.99 0.323
Collectivism Score c * C4 -0.02 0.05 -0.11 – 0.07 -0.40 0.688
Collectivism Score c * C5 -0.04 0.05 -0.13 – 0.05 -0.79 0.431
Collectivism Score c * C6 0.01 0.05 -0.10 – 0.12 0.22 0.825
Collectivism Score c * C7 0.08 0.06 -0.03 – 0.18 1.35 0.176
Collectivism Score c * C8 -0.03 0.05 -0.13 – 0.08 -0.49 0.627
Collectivism Score c * C9 0.02 0.05 -0.07 – 0.11 0.37 0.710
Random Effects
σ2 392.05
τ00 id 179.17
ICC 0.31
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.232 / 0.473
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
modA.8665 <- lmer(Risk ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8665)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27104.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3323 -0.6042 -0.0235  0.5693  3.7167 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 176.2    13.28   
##  Residual             333.4    18.26   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         3.255e+01  5.367e-01  1.015e+03  60.642
## Collectivism_Score.c                7.716e-02  2.254e-02  1.020e+03   3.423
## Naturalness.c                      -4.568e-01  2.204e-02  2.922e+03 -20.725
## C1                                  4.005e+00  1.071e+00  2.520e+03   3.739
## C2                                  1.385e+01  1.229e+00  2.611e+03  11.266
## C3                                  9.736e+00  1.064e+00  2.484e+03   9.149
## C4                                  3.239e+00  1.050e+00  2.467e+03   3.085
## C5                                  3.550e+00  1.045e+00  2.471e+03   3.396
## C6                                 -6.131e+00  1.204e+00  2.571e+03  -5.091
## C7                                 -8.813e+00  1.225e+00  2.593e+03  -7.194
## C8                                 -1.458e+01  1.256e+00  2.615e+03 -11.612
## C9                                 -6.682e+00  1.131e+00  2.569e+03  -5.907
## Collectivism_Score.c:Naturalness.c -5.887e-04  8.653e-04  2.916e+03  -0.680
## Collectivism_Score.c:C1             8.051e-02  4.883e-02  2.563e+03   1.649
## Collectivism_Score.c:C2            -1.106e-01  4.964e-02  2.623e+03  -2.228
## Collectivism_Score.c:C3             2.403e-02  4.506e-02  2.477e+03   0.533
## Collectivism_Score.c:C4            -3.158e-02  4.423e-02  2.473e+03  -0.714
## Collectivism_Score.c:C5            -6.633e-02  4.275e-02  2.456e+03  -1.552
## Collectivism_Score.c:C6             2.153e-02  5.074e-02  2.574e+03   0.424
## Collectivism_Score.c:C7             9.149e-02  5.329e-02  2.616e+03   1.717
## Collectivism_Score.c:C8             4.986e-03  5.322e-02  2.619e+03   0.094
## Collectivism_Score.c:C9            -4.762e-03  4.758e-02  2.562e+03  -0.100
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c               0.000643 ***
## Naturalness.c                       < 2e-16 ***
## C1                                 0.000189 ***
## C2                                  < 2e-16 ***
## C3                                  < 2e-16 ***
## C4                                 0.002059 ** 
## C5                                 0.000694 ***
## C6                                 3.81e-07 ***
## C7                                 8.19e-13 ***
## C8                                  < 2e-16 ***
## C9                                 3.95e-09 ***
## Collectivism_Score.c:Naturalness.c 0.496336    
## Collectivism_Score.c:C1            0.099312 .  
## Collectivism_Score.c:C2            0.025947 *  
## Collectivism_Score.c:C3            0.593814    
## Collectivism_Score.c:C4            0.475337    
## Collectivism_Score.c:C5            0.120885    
## Collectivism_Score.c:C6            0.671366    
## Collectivism_Score.c:C7            0.086131 .  
## Collectivism_Score.c:C8            0.925370    
## Collectivism_Score.c:C9            0.920278    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8665,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.55 0.54 31.50 – 33.60 60.64 <0.001
Collectivism Score c 0.08 0.02 0.03 – 0.12 3.42 0.001
Naturalness c -0.46 0.02 -0.50 – -0.41 -20.73 <0.001
C1 4.00 1.07 1.90 – 6.10 3.74 <0.001
C2 13.85 1.23 11.44 – 16.26 11.27 <0.001
C3 9.74 1.06 7.65 – 11.82 9.15 <0.001
C4 3.24 1.05 1.18 – 5.30 3.08 0.002
C5 3.55 1.05 1.50 – 5.60 3.40 0.001
C6 -6.13 1.20 -8.49 – -3.77 -5.09 <0.001
C7 -8.81 1.23 -11.22 – -6.41 -7.19 <0.001
C8 -14.58 1.26 -17.05 – -12.12 -11.61 <0.001
C9 -6.68 1.13 -8.90 – -4.46 -5.91 <0.001
Collectivism Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.68 0.496
Collectivism Score c * C1 0.08 0.05 -0.02 – 0.18 1.65 0.099
Collectivism Score c * C2 -0.11 0.05 -0.21 – -0.01 -2.23 0.026
Collectivism Score c * C3 0.02 0.05 -0.06 – 0.11 0.53 0.594
Collectivism Score c * C4 -0.03 0.04 -0.12 – 0.06 -0.71 0.475
Collectivism Score c * C5 -0.07 0.04 -0.15 – 0.02 -1.55 0.121
Collectivism Score c * C6 0.02 0.05 -0.08 – 0.12 0.42 0.671
Collectivism Score c * C7 0.09 0.05 -0.01 – 0.20 1.72 0.086
Collectivism Score c * C8 0.00 0.05 -0.10 – 0.11 0.09 0.925
Collectivism Score c * C9 -0.00 0.05 -0.10 – 0.09 -0.10 0.920
Random Effects
σ2 333.38
τ00 id 176.23
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.318 / 0.554

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict risk perception, over and above climate change method contrasts?
modA.867 <- lmer(Risk ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.867)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C5 + Individualism_Score.c * C6 + Individualism_Score.c *  
##     C7 + Individualism_Score.c * C8 + Individualism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27495.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7316 -0.6078 -0.0713  0.5768  3.6643 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.5    13.55   
##  Residual             392.2    19.80   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.240e+01  5.614e-01  1.019e+03  57.718  < 2e-16 ***
## Individualism_Score.c     1.386e-02  3.335e-02  1.025e+03   0.416   0.6778    
## C1                        1.087e+01  1.100e+00  2.488e+03   9.883  < 2e-16 ***
## C2                        2.034e+01  1.282e+00  2.607e+03  15.861  < 2e-16 ***
## C3                        1.358e+01  1.132e+00  2.502e+03  12.002  < 2e-16 ***
## C4                        5.716e+00  1.126e+00  2.497e+03   5.076 4.15e-07 ***
## C5                        5.730e+00  1.118e+00  2.496e+03   5.124 3.21e-07 ***
## C6                       -5.722e+00  1.302e+00  2.609e+03  -4.395 1.15e-05 ***
## C7                       -1.490e+01  1.277e+00  2.605e+03 -11.663  < 2e-16 ***
## C8                       -2.166e+01  1.308e+00  2.609e+03 -16.561  < 2e-16 ***
## C9                       -1.652e+01  1.106e+00  2.491e+03 -14.938  < 2e-16 ***
## Individualism_Score.c:C1  1.925e-02  6.519e-02  2.487e+03   0.295   0.7678    
## Individualism_Score.c:C2  1.358e-01  7.237e-02  2.603e+03   1.876   0.0608 .  
## Individualism_Score.c:C3 -2.914e-03  6.979e-02  2.524e+03  -0.042   0.9667    
## Individualism_Score.c:C4  3.468e-02  6.722e-02  2.501e+03   0.516   0.6060    
## Individualism_Score.c:C5  1.276e-02  6.697e-02  2.500e+03   0.191   0.8489    
## Individualism_Score.c:C6 -2.576e-02  8.040e-02  2.615e+03  -0.320   0.7487    
## Individualism_Score.c:C7 -3.650e-02  8.059e-02  2.615e+03  -0.453   0.6506    
## Individualism_Score.c:C8 -7.106e-02  7.450e-02  2.607e+03  -0.954   0.3403    
## Individualism_Score.c:C9  4.915e-02  6.456e-02  2.487e+03   0.761   0.4465    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.867,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.40 0.56 31.30 – 33.50 57.72 <0.001
Individualism Score c 0.01 0.03 -0.05 – 0.08 0.42 0.678
C1 10.87 1.10 8.71 – 13.03 9.88 <0.001
C2 20.34 1.28 17.82 – 22.85 15.86 <0.001
C3 13.58 1.13 11.36 – 15.80 12.00 <0.001
C4 5.72 1.13 3.51 – 7.92 5.08 <0.001
C5 5.73 1.12 3.54 – 7.92 5.12 <0.001
C6 -5.72 1.30 -8.27 – -3.17 -4.40 <0.001
C7 -14.90 1.28 -17.40 – -12.39 -11.66 <0.001
C8 -21.66 1.31 -24.22 – -19.09 -16.56 <0.001
C9 -16.52 1.11 -18.69 – -14.35 -14.94 <0.001
Individualism Score c *
C1
0.02 0.07 -0.11 – 0.15 0.30 0.768
Individualism Score c *
C2
0.14 0.07 -0.01 – 0.28 1.88 0.061
Individualism Score c *
C3
-0.00 0.07 -0.14 – 0.13 -0.04 0.967
Individualism Score c *
C4
0.03 0.07 -0.10 – 0.17 0.52 0.606
Individualism Score c *
C5
0.01 0.07 -0.12 – 0.14 0.19 0.849
Individualism Score c *
C6
-0.03 0.08 -0.18 – 0.13 -0.32 0.749
Individualism Score c *
C7
-0.04 0.08 -0.19 – 0.12 -0.45 0.651
Individualism Score c *
C8
-0.07 0.07 -0.22 – 0.08 -0.95 0.340
Individualism Score c *
C9
0.05 0.06 -0.08 – 0.18 0.76 0.447
Random Effects
σ2 392.15
τ00 id 183.50
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.227 / 0.473
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
modA.8672 <- lmer(Risk ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.8672)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27107.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3505 -0.6092 -0.0238  0.5613  3.6939 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 179.8    13.41   
##  Residual             333.2    18.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          3.254e+01  5.400e-01  1.017e+03  60.267
## Individualism_Score.c                3.994e-03  3.208e-02  1.022e+03   0.125
## Naturalness.c                       -4.527e-01  2.215e-02  2.914e+03 -20.434
## C1                                   4.108e+00  1.072e+00  2.512e+03   3.832
## C2                                   1.374e+01  1.233e+00  2.603e+03  11.145
## C3                                   9.688e+00  1.065e+00  2.478e+03   9.097
## C4                                   3.235e+00  1.050e+00  2.461e+03   3.081
## C5                                   3.542e+00  1.041e+00  2.467e+03   3.402
## C6                                  -6.157e+00  1.208e+00  2.568e+03  -5.098
## C7                                  -8.651e+00  1.224e+00  2.587e+03  -7.071
## C8                                  -1.471e+01  1.259e+00  2.611e+03 -11.691
## C9                                  -6.759e+00  1.130e+00  2.556e+03  -5.979
## Individualism_Score.c:Naturalness.c -2.637e-03  1.251e-03  2.948e+03  -2.108
## Individualism_Score.c:C1            -1.048e-02  6.346e-02  2.513e+03  -0.165
## Individualism_Score.c:C2             9.658e-02  6.977e-02  2.605e+03   1.384
## Individualism_Score.c:C3            -5.404e-02  6.565e-02  2.497e+03  -0.823
## Individualism_Score.c:C4             4.565e-03  6.278e-02  2.472e+03   0.073
## Individualism_Score.c:C5            -4.908e-02  6.252e-02  2.464e+03  -0.785
## Individualism_Score.c:C6            -3.577e-02  7.459e-02  2.573e+03  -0.480
## Individualism_Score.c:C7             3.394e-02  7.677e-02  2.595e+03   0.442
## Individualism_Score.c:C8            -1.523e-02  7.268e-02  2.618e+03  -0.210
## Individualism_Score.c:C9             1.188e-01  6.609e-02  2.559e+03   1.797
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                0.90093    
## Naturalness.c                        < 2e-16 ***
## C1                                   0.00013 ***
## C2                                   < 2e-16 ***
## C3                                   < 2e-16 ***
## C4                                   0.00209 ** 
## C5                                   0.00068 ***
## C6                                  3.68e-07 ***
## C7                                  1.98e-12 ***
## C8                                   < 2e-16 ***
## C9                                  2.55e-09 ***
## Individualism_Score.c:Naturalness.c  0.03509 *  
## Individualism_Score.c:C1             0.86880    
## Individualism_Score.c:C2             0.16641    
## Individualism_Score.c:C3             0.41047    
## Individualism_Score.c:C4             0.94204    
## Individualism_Score.c:C5             0.43249    
## Individualism_Score.c:C6             0.63161    
## Individualism_Score.c:C7             0.65849    
## Individualism_Score.c:C8             0.83405    
## Individualism_Score.c:C9             0.07245 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8672,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.54 0.54 31.49 – 33.60 60.27 <0.001
Individualism Score c 0.00 0.03 -0.06 – 0.07 0.12 0.901
Naturalness c -0.45 0.02 -0.50 – -0.41 -20.43 <0.001
C1 4.11 1.07 2.01 – 6.21 3.83 <0.001
C2 13.74 1.23 11.32 – 16.15 11.14 <0.001
C3 9.69 1.06 7.60 – 11.78 9.10 <0.001
C4 3.23 1.05 1.18 – 5.29 3.08 0.002
C5 3.54 1.04 1.50 – 5.58 3.40 0.001
C6 -6.16 1.21 -8.53 – -3.79 -5.10 <0.001
C7 -8.65 1.22 -11.05 – -6.25 -7.07 <0.001
C8 -14.71 1.26 -17.18 – -12.25 -11.69 <0.001
C9 -6.76 1.13 -8.98 – -4.54 -5.98 <0.001
Individualism Score c *
Naturalness c
-0.00 0.00 -0.01 – -0.00 -2.11 0.035
Individualism Score c *
C1
-0.01 0.06 -0.13 – 0.11 -0.17 0.869
Individualism Score c *
C2
0.10 0.07 -0.04 – 0.23 1.38 0.166
Individualism Score c *
C3
-0.05 0.07 -0.18 – 0.07 -0.82 0.410
Individualism Score c *
C4
0.00 0.06 -0.12 – 0.13 0.07 0.942
Individualism Score c *
C5
-0.05 0.06 -0.17 – 0.07 -0.79 0.432
Individualism Score c *
C6
-0.04 0.07 -0.18 – 0.11 -0.48 0.632
Individualism Score c *
C7
0.03 0.08 -0.12 – 0.18 0.44 0.658
Individualism Score c *
C8
-0.02 0.07 -0.16 – 0.13 -0.21 0.834
Individualism Score c *
C9
0.12 0.07 -0.01 – 0.25 1.80 0.072
Random Effects
σ2 333.21
τ00 id 179.78
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.314 / 0.554

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does ideology predict risk perception, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.868 <- lmer(Risk ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.868)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27422.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5889 -0.6099 -0.0694  0.5661  3.6248 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.8    13.44   
##  Residual             392.7    19.82   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     32.4136     0.5590 1016.6753  57.982  < 2e-16 ***
## Ideology.c      -2.1994     0.9802 1019.0715  -2.244   0.0251 *  
## C1              10.7681     1.1013 2492.2275   9.778  < 2e-16 ***
## C2              20.5582     1.2770 2609.9378  16.099  < 2e-16 ***
## C3              13.5547     1.1319 2506.8938  11.975  < 2e-16 ***
## C4               5.6881     1.1260 2500.2425   5.051 4.70e-07 ***
## C5               5.8560     1.1215 2498.9633   5.221 1.92e-07 ***
## C6              -5.7144     1.2982 2610.6909  -4.402 1.12e-05 ***
## C7             -14.9121     1.2774 2609.8912 -11.674  < 2e-16 ***
## C8             -21.5955     1.3060 2613.5498 -16.536  < 2e-16 ***
## C9             -16.6222     1.1117 2497.6027 -14.951  < 2e-16 ***
## Ideology.c:C1   -1.4443     1.9583 2507.4665  -0.738   0.4609    
## Ideology.c:C2    4.3540     2.2715 2626.2957   1.917   0.0554 .  
## Ideology.c:C3   -0.2690     2.0169 2531.0391  -0.133   0.8939    
## Ideology.c:C4    1.7118     2.0204 2532.8141   0.847   0.3969    
## Ideology.c:C5   -1.0470     1.9373 2507.1637  -0.540   0.5889    
## Ideology.c:C6   -3.0419     2.1833 2613.2843  -1.393   0.1637    
## Ideology.c:C7    2.2315     2.3609 2622.0412   0.945   0.3447    
## Ideology.c:C8   -0.5100     2.2407 2618.1008  -0.228   0.8200    
## Ideology.c:C9   -0.7848     1.9752 2508.8499  -0.397   0.6912    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.868,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.41 0.56 31.32 – 33.51 57.98 <0.001
Ideology c -2.20 0.98 -4.12 – -0.28 -2.24 0.025
C1 10.77 1.10 8.61 – 12.93 9.78 <0.001
C2 20.56 1.28 18.05 – 23.06 16.10 <0.001
C3 13.55 1.13 11.34 – 15.77 11.97 <0.001
C4 5.69 1.13 3.48 – 7.90 5.05 <0.001
C5 5.86 1.12 3.66 – 8.05 5.22 <0.001
C6 -5.71 1.30 -8.26 – -3.17 -4.40 <0.001
C7 -14.91 1.28 -17.42 – -12.41 -11.67 <0.001
C8 -21.60 1.31 -24.16 – -19.03 -16.54 <0.001
C9 -16.62 1.11 -18.80 – -14.44 -14.95 <0.001
Ideology c * C1 -1.44 1.96 -5.28 – 2.40 -0.74 0.461
Ideology c * C2 4.35 2.27 -0.10 – 8.81 1.92 0.055
Ideology c * C3 -0.27 2.02 -4.22 – 3.69 -0.13 0.894
Ideology c * C4 1.71 2.02 -2.25 – 5.67 0.85 0.397
Ideology c * C5 -1.05 1.94 -4.85 – 2.75 -0.54 0.589
Ideology c * C6 -3.04 2.18 -7.32 – 1.24 -1.39 0.164
Ideology c * C7 2.23 2.36 -2.40 – 6.86 0.95 0.345
Ideology c * C8 -0.51 2.24 -4.90 – 3.88 -0.23 0.820
Ideology c * C9 -0.78 1.98 -4.66 – 3.09 -0.40 0.691
Random Effects
σ2 392.75
τ00 id 180.76
ICC 0.32
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.228 / 0.472
Q.2 (POLITICAL IDEOLOGY) Does political ideology depend on perceptions of naturalness in predicting risk perception, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8683 <- lmer(Risk ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.8683)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27048.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2856 -0.6118 -0.0289  0.5704  3.6737 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 177.2    13.31   
##  Residual             334.2    18.28   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.258e+01  5.378e-01  1.014e+03  60.577  < 2e-16 ***
## Ideology.c               -2.484e+00  9.409e-01  1.007e+03  -2.640 0.008430 ** 
## Naturalness.c            -4.574e-01  2.208e-02  2.925e+03 -20.715  < 2e-16 ***
## C1                        3.904e+00  1.074e+00  2.522e+03   3.636 0.000283 ***
## C2                        1.388e+01  1.228e+00  2.615e+03  11.301  < 2e-16 ***
## C3                        9.681e+00  1.065e+00  2.484e+03   9.087  < 2e-16 ***
## C4                        3.208e+00  1.050e+00  2.468e+03   3.054 0.002280 ** 
## C5                        3.676e+00  1.045e+00  2.474e+03   3.518 0.000443 ***
## C6                       -6.149e+00  1.205e+00  2.574e+03  -5.102 3.60e-07 ***
## C7                       -8.660e+00  1.225e+00  2.597e+03  -7.070 1.99e-12 ***
## C8                       -1.462e+01  1.257e+00  2.619e+03 -11.628  < 2e-16 ***
## C9                       -6.706e+00  1.131e+00  2.568e+03  -5.930 3.43e-09 ***
## Ideology.c:Naturalness.c  3.745e-05  3.260e-02  2.712e+03   0.001 0.999083    
## Ideology.c:C1            -1.160e+00  1.776e+00  2.539e+03  -0.653 0.513637    
## Ideology.c:C2             2.767e+00  1.942e+00  2.371e+03   1.425 0.154406    
## Ideology.c:C3            -5.192e-01  1.788e+00  2.473e+03  -0.290 0.771570    
## Ideology.c:C4             9.951e-01  1.809e+00  2.524e+03   0.550 0.582256    
## Ideology.c:C5            -3.015e-01  1.744e+00  2.509e+03  -0.173 0.862765    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8683,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 32.58 0.54 31.52 – 33.63 60.58 <0.001
Ideology c -2.48 0.94 -4.33 – -0.64 -2.64 0.008
Naturalness c -0.46 0.02 -0.50 – -0.41 -20.72 <0.001
C1 3.90 1.07 1.80 – 6.01 3.64 <0.001
C2 13.88 1.23 11.47 – 16.29 11.30 <0.001
C3 9.68 1.07 7.59 – 11.77 9.09 <0.001
C4 3.21 1.05 1.15 – 5.27 3.05 0.002
C5 3.68 1.05 1.63 – 5.73 3.52 <0.001
C6 -6.15 1.21 -8.51 – -3.79 -5.10 <0.001
C7 -8.66 1.22 -11.06 – -6.26 -7.07 <0.001
C8 -14.62 1.26 -17.08 – -12.15 -11.63 <0.001
C9 -6.71 1.13 -8.92 – -4.49 -5.93 <0.001
Ideology c * Naturalness
c
0.00 0.03 -0.06 – 0.06 0.00 0.999
Ideology c * C1 -1.16 1.78 -4.64 – 2.32 -0.65 0.514
Ideology c * C2 2.77 1.94 -1.04 – 6.58 1.42 0.154
Ideology c * C3 -0.52 1.79 -4.03 – 2.99 -0.29 0.772
Ideology c * C4 1.00 1.81 -2.55 – 4.54 0.55 0.582
Ideology c * C5 -0.30 1.74 -3.72 – 3.12 -0.17 0.863
Random Effects
σ2 334.17
τ00 id 177.20
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.315 / 0.552

Benefit

Q.1 How do climate change method contrasts predict benefit perception?
modA.870 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.870)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27683.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4246 -0.5150  0.0654  0.5678  3.1565 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.4    16.84   
##  Residual             381.8    19.54   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   58.2205     0.6407 1017.4032  90.874  < 2e-16 ***
## C1            -3.1843     1.1019 2386.9763  -2.890 0.003888 ** 
## C2             1.4717     1.2849 2490.3918   1.145 0.252168    
## C3            -4.3571     1.1337 2399.1210  -3.843 0.000125 ***
## C4            -2.9518     1.1284 2394.8266  -2.616 0.008955 ** 
## C5            -5.5747     1.1205 2392.8913  -4.975 6.98e-07 ***
## C6            -7.3526     1.3064 2491.1763  -5.628 2.02e-08 ***
## C7             7.5302     1.2847 2488.4305   5.862 5.19e-09 ***
## C8             8.7549     1.3138 2491.7176   6.664 3.28e-11 ***
## C9            10.4528     1.1080 2389.8849   9.434  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.028                                                        
## C2  0.023 -0.092                                                 
## C3 -0.016 -0.115 -0.073                                          
## C4 -0.018 -0.111 -0.098 -0.118                                   
## C5 -0.021 -0.107 -0.085 -0.116 -0.109                            
## C6  0.031 -0.094 -0.171 -0.110 -0.096 -0.097                     
## C7  0.023 -0.080 -0.169 -0.094 -0.092 -0.097 -0.171              
## C8  0.033 -0.103 -0.172 -0.104 -0.093 -0.097 -0.172 -0.171       
## C9 -0.026 -0.110 -0.109 -0.110 -0.118 -0.111 -0.093 -0.088 -0.081
tab_model(modA.870,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.22 0.64 56.96 – 59.48 90.87 <0.001
C1 -3.18 1.10 -5.34 – -1.02 -2.89 0.004
C2 1.47 1.28 -1.05 – 3.99 1.15 0.252
C3 -4.36 1.13 -6.58 – -2.13 -3.84 <0.001
C4 -2.95 1.13 -5.16 – -0.74 -2.62 0.009
C5 -5.57 1.12 -7.77 – -3.38 -4.98 <0.001
C6 -7.35 1.31 -9.91 – -4.79 -5.63 <0.001
C7 7.53 1.28 5.01 – 10.05 5.86 <0.001
C8 8.75 1.31 6.18 – 11.33 6.66 <0.001
C9 10.45 1.11 8.28 – 12.63 9.43 <0.001
Random Effects
σ2 381.81
τ00 id 283.44
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.054 / 0.457

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict benefit perception, over and above climate change method contrasts?
modA.871 <- lmer(Ben ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.871)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27682.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2276 -0.5182  0.0580  0.5764  3.1073 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 279.5    16.72   
##  Residual             378.0    19.44   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       58.22657    0.63677 1014.61943  91.441  < 2e-16 ***
## ATNS_Score.c      -0.11967    0.02964 1015.61741  -4.037 5.82e-05 ***
## C1                -3.18805    1.09632 2377.36267  -2.908 0.003672 ** 
## C2                 1.56948    1.27854 2481.04518   1.228 0.219731    
## C3                -4.24605    1.12961 2390.17947  -3.759 0.000175 ***
## C4                -3.15379    1.12443 2388.78520  -2.805 0.005076 ** 
## C5                -5.59659    1.11535 2385.61166  -5.018 5.61e-07 ***
## C6                -7.33824    1.30066 2482.10844  -5.642 1.87e-08 ***
## C7                 7.50680    1.27902 2479.64720   5.869 4.96e-09 ***
## C8                 8.84023    1.30850 2483.91150   6.756 1.76e-11 ***
## C9                10.41389    1.10278 2381.35485   9.443  < 2e-16 ***
## ATNS_Score.c:C1    0.05089    0.05170 2388.35637   0.984 0.325064    
## ATNS_Score.c:C2   -0.23306    0.05980 2481.56448  -3.897 9.99e-05 ***
## ATNS_Score.c:C3   -0.03676    0.05465 2405.85334  -0.673 0.501304    
## ATNS_Score.c:C4   -0.10915    0.05026 2375.43957  -2.172 0.029982 *  
## ATNS_Score.c:C5   -0.01335    0.05080 2379.75736  -0.263 0.792778    
## ATNS_Score.c:C6    0.12491    0.05999 2484.47460   2.082 0.037426 *  
## ATNS_Score.c:C7    0.01992    0.06019 2488.83935   0.331 0.740760    
## ATNS_Score.c:C8    0.09537    0.06052 2483.28404   1.576 0.115187    
## ATNS_Score.c:C9    0.07396    0.05128 2380.83293   1.442 0.149405    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.871,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.23 0.64 56.98 – 59.48 91.44 <0.001
ATNS Score c -0.12 0.03 -0.18 – -0.06 -4.04 <0.001
C1 -3.19 1.10 -5.34 – -1.04 -2.91 0.004
C2 1.57 1.28 -0.94 – 4.08 1.23 0.220
C3 -4.25 1.13 -6.46 – -2.03 -3.76 <0.001
C4 -3.15 1.12 -5.36 – -0.95 -2.80 0.005
C5 -5.60 1.12 -7.78 – -3.41 -5.02 <0.001
C6 -7.34 1.30 -9.89 – -4.79 -5.64 <0.001
C7 7.51 1.28 5.00 – 10.01 5.87 <0.001
C8 8.84 1.31 6.27 – 11.41 6.76 <0.001
C9 10.41 1.10 8.25 – 12.58 9.44 <0.001
ATNS Score c * C1 0.05 0.05 -0.05 – 0.15 0.98 0.325
ATNS Score c * C2 -0.23 0.06 -0.35 – -0.12 -3.90 <0.001
ATNS Score c * C3 -0.04 0.05 -0.14 – 0.07 -0.67 0.501
ATNS Score c * C4 -0.11 0.05 -0.21 – -0.01 -2.17 0.030
ATNS Score c * C5 -0.01 0.05 -0.11 – 0.09 -0.26 0.793
ATNS Score c * C6 0.12 0.06 0.01 – 0.24 2.08 0.037
ATNS Score c * C7 0.02 0.06 -0.10 – 0.14 0.33 0.741
ATNS Score c * C8 0.10 0.06 -0.02 – 0.21 1.58 0.115
ATNS Score c * C9 0.07 0.05 -0.03 – 0.17 1.44 0.149
Random Effects
σ2 378.01
τ00 id 279.52
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.069 / 0.465
Q.2 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
modA.8715 <- lmer(Ben ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 +C6 + C7 + C8 + C9 +  ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8715)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27604.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4715 -0.5155  0.0547  0.5583  3.3629 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 263.0    16.22   
##  Residual             369.6    19.22   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 5.817e+01  6.220e-01  1.010e+03  93.530  < 2e-16
## ATNS_Score.c               -1.067e-01  2.897e-02  1.012e+03  -3.685 0.000241
## Naturalness.c               2.306e-01  2.389e-02  2.827e+03   9.652  < 2e-16
## C1                          2.552e-01  1.142e+00  2.438e+03   0.223 0.823181
## C2                          5.017e+00  1.310e+00  2.525e+03   3.831 0.000131
## C3                         -2.281e+00  1.133e+00  2.405e+03  -2.014 0.044152
## C4                         -1.812e+00  1.119e+00  2.394e+03  -1.619 0.105544
## C5                         -4.471e+00  1.107e+00  2.393e+03  -4.037 5.58e-05
## C6                         -7.115e+00  1.285e+00  2.485e+03  -5.539 3.36e-08
## C7                          4.273e+00  1.305e+00  2.505e+03   3.274 0.001074
## C8                          5.176e+00  1.344e+00  2.532e+03   3.852 0.000120
## C9                          5.406e+00  1.204e+00  2.481e+03   4.488 7.52e-06
## ATNS_Score.c:Naturalness.c  1.357e-03  9.438e-04  2.833e+03   1.437 0.150747
## ATNS_Score.c:C1             5.857e-02  5.332e-02  2.430e+03   1.099 0.272087
## ATNS_Score.c:C2            -1.884e-01  6.075e-02  2.527e+03  -3.102 0.001944
## ATNS_Score.c:C3            -1.094e-02  5.433e-02  2.407e+03  -0.201 0.840491
## ATNS_Score.c:C4            -7.279e-02  5.007e-02  2.380e+03  -1.454 0.146125
## ATNS_Score.c:C5             1.359e-02  5.053e-02  2.387e+03   0.269 0.788071
## ATNS_Score.c:C6             1.146e-01  5.926e-02  2.488e+03   1.933 0.053315
## ATNS_Score.c:C7            -1.165e-02  6.118e-02  2.529e+03  -0.190 0.849033
## ATNS_Score.c:C8             3.811e-02  6.174e-02  2.525e+03   0.617 0.537101
## ATNS_Score.c:C9             3.464e-02  5.467e-02  2.441e+03   0.634 0.526377
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                            
## C2                         ***
## C3                         *  
## C4                            
## C5                         ***
## C6                         ***
## C7                         ** 
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c    
## ATNS_Score.c:C1               
## ATNS_Score.c:C2            ** 
## ATNS_Score.c:C3               
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6            .  
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8715,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.17 0.62 56.95 – 59.39 93.53 <0.001
ATNS Score c -0.11 0.03 -0.16 – -0.05 -3.68 <0.001
Naturalness c 0.23 0.02 0.18 – 0.28 9.65 <0.001
C1 0.26 1.14 -1.98 – 2.49 0.22 0.823
C2 5.02 1.31 2.45 – 7.59 3.83 <0.001
C3 -2.28 1.13 -4.50 – -0.06 -2.01 0.044
C4 -1.81 1.12 -4.01 – 0.38 -1.62 0.106
C5 -4.47 1.11 -6.64 – -2.30 -4.04 <0.001
C6 -7.11 1.28 -9.63 – -4.60 -5.54 <0.001
C7 4.27 1.31 1.71 – 6.83 3.27 0.001
C8 5.18 1.34 2.54 – 7.81 3.85 <0.001
C9 5.41 1.20 3.04 – 7.77 4.49 <0.001
ATNS Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.44 0.151
ATNS Score c * C1 0.06 0.05 -0.05 – 0.16 1.10 0.272
ATNS Score c * C2 -0.19 0.06 -0.31 – -0.07 -3.10 0.002
ATNS Score c * C3 -0.01 0.05 -0.12 – 0.10 -0.20 0.840
ATNS Score c * C4 -0.07 0.05 -0.17 – 0.03 -1.45 0.146
ATNS Score c * C5 0.01 0.05 -0.09 – 0.11 0.27 0.788
ATNS Score c * C6 0.11 0.06 -0.00 – 0.23 1.93 0.053
ATNS Score c * C7 -0.01 0.06 -0.13 – 0.11 -0.19 0.849
ATNS Score c * C8 0.04 0.06 -0.08 – 0.16 0.62 0.537
ATNS Score c * C9 0.03 0.05 -0.07 – 0.14 0.63 0.526
Random Effects
σ2 369.57
τ00 id 263.01
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.095 / 0.471

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict benefit perception, over and above climate change method contrasts?
modA.873 <- lmer(Ben ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.873)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27684.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2980 -0.5180  0.0676  0.5615  3.1459 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 279.3    16.71   
##  Residual             379.2    19.47   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      58.22859    0.63700 1015.71915  91.411  < 2e-16 ***
## CNS_Score.c       0.12333    0.03818 1017.82732   3.230 0.001278 ** 
## C1               -3.07705    1.09838 2382.13618  -2.801 0.005128 ** 
## C2                1.43657    1.28085 2485.93228   1.122 0.262150    
## C3               -4.35542    1.13161 2393.39959  -3.849 0.000122 ***
## C4               -2.94847    1.12636 2389.57752  -2.618 0.008909 ** 
## C5               -5.62645    1.11704 2387.29077  -5.037 5.08e-07 ***
## C6               -7.23709    1.30587 2483.28460  -5.542 3.31e-08 ***
## C7                7.45991    1.28153 2480.94873   5.821 6.60e-09 ***
## C8                8.77853    1.30944 2485.83760   6.704 2.50e-11 ***
## C9               10.33950    1.10576 2382.90946   9.351  < 2e-16 ***
## CNS_Score.c:C1    0.13051    0.06383 2373.23498   2.045 0.041013 *  
## CNS_Score.c:C2   -0.27201    0.07924 2493.09893  -3.433 0.000607 ***
## CNS_Score.c:C3    0.01858    0.06744 2389.80395   0.276 0.782919    
## CNS_Score.c:C4   -0.05921    0.06509 2386.34009  -0.910 0.363141    
## CNS_Score.c:C5   -0.14107    0.06912 2402.03817  -2.041 0.041375 *  
## CNS_Score.c:C6    0.02912    0.07482 2485.57622   0.389 0.697164    
## CNS_Score.c:C7    0.05504    0.07753 2486.62893   0.710 0.477858    
## CNS_Score.c:C8    0.20108    0.07901 2486.34724   2.545 0.010988 *  
## CNS_Score.c:C9    0.07309    0.06972 2404.58991   1.048 0.294577    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.873,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.23 0.64 56.98 – 59.48 91.41 <0.001
CNS Score c 0.12 0.04 0.05 – 0.20 3.23 0.001
C1 -3.08 1.10 -5.23 – -0.92 -2.80 0.005
C2 1.44 1.28 -1.07 – 3.95 1.12 0.262
C3 -4.36 1.13 -6.57 – -2.14 -3.85 <0.001
C4 -2.95 1.13 -5.16 – -0.74 -2.62 0.009
C5 -5.63 1.12 -7.82 – -3.44 -5.04 <0.001
C6 -7.24 1.31 -9.80 – -4.68 -5.54 <0.001
C7 7.46 1.28 4.95 – 9.97 5.82 <0.001
C8 8.78 1.31 6.21 – 11.35 6.70 <0.001
C9 10.34 1.11 8.17 – 12.51 9.35 <0.001
CNS Score c * C1 0.13 0.06 0.01 – 0.26 2.04 0.041
CNS Score c * C2 -0.27 0.08 -0.43 – -0.12 -3.43 0.001
CNS Score c * C3 0.02 0.07 -0.11 – 0.15 0.28 0.783
CNS Score c * C4 -0.06 0.07 -0.19 – 0.07 -0.91 0.363
CNS Score c * C5 -0.14 0.07 -0.28 – -0.01 -2.04 0.041
CNS Score c * C6 0.03 0.07 -0.12 – 0.18 0.39 0.697
CNS Score c * C7 0.06 0.08 -0.10 – 0.21 0.71 0.478
CNS Score c * C8 0.20 0.08 0.05 – 0.36 2.54 0.011
CNS Score c * C9 0.07 0.07 -0.06 – 0.21 1.05 0.295
Random Effects
σ2 379.17
τ00 id 279.27
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.067 / 0.463
Q.2 (CONNECTEDNESS TO NATURE) How does connectedness to nature depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
modA.8736 <- lmer(Ben ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8736)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27599.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6164 -0.5165  0.0561  0.5642  3.2568 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 263.8    16.24   
##  Residual             369.3    19.22   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                5.815e+01  6.222e-01  1.011e+03  93.452  < 2e-16 ***
## CNS_Score.c                1.258e-01  3.730e-02  1.014e+03   3.374 0.000770 ***
## Naturalness.c              2.389e-01  2.379e-02  2.835e+03  10.043  < 2e-16 ***
## C1                         5.215e-01  1.140e+00  2.439e+03   0.458 0.647322    
## C2                         5.033e+00  1.311e+00  2.530e+03   3.840 0.000126 ***
## C3                        -2.278e+00  1.134e+00  2.408e+03  -2.009 0.044619 *  
## C4                        -1.675e+00  1.118e+00  2.393e+03  -1.499 0.133969    
## C5                        -4.482e+00  1.107e+00  2.397e+03  -4.049 5.31e-05 ***
## C6                        -7.014e+00  1.287e+00  2.487e+03  -5.448 5.61e-08 ***
## C7                         4.074e+00  1.306e+00  2.509e+03   3.120 0.001832 ** 
## C8                         5.055e+00  1.341e+00  2.530e+03   3.769 0.000168 ***
## C9                         5.173e+00  1.205e+00  2.482e+03   4.293 1.83e-05 ***
## CNS_Score.c:Naturalness.c  1.789e-03  1.333e-03  2.880e+03   1.342 0.179703    
## CNS_Score.c:C1             1.709e-01  6.710e-02  2.485e+03   2.547 0.010933 *  
## CNS_Score.c:C2            -2.010e-01  7.998e-02  2.532e+03  -2.513 0.012016 *  
## CNS_Score.c:C3             5.325e-02  6.736e-02  2.396e+03   0.790 0.429335    
## CNS_Score.c:C4            -4.124e-02  6.494e-02  2.396e+03  -0.635 0.525465    
## CNS_Score.c:C5            -1.173e-01  6.856e-02  2.407e+03  -1.711 0.087260 .  
## CNS_Score.c:C6             2.138e-02  7.377e-02  2.488e+03   0.290 0.771984    
## CNS_Score.c:C7            -1.202e-02  7.923e-02  2.523e+03  -0.152 0.879406    
## CNS_Score.c:C8             1.401e-01  8.043e-02  2.512e+03   1.742 0.081657 .  
## CNS_Score.c:C9             2.316e-02  7.581e-02  2.539e+03   0.306 0.759979    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8736,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.15 0.62 56.93 – 59.37 93.45 <0.001
CNS Score c 0.13 0.04 0.05 – 0.20 3.37 0.001
Naturalness c 0.24 0.02 0.19 – 0.29 10.04 <0.001
C1 0.52 1.14 -1.71 – 2.76 0.46 0.647
C2 5.03 1.31 2.46 – 7.60 3.84 <0.001
C3 -2.28 1.13 -4.50 – -0.06 -2.01 0.045
C4 -1.68 1.12 -3.87 – 0.52 -1.50 0.134
C5 -4.48 1.11 -6.65 – -2.31 -4.05 <0.001
C6 -7.01 1.29 -9.54 – -4.49 -5.45 <0.001
C7 4.07 1.31 1.51 – 6.63 3.12 0.002
C8 5.06 1.34 2.43 – 7.68 3.77 <0.001
C9 5.17 1.20 2.81 – 7.54 4.29 <0.001
CNS Score c * Naturalness
c
0.00 0.00 -0.00 – 0.00 1.34 0.180
CNS Score c * C1 0.17 0.07 0.04 – 0.30 2.55 0.011
CNS Score c * C2 -0.20 0.08 -0.36 – -0.04 -2.51 0.012
CNS Score c * C3 0.05 0.07 -0.08 – 0.19 0.79 0.429
CNS Score c * C4 -0.04 0.06 -0.17 – 0.09 -0.64 0.525
CNS Score c * C5 -0.12 0.07 -0.25 – 0.02 -1.71 0.087
CNS Score c * C6 0.02 0.07 -0.12 – 0.17 0.29 0.772
CNS Score c * C7 -0.01 0.08 -0.17 – 0.14 -0.15 0.879
CNS Score c * C8 0.14 0.08 -0.02 – 0.30 1.74 0.082
CNS Score c * C9 0.02 0.08 -0.13 – 0.17 0.31 0.760
Random Effects
σ2 369.31
τ00 id 263.84
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.094 / 0.471

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict benefit perception, over and above climate change method contrasts?
modA.874 <- lmer(Ben ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.874)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 + CCBelief_Score.c *  
##     C3 + CCBelief_Score.c * C4 + CCBelief_Score.c * C5 + CCBelief_Score.c *  
##     C6 + CCBelief_Score.c * C7 + CCBelief_Score.c * C8 + CCBelief_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27510.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5461 -0.5042  0.0615  0.5686  3.0515 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 216.6    14.72   
##  Residual             377.2    19.42   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.819e+01  5.854e-01  1.018e+03  99.391  < 2e-16 ***
## CCBelief_Score.c     3.570e-01  2.488e-02  1.023e+03  14.352  < 2e-16 ***
## C1                  -3.112e+00  1.086e+00  2.439e+03  -2.866 0.004199 ** 
## C2                   1.546e+00  1.264e+00  2.553e+03   1.223 0.221359    
## C3                  -4.183e+00  1.117e+00  2.453e+03  -3.744 0.000186 ***
## C4                  -2.779e+00  1.115e+00  2.449e+03  -2.493 0.012739 *  
## C5                  -5.859e+00  1.105e+00  2.447e+03  -5.301 1.26e-07 ***
## C6                  -7.286e+00  1.285e+00  2.553e+03  -5.670 1.59e-08 ***
## C7                   7.464e+00  1.263e+00  2.549e+03   5.908 3.92e-09 ***
## C8                   8.630e+00  1.292e+00  2.555e+03   6.679 2.94e-11 ***
## C9                   1.037e+01  1.093e+00  2.446e+03   9.488  < 2e-16 ***
## CCBelief_Score.c:C1 -8.385e-02  4.590e-02  2.440e+03  -1.827 0.067833 .  
## CCBelief_Score.c:C2 -1.995e-01  5.030e-02  2.546e+03  -3.966 7.51e-05 ***
## CCBelief_Score.c:C3  1.313e-02  4.718e-02  2.452e+03   0.278 0.780863    
## CCBelief_Score.c:C4 -6.098e-02  4.484e-02  2.428e+03  -1.360 0.173970    
## CCBelief_Score.c:C5  3.777e-02  4.861e-02  2.466e+03   0.777 0.437228    
## CCBelief_Score.c:C6  8.569e-04  5.675e-02  2.559e+03   0.015 0.987955    
## CCBelief_Score.c:C7  1.469e-01  5.463e-02  2.558e+03   2.689 0.007221 ** 
## CCBelief_Score.c:C8  1.953e-01  5.580e-02  2.558e+03   3.500 0.000473 ***
## CCBelief_Score.c:C9  2.929e-02  4.806e-02  2.463e+03   0.610 0.542239    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.874,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.19 0.59 57.04 – 59.33 99.39 <0.001
CCBelief Score c 0.36 0.02 0.31 – 0.41 14.35 <0.001
C1 -3.11 1.09 -5.24 – -0.98 -2.87 0.004
C2 1.55 1.26 -0.93 – 4.02 1.22 0.221
C3 -4.18 1.12 -6.37 – -1.99 -3.74 <0.001
C4 -2.78 1.11 -4.97 – -0.59 -2.49 0.013
C5 -5.86 1.11 -8.03 – -3.69 -5.30 <0.001
C6 -7.29 1.28 -9.81 – -4.77 -5.67 <0.001
C7 7.46 1.26 4.99 – 9.94 5.91 <0.001
C8 8.63 1.29 6.10 – 11.16 6.68 <0.001
C9 10.37 1.09 8.23 – 12.52 9.49 <0.001
CCBelief Score c * C1 -0.08 0.05 -0.17 – 0.01 -1.83 0.068
CCBelief Score c * C2 -0.20 0.05 -0.30 – -0.10 -3.97 <0.001
CCBelief Score c * C3 0.01 0.05 -0.08 – 0.11 0.28 0.781
CCBelief Score c * C4 -0.06 0.04 -0.15 – 0.03 -1.36 0.174
CCBelief Score c * C5 0.04 0.05 -0.06 – 0.13 0.78 0.437
CCBelief Score c * C6 0.00 0.06 -0.11 – 0.11 0.02 0.988
CCBelief Score c * C7 0.15 0.05 0.04 – 0.25 2.69 0.007
CCBelief Score c * C8 0.20 0.06 0.09 – 0.30 3.50 <0.001
CCBelief Score c * C9 0.03 0.05 -0.06 – 0.12 0.61 0.542
Random Effects
σ2 377.16
τ00 id 216.64
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.158 / 0.465
Q.2 (CLIMATE CHANGE BELIEF) How does climate change belief depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
modA.8746 <- lmer(Ben ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8746)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27424.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5747 -0.5208  0.0586  0.5706  3.4714 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 202.2    14.22   
##  Residual             368.0    19.18   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     5.816e+01  5.707e-01  1.015e+03 101.905
## CCBelief_Score.c                3.413e-01  2.435e-02  1.031e+03  14.016
## Naturalness.c                   2.279e-01  2.327e-02  2.907e+03   9.795
## C1                              2.831e-01  1.127e+00  2.507e+03   0.251
## C2                              4.748e+00  1.294e+00  2.606e+03   3.668
## C3                             -2.280e+00  1.119e+00  2.472e+03  -2.037
## C4                             -1.602e+00  1.107e+00  2.457e+03  -1.448
## C5                             -4.793e+00  1.095e+00  2.460e+03  -4.376
## C6                             -6.962e+00  1.267e+00  2.563e+03  -5.494
## C7                              4.347e+00  1.288e+00  2.581e+03   3.375
## C8                              5.228e+00  1.322e+00  2.604e+03   3.953
## C9                              5.413e+00  1.190e+00  2.559e+03   4.549
## CCBelief_Score.c:Naturalness.c -2.236e-03  8.789e-04  2.921e+03  -2.544
## CCBelief_Score.c:C1            -1.102e-01  4.722e-02  2.500e+03  -2.334
## CCBelief_Score.c:C2            -2.019e-01  5.086e-02  2.575e+03  -3.970
## CCBelief_Score.c:C3             5.389e-03  4.683e-02  2.463e+03   0.115
## CCBelief_Score.c:C4            -6.481e-02  4.444e-02  2.431e+03  -1.458
## CCBelief_Score.c:C5             2.584e-02  4.812e-02  2.468e+03   0.537
## CCBelief_Score.c:C6            -2.041e-02  5.609e-02  2.590e+03  -0.364
## CCBelief_Score.c:C7             1.621e-01  5.528e-02  2.601e+03   2.932
## CCBelief_Score.c:C8             2.113e-01  5.605e-02  2.612e+03   3.770
## CCBelief_Score.c:C9             8.961e-02  5.247e-02  2.616e+03   1.708
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                < 2e-16 ***
## Naturalness.c                   < 2e-16 ***
## C1                             0.801735    
## C2                             0.000249 ***
## C3                             0.041764 *  
## C4                             0.147813    
## C5                             1.26e-05 ***
## C6                             4.31e-08 ***
## C7                             0.000749 ***
## C8                             7.91e-05 ***
## C9                             5.64e-06 ***
## CCBelief_Score.c:Naturalness.c 0.010998 *  
## CCBelief_Score.c:C1            0.019655 *  
## CCBelief_Score.c:C2            7.38e-05 ***
## CCBelief_Score.c:C3            0.908395    
## CCBelief_Score.c:C4            0.144898    
## CCBelief_Score.c:C5            0.591380    
## CCBelief_Score.c:C6            0.716029    
## CCBelief_Score.c:C7            0.003401 ** 
## CCBelief_Score.c:C8            0.000167 ***
## CCBelief_Score.c:C9            0.087803 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8746,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.16 0.57 57.04 – 59.28 101.90 <0.001
CCBelief Score c 0.34 0.02 0.29 – 0.39 14.02 <0.001
Naturalness c 0.23 0.02 0.18 – 0.27 9.80 <0.001
C1 0.28 1.13 -1.93 – 2.49 0.25 0.802
C2 4.75 1.29 2.21 – 7.29 3.67 <0.001
C3 -2.28 1.12 -4.47 – -0.09 -2.04 0.042
C4 -1.60 1.11 -3.77 – 0.57 -1.45 0.148
C5 -4.79 1.10 -6.94 – -2.65 -4.38 <0.001
C6 -6.96 1.27 -9.45 – -4.48 -5.49 <0.001
C7 4.35 1.29 1.82 – 6.87 3.37 0.001
C8 5.23 1.32 2.64 – 7.82 3.95 <0.001
C9 5.41 1.19 3.08 – 7.75 4.55 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – -0.00 -2.54 0.011
CCBelief Score c * C1 -0.11 0.05 -0.20 – -0.02 -2.33 0.020
CCBelief Score c * C2 -0.20 0.05 -0.30 – -0.10 -3.97 <0.001
CCBelief Score c * C3 0.01 0.05 -0.09 – 0.10 0.12 0.908
CCBelief Score c * C4 -0.06 0.04 -0.15 – 0.02 -1.46 0.145
CCBelief Score c * C5 0.03 0.05 -0.07 – 0.12 0.54 0.591
CCBelief Score c * C6 -0.02 0.06 -0.13 – 0.09 -0.36 0.716
CCBelief Score c * C7 0.16 0.06 0.05 – 0.27 2.93 0.003
CCBelief Score c * C8 0.21 0.06 0.10 – 0.32 3.77 <0.001
CCBelief Score c * C9 0.09 0.05 -0.01 – 0.19 1.71 0.088
Random Effects
σ2 367.96
τ00 id 202.15
ICC 0.35
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.185 / 0.474

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict benefit perception, over and above climate change method contrasts?
modA.876 <- lmer(Ben ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.876)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27705.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5302 -0.5155  0.0680  0.5592  3.2589 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 286.0    16.91   
##  Residual             378.8    19.46   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               58.23435    0.64212 1014.91283  90.690  < 2e-16 ***
## Collectivism_Score.c       0.04481    0.02696 1018.70930   1.662 0.096764 .  
## C1                        -3.20218    1.09829 2372.64391  -2.916 0.003583 ** 
## C2                         1.32539    1.28344 2475.30125   1.033 0.301851    
## C3                        -4.34428    1.13049 2385.47974  -3.843 0.000125 ***
## C4                        -3.02113    1.12595 2381.69301  -2.683 0.007343 ** 
## C5                        -5.38511    1.12147 2380.14925  -4.802 1.67e-06 ***
## C6                        -7.41561    1.30289 2476.17457  -5.692 1.41e-08 ***
## C7                         7.75613    1.28347 2473.38045   6.043 1.74e-09 ***
## C8                         8.71169    1.30999 2476.36381   6.650 3.59e-11 ***
## C9                        10.49457    1.10485 2375.09184   9.499  < 2e-16 ***
## Collectivism_Score.c:C1    0.05018    0.05008 2407.44692   1.002 0.316495    
## Collectivism_Score.c:C2   -0.07161    0.05190 2472.96934  -1.380 0.167808    
## Collectivism_Score.c:C3    0.04399    0.04793 2389.69183   0.918 0.358841    
## Collectivism_Score.c:C4    0.03382    0.04756 2385.44737   0.711 0.477103    
## Collectivism_Score.c:C5    0.07288    0.04565 2370.16441   1.597 0.110503    
## Collectivism_Score.c:C6    0.05159    0.05490 2479.32204   0.940 0.347467    
## Collectivism_Score.c:C7   -0.13556    0.05565 2480.08628  -2.436 0.014916 *  
## Collectivism_Score.c:C8   -0.05213    0.05517 2484.25225  -0.945 0.344754    
## Collectivism_Score.c:C9   -0.06991    0.04715 2385.33196  -1.483 0.138322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.876,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.23 0.64 56.98 – 59.49 90.69 <0.001
Collectivism Score c 0.04 0.03 -0.01 – 0.10 1.66 0.097
C1 -3.20 1.10 -5.36 – -1.05 -2.92 0.004
C2 1.33 1.28 -1.19 – 3.84 1.03 0.302
C3 -4.34 1.13 -6.56 – -2.13 -3.84 <0.001
C4 -3.02 1.13 -5.23 – -0.81 -2.68 0.007
C5 -5.39 1.12 -7.58 – -3.19 -4.80 <0.001
C6 -7.42 1.30 -9.97 – -4.86 -5.69 <0.001
C7 7.76 1.28 5.24 – 10.27 6.04 <0.001
C8 8.71 1.31 6.14 – 11.28 6.65 <0.001
C9 10.49 1.10 8.33 – 12.66 9.50 <0.001
Collectivism Score c * C1 0.05 0.05 -0.05 – 0.15 1.00 0.316
Collectivism Score c * C2 -0.07 0.05 -0.17 – 0.03 -1.38 0.168
Collectivism Score c * C3 0.04 0.05 -0.05 – 0.14 0.92 0.359
Collectivism Score c * C4 0.03 0.05 -0.06 – 0.13 0.71 0.477
Collectivism Score c * C5 0.07 0.05 -0.02 – 0.16 1.60 0.110
Collectivism Score c * C6 0.05 0.05 -0.06 – 0.16 0.94 0.347
Collectivism Score c * C7 -0.14 0.06 -0.24 – -0.03 -2.44 0.015
Collectivism Score c * C8 -0.05 0.06 -0.16 – 0.06 -0.94 0.345
Collectivism Score c * C9 -0.07 0.05 -0.16 – 0.02 -1.48 0.138
Random Effects
σ2 378.76
τ00 id 285.95
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.060 / 0.464
Q.2 (COLLECTIVISM) How does collectivism depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
modA.8766 <- lmer(Ben ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.8766)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27615.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5098 -0.5114  0.0620  0.5595  3.2749 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 268.7    16.39   
##  Residual             368.6    19.20   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         5.815e+01  6.260e-01  1.011e+03  92.891
## Collectivism_Score.c                4.747e-02  2.628e-02  1.015e+03   1.806
## Naturalness.c                       2.466e-01  2.376e-02  2.831e+03  10.377
## C1                                  5.013e-01  1.140e+00  2.436e+03   0.440
## C2                                  4.897e+00  1.312e+00  2.519e+03   3.734
## C3                                 -2.233e+00  1.132e+00  2.403e+03  -1.973
## C4                                 -1.718e+00  1.116e+00  2.387e+03  -1.539
## C5                                 -4.166e+00  1.111e+00  2.390e+03  -3.749
## C6                                 -7.154e+00  1.284e+00  2.481e+03  -5.573
## C7                                  4.312e+00  1.307e+00  2.501e+03   3.300
## C8                                  4.912e+00  1.340e+00  2.522e+03   3.665
## C9                                  5.185e+00  1.206e+00  2.481e+03   4.299
## Collectivism_Score.c:Naturalness.c  9.201e-04  9.325e-04  2.824e+03   0.987
## Collectivism_Score.c:C1             5.686e-02  5.204e-02  2.475e+03   1.092
## Collectivism_Score.c:C2            -7.084e-02  5.299e-02  2.530e+03  -1.337
## Collectivism_Score.c:C3             6.227e-02  4.792e-02  2.396e+03   1.300
## Collectivism_Score.c:C4             4.267e-02  4.704e-02  2.392e+03   0.907
## Collectivism_Score.c:C5             9.381e-02  4.544e-02  2.378e+03   2.065
## Collectivism_Score.c:C6             4.634e-02  5.409e-02  2.484e+03   0.857
## Collectivism_Score.c:C7            -1.533e-01  5.688e-02  2.523e+03  -2.696
## Collectivism_Score.c:C8            -8.150e-02  5.680e-02  2.526e+03  -1.435
## Collectivism_Score.c:C9            -6.911e-02  5.071e-02  2.475e+03  -1.363
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c               0.071227 .  
## Naturalness.c                       < 2e-16 ***
## C1                                 0.660277    
## C2                                 0.000193 ***
## C3                                 0.048638 *  
## C4                                 0.124036    
## C5                                 0.000182 ***
## C6                                 2.77e-08 ***
## C7                                 0.000980 ***
## C8                                 0.000252 ***
## C9                                 1.78e-05 ***
## Collectivism_Score.c:Naturalness.c 0.323899    
## Collectivism_Score.c:C1            0.274733    
## Collectivism_Score.c:C2            0.181427    
## Collectivism_Score.c:C3            0.193885    
## Collectivism_Score.c:C4            0.364460    
## Collectivism_Score.c:C5            0.039069 *  
## Collectivism_Score.c:C6            0.391743    
## Collectivism_Score.c:C7            0.007074 ** 
## Collectivism_Score.c:C8            0.151451    
## Collectivism_Score.c:C9            0.173067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.8766,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.15 0.63 56.92 – 59.38 92.89 <0.001
Collectivism Score c 0.05 0.03 -0.00 – 0.10 1.81 0.071
Naturalness c 0.25 0.02 0.20 – 0.29 10.38 <0.001
C1 0.50 1.14 -1.73 – 2.74 0.44 0.660
C2 4.90 1.31 2.33 – 7.47 3.73 <0.001
C3 -2.23 1.13 -4.45 – -0.01 -1.97 0.049
C4 -1.72 1.12 -3.91 – 0.47 -1.54 0.124
C5 -4.17 1.11 -6.35 – -1.99 -3.75 <0.001
C6 -7.15 1.28 -9.67 – -4.64 -5.57 <0.001
C7 4.31 1.31 1.75 – 6.87 3.30 0.001
C8 4.91 1.34 2.28 – 7.54 3.67 <0.001
C9 5.18 1.21 2.82 – 7.55 4.30 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 0.99 0.324
Collectivism Score c * C1 0.06 0.05 -0.05 – 0.16 1.09 0.275
Collectivism Score c * C2 -0.07 0.05 -0.17 – 0.03 -1.34 0.181
Collectivism Score c * C3 0.06 0.05 -0.03 – 0.16 1.30 0.194
Collectivism Score c * C4 0.04 0.05 -0.05 – 0.13 0.91 0.364
Collectivism Score c * C5 0.09 0.05 0.00 – 0.18 2.06 0.039
Collectivism Score c * C6 0.05 0.05 -0.06 – 0.15 0.86 0.392
Collectivism Score c * C7 -0.15 0.06 -0.26 – -0.04 -2.70 0.007
Collectivism Score c * C8 -0.08 0.06 -0.19 – 0.03 -1.43 0.151
Collectivism Score c * C9 -0.07 0.05 -0.17 – 0.03 -1.36 0.173
Random Effects
σ2 368.60
τ00 id 268.73
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.089 / 0.473

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict benefit perception, over and above climate change method contrasts?
modA.877 <- lmer(Ben ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.877)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27696.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2715 -0.5177  0.0684  0.5663  3.2139 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 283.3    16.83   
##  Residual             379.6    19.48   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                58.25895    0.64032 1016.47937  90.984  < 2e-16 ***
## Individualism_Score.c       0.08989    0.03803 1020.93895   2.364 0.018277 *  
## C1                         -3.23273    1.09946 2376.74282  -2.940 0.003311 ** 
## C2                          1.80924    1.28695 2479.38118   1.406 0.159899    
## C3                         -4.44010    1.13167 2388.75121  -3.923 8.97e-05 ***
## C4                         -2.93807    1.12593 2384.04703  -2.609 0.009125 ** 
## C5                         -5.58612    1.11788 2383.66522  -4.997 6.24e-07 ***
## C6                         -7.32490    1.30678 2480.93736  -5.605 2.31e-08 ***
## C7                          7.47997    1.28174 2477.52281   5.836 6.05e-09 ***
## C8                          8.78487    1.31261 2480.58303   6.693 2.70e-11 ***
## C9                         10.35604    1.10559 2379.09919   9.367  < 2e-16 ***
## Individualism_Score.c:C1   -0.03613    0.06515 2376.19075  -0.555 0.579279    
## Individualism_Score.c:C2   -0.24138    0.07263 2477.73226  -3.323 0.000903 ***
## Individualism_Score.c:C3   -0.08783    0.06984 2406.87010  -1.258 0.208677    
## Individualism_Score.c:C4    0.07486    0.06722 2387.62905   1.114 0.265525    
## Individualism_Score.c:C5    0.08777    0.06696 2387.08398   1.311 0.190089    
## Individualism_Score.c:C6    0.03242    0.08072 2485.85263   0.402 0.687977    
## Individualism_Score.c:C7   -0.01473    0.08091 2486.20597  -0.182 0.855543    
## Individualism_Score.c:C8    0.03285    0.07478 2480.17386   0.439 0.660468    
## Individualism_Score.c:C9    0.04123    0.06453 2377.07030   0.639 0.522952    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.877,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.26 0.64 57.00 – 59.51 90.98 <0.001
Individualism Score c 0.09 0.04 0.02 – 0.16 2.36 0.018
C1 -3.23 1.10 -5.39 – -1.08 -2.94 0.003
C2 1.81 1.29 -0.71 – 4.33 1.41 0.160
C3 -4.44 1.13 -6.66 – -2.22 -3.92 <0.001
C4 -2.94 1.13 -5.15 – -0.73 -2.61 0.009
C5 -5.59 1.12 -7.78 – -3.39 -5.00 <0.001
C6 -7.32 1.31 -9.89 – -4.76 -5.61 <0.001
C7 7.48 1.28 4.97 – 9.99 5.84 <0.001
C8 8.78 1.31 6.21 – 11.36 6.69 <0.001
C9 10.36 1.11 8.19 – 12.52 9.37 <0.001
Individualism Score c *
C1
-0.04 0.07 -0.16 – 0.09 -0.55 0.579
Individualism Score c *
C2
-0.24 0.07 -0.38 – -0.10 -3.32 0.001
Individualism Score c *
C3
-0.09 0.07 -0.22 – 0.05 -1.26 0.209
Individualism Score c *
C4
0.07 0.07 -0.06 – 0.21 1.11 0.266
Individualism Score c *
C5
0.09 0.07 -0.04 – 0.22 1.31 0.190
Individualism Score c *
C6
0.03 0.08 -0.13 – 0.19 0.40 0.688
Individualism Score c *
C7
-0.01 0.08 -0.17 – 0.14 -0.18 0.856
Individualism Score c *
C8
0.03 0.07 -0.11 – 0.18 0.44 0.660
Individualism Score c *
C9
0.04 0.06 -0.09 – 0.17 0.64 0.523
Random Effects
σ2 379.57
τ00 id 283.31
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.062 / 0.463
Q.2 (INDIVIDUALISM) How does individualism depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
modA.8775 <- lmer(Ben ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.8775)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27607
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4907 -0.5177  0.0489  0.5658  3.2770 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 266.2    16.32   
##  Residual             369.5    19.22   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          5.818e+01  6.243e-01  1.013e+03  93.188
## Individualism_Score.c                9.520e-02  3.708e-02  1.018e+03   2.568
## Naturalness.c                        2.443e-01  2.385e-02  2.832e+03  10.241
## C1                                   4.418e-01  1.142e+00  2.437e+03   0.387
## C2                                   5.395e+00  1.315e+00  2.521e+03   4.102
## C3                                  -2.354e+00  1.133e+00  2.405e+03  -2.078
## C4                                  -1.637e+00  1.117e+00  2.390e+03  -1.465
## C5                                  -4.427e+00  1.108e+00  2.395e+03  -3.997
## C6                                  -7.050e+00  1.288e+00  2.487e+03  -5.475
## C7                                   4.053e+00  1.305e+00  2.505e+03   3.105
## C8                                   5.037e+00  1.343e+00  2.527e+03   3.750
## C9                                   5.071e+00  1.205e+00  2.478e+03   4.208
## Individualism_Score.c:Naturalness.c  1.205e-03  1.349e-03  2.875e+03   0.893
## Individualism_Score.c:C1            -2.127e-02  6.758e-02  2.439e+03  -0.315
## Individualism_Score.c:C2            -2.221e-01  7.445e-02  2.523e+03  -2.982
## Individualism_Score.c:C3            -6.395e-02  6.988e-02  2.422e+03  -0.915
## Individualism_Score.c:C4             8.918e-02  6.679e-02  2.400e+03   1.335
## Individualism_Score.c:C5             1.196e-01  6.650e-02  2.392e+03   1.799
## Individualism_Score.c:C6             3.813e-02  7.953e-02  2.492e+03   0.479
## Individualism_Score.c:C7            -5.041e-02  8.191e-02  2.513e+03  -0.615
## Individualism_Score.c:C8             5.595e-03  7.758e-02  2.535e+03   0.072
## Individualism_Score.c:C9             8.327e-03  7.045e-02  2.482e+03   0.118
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c               0.010382 *  
## Naturalness.c                        < 2e-16 ***
## C1                                  0.698850    
## C2                                  4.23e-05 ***
## C3                                  0.037853 *  
## C4                                  0.142931    
## C5                                  6.61e-05 ***
## C6                                  4.82e-08 ***
## C7                                  0.001922 ** 
## C8                                  0.000181 ***
## C9                                  2.67e-05 ***
## Individualism_Score.c:Naturalness.c 0.371693    
## Individualism_Score.c:C1            0.752997    
## Individualism_Score.c:C2            0.002886 ** 
## Individualism_Score.c:C3            0.360217    
## Individualism_Score.c:C4            0.181915    
## Individualism_Score.c:C5            0.072126 .  
## Individualism_Score.c:C6            0.631671    
## Individualism_Score.c:C7            0.538350    
## Individualism_Score.c:C8            0.942519    
## Individualism_Score.c:C9            0.905922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8775,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.18 0.62 56.96 – 59.40 93.19 <0.001
Individualism Score c 0.10 0.04 0.02 – 0.17 2.57 0.010
Naturalness c 0.24 0.02 0.20 – 0.29 10.24 <0.001
C1 0.44 1.14 -1.80 – 2.68 0.39 0.699
C2 5.39 1.32 2.82 – 7.97 4.10 <0.001
C3 -2.35 1.13 -4.58 – -0.13 -2.08 0.038
C4 -1.64 1.12 -3.83 – 0.55 -1.47 0.143
C5 -4.43 1.11 -6.60 – -2.26 -4.00 <0.001
C6 -7.05 1.29 -9.58 – -4.53 -5.47 <0.001
C7 4.05 1.31 1.49 – 6.61 3.11 0.002
C8 5.04 1.34 2.40 – 7.67 3.75 <0.001
C9 5.07 1.20 2.71 – 7.43 4.21 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 0.89 0.372
Individualism Score c *
C1
-0.02 0.07 -0.15 – 0.11 -0.31 0.753
Individualism Score c *
C2
-0.22 0.07 -0.37 – -0.08 -2.98 0.003
Individualism Score c *
C3
-0.06 0.07 -0.20 – 0.07 -0.92 0.360
Individualism Score c *
C4
0.09 0.07 -0.04 – 0.22 1.34 0.182
Individualism Score c *
C5
0.12 0.07 -0.01 – 0.25 1.80 0.072
Individualism Score c *
C6
0.04 0.08 -0.12 – 0.19 0.48 0.632
Individualism Score c *
C7
-0.05 0.08 -0.21 – 0.11 -0.62 0.538
Individualism Score c *
C8
0.01 0.08 -0.15 – 0.16 0.07 0.943
Individualism Score c *
C9
0.01 0.07 -0.13 – 0.15 0.12 0.906
Random Effects
σ2 369.54
τ00 id 266.23
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.090 / 0.471

Political Ideology

Q.1 (POLITICAL ORIENTATION) How does political ideology predict benefit perception, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.878 <- lmer(Ben ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.878)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27640.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4401 -0.5148  0.0605  0.5713  3.1658 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 284.9    16.88   
##  Residual             380.9    19.52   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     58.2358     0.6418 1016.8580  90.737  < 2e-16 ***
## Ideology.c      -0.2122     1.1252 1018.7678  -0.189 0.850419    
## C1              -3.2371     1.1026 2378.6627  -2.936 0.003358 ** 
## C2               1.4511     1.2840 2479.8537   1.130 0.258527    
## C3              -4.3842     1.1339 2390.8641  -3.867 0.000113 ***
## C4              -2.9225     1.1277 2384.7084  -2.592 0.009611 ** 
## C5              -5.5027     1.1231 2383.7029  -4.900 1.03e-06 ***
## C6              -7.3459     1.3053 2479.8667  -5.628 2.03e-08 ***
## C7               7.5589     1.2844 2479.4554   5.885 4.51e-09 ***
## C8               8.7350     1.3133 2482.3630   6.651 3.57e-11 ***
## C9              10.4951     1.1133 2383.1675   9.427  < 2e-16 ***
## Ideology.c:C1   -0.3164     1.9617 2392.9733  -0.161 0.871869    
## Ideology.c:C2    4.5854     2.2855 2496.8936   2.006 0.044933 *  
## Ideology.c:C3   -0.6971     2.0223 2414.7056  -0.345 0.730324    
## Ideology.c:C4   -1.4201     2.0258 2415.6933  -0.701 0.483376    
## Ideology.c:C5   -1.4741     1.9408 2394.1501  -0.760 0.447617    
## Ideology.c:C6   -2.0848     2.1957 2484.1167  -0.950 0.342444    
## Ideology.c:C7    2.3573     2.3749 2490.2244   0.993 0.321021    
## Ideology.c:C8    2.1116     2.2538 2488.6074   0.937 0.348902    
## Ideology.c:C9    0.9301     1.9788 2392.9146   0.470 0.638381    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.878,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 58.24 0.64 56.98 – 59.49 90.74 <0.001
Ideology c -0.21 1.13 -2.42 – 1.99 -0.19 0.850
C1 -3.24 1.10 -5.40 – -1.08 -2.94 0.003
C2 1.45 1.28 -1.07 – 3.97 1.13 0.259
C3 -4.38 1.13 -6.61 – -2.16 -3.87 <0.001
C4 -2.92 1.13 -5.13 – -0.71 -2.59 0.010
C5 -5.50 1.12 -7.70 – -3.30 -4.90 <0.001
C6 -7.35 1.31 -9.91 – -4.79 -5.63 <0.001
C7 7.56 1.28 5.04 – 10.08 5.89 <0.001
C8 8.74 1.31 6.16 – 11.31 6.65 <0.001
C9 10.50 1.11 8.31 – 12.68 9.43 <0.001
Ideology c * C1 -0.32 1.96 -4.16 – 3.53 -0.16 0.872
Ideology c * C2 4.59 2.29 0.10 – 9.07 2.01 0.045
Ideology c * C3 -0.70 2.02 -4.66 – 3.27 -0.34 0.730
Ideology c * C4 -1.42 2.03 -5.39 – 2.55 -0.70 0.483
Ideology c * C5 -1.47 1.94 -5.28 – 2.33 -0.76 0.448
Ideology c * C6 -2.08 2.20 -6.39 – 2.22 -0.95 0.342
Ideology c * C7 2.36 2.37 -2.30 – 7.01 0.99 0.321
Ideology c * C8 2.11 2.25 -2.31 – 6.53 0.94 0.349
Ideology c * C9 0.93 1.98 -2.95 – 4.81 0.47 0.638
Random Effects
σ2 380.88
τ00 id 284.88
ICC 0.43
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.057 / 0.460
Q.2 (POLITICAL ORIENTATION) How does political ideology depend on naturalness perception in predicting benefit perception, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8784 <- lmer(Ben ~ Ideology.c*Naturalness + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.8784)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Ideology.c * Naturalness + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27561.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5121 -0.5128  0.0548  0.5644  3.2763 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 268.5    16.38   
##  Residual             370.4    19.25   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              48.37230    1.14783 2829.74957  42.142  < 2e-16 ***
## Ideology.c               -1.46090    1.79447 2780.11184  -0.814 0.415651    
## Naturalness               0.24448    0.02382 2837.45617  10.265  < 2e-16 ***
## C1                        0.45587    1.14434 2443.55449   0.398 0.690393    
## C2                        5.07804    1.31172 2527.70001   3.871 0.000111 ***
## C3                       -2.34476    1.13428 2408.30780  -2.067 0.038824 *  
## C4                       -1.64136    1.11789 2393.02744  -1.468 0.142166    
## C5                       -4.36031    1.11233 2399.05122  -3.920 9.10e-05 ***
## C6                       -7.10153    1.28596 2489.07555  -5.522 3.69e-08 ***
## C7                        4.14545    1.30765 2510.13595   3.170 0.001542 ** 
## C8                        5.00220    1.34297 2531.00696   3.725 0.000200 ***
## C9                        5.19194    1.20631 2485.34909   4.304 1.74e-05 ***
## Ideology.c:Naturalness    0.03249    0.03491 2613.68436   0.931 0.352065    
## Ideology.c:C1             0.04757    1.89361 2455.27874   0.025 0.979961    
## Ideology.c:C2             6.20186    2.06253 2309.97225   3.007 0.002668 ** 
## Ideology.c:C3            -0.27227    1.90309 2398.11820  -0.143 0.886250    
## Ideology.c:C4            -0.83639    1.92749 2443.74340  -0.434 0.664379    
## Ideology.c:C5            -1.79453    1.85800 2430.29449  -0.966 0.334219    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8784,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 48.37 1.15 46.12 – 50.62 42.14 <0.001
Ideology c -1.46 1.79 -4.98 – 2.06 -0.81 0.416
Naturalness 0.24 0.02 0.20 – 0.29 10.26 <0.001
C1 0.46 1.14 -1.79 – 2.70 0.40 0.690
C2 5.08 1.31 2.51 – 7.65 3.87 <0.001
C3 -2.34 1.13 -4.57 – -0.12 -2.07 0.039
C4 -1.64 1.12 -3.83 – 0.55 -1.47 0.142
C5 -4.36 1.11 -6.54 – -2.18 -3.92 <0.001
C6 -7.10 1.29 -9.62 – -4.58 -5.52 <0.001
C7 4.15 1.31 1.58 – 6.71 3.17 0.002
C8 5.00 1.34 2.37 – 7.64 3.72 <0.001
C9 5.19 1.21 2.83 – 7.56 4.30 <0.001
Ideology c * Naturalness 0.03 0.03 -0.04 – 0.10 0.93 0.352
Ideology c * C1 0.05 1.89 -3.67 – 3.76 0.03 0.980
Ideology c * C2 6.20 2.06 2.16 – 10.25 3.01 0.003
Ideology c * C3 -0.27 1.90 -4.00 – 3.46 -0.14 0.886
Ideology c * C4 -0.84 1.93 -4.62 – 2.94 -0.43 0.664
Ideology c * C5 -1.79 1.86 -5.44 – 1.85 -0.97 0.334
Random Effects
σ2 370.43
τ00 id 268.47
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.085 / 0.469

Difference Benefit - Risk

Q.1 How do climate change method contrasts predict benefit perception?
modA.910 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.910)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30498.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8901 -0.5430  0.0446  0.5733  3.1036 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  584.4   24.17   
##  Residual             1032.4   32.13   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   25.7958     0.9639 1018.4237  26.762  < 2e-16 ***
## C1           -14.0197     1.7957 2450.9270  -7.808 8.57e-15 ***
## C2           -19.0289     2.0889 2564.5205  -9.110  < 2e-16 ***
## C3           -17.7845     1.8471 2464.5022  -9.628  < 2e-16 ***
## C4            -8.6096     1.8386 2459.9287  -4.683 2.98e-06 ***
## C5           -11.3284     1.8257 2457.6798  -6.205 6.40e-10 ***
## C6            -1.5867     2.1238 2565.7134  -0.747    0.455    
## C7            22.5093     2.0886 2562.6624  10.777  < 2e-16 ***
## C8            30.2190     2.1358 2566.3661  14.149  < 2e-16 ***
## C9            26.9722     1.8055 2454.0429  14.939  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.031                                                        
## C2  0.025 -0.094                                                 
## C3 -0.018 -0.113 -0.078                                          
## C4 -0.020 -0.110 -0.099 -0.117                                   
## C5 -0.023 -0.105 -0.088 -0.115 -0.108                            
## C6  0.034 -0.096 -0.167 -0.110 -0.098 -0.099                     
## C7  0.025 -0.083 -0.166 -0.096 -0.094 -0.099 -0.167              
## C8  0.037 -0.104 -0.168 -0.105 -0.095 -0.099 -0.169 -0.167       
## C9 -0.028 -0.109 -0.109 -0.108 -0.115 -0.110 -0.095 -0.091 -0.085
tab_model(modA.910,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.80 0.96 23.91 – 27.69 26.76 <0.001
C1 -14.02 1.80 -17.54 – -10.50 -7.81 <0.001
C2 -19.03 2.09 -23.12 – -14.93 -9.11 <0.001
C3 -17.78 1.85 -21.41 – -14.16 -9.63 <0.001
C4 -8.61 1.84 -12.21 – -5.00 -4.68 <0.001
C5 -11.33 1.83 -14.91 – -7.75 -6.20 <0.001
C6 -1.59 2.12 -5.75 – 2.58 -0.75 0.455
C7 22.51 2.09 18.41 – 26.60 10.78 <0.001
C8 30.22 2.14 26.03 – 34.41 14.15 <0.001
C9 26.97 1.81 23.43 – 30.51 14.94 <0.001
Random Effects
σ2 1032.43
τ00 id 584.41
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.163 / 0.466

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict the benefit-risk difference, over and above climate change method contrasts?
modA.911 <- lmer(BRDiff ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.911)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30400
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0868 -0.5518  0.0381  0.5850  3.4207 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  518.2   22.76   
##  Residual             1012.3   31.82   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       25.76087    0.92580 1017.52131  27.826  < 2e-16 ***
## ATNS_Score.c      -0.39259    0.04310 1018.71343  -9.109  < 2e-16 ***
## C1               -14.01419    1.77209 2465.46596  -7.908 3.90e-15 ***
## C2               -18.77727    2.05983 2582.07926  -9.116  < 2e-16 ***
## C3               -17.47606    1.82516 2480.25355  -9.575  < 2e-16 ***
## C4                -9.23394    1.81688 2478.56527  -5.082 4.01e-07 ***
## C5               -11.39653    1.80237 2475.01039  -6.323 3.03e-10 ***
## C6                -1.54323    2.09537 2583.75840  -0.736 0.461497    
## C7                22.32160    2.06068 2580.89551  10.832  < 2e-16 ***
## C8                30.46775    2.10789 2585.72173  14.454  < 2e-16 ***
## C9                26.88716    1.78232 2469.75666  15.086  < 2e-16 ***
## ATNS_Score.c:C1   -0.03151    0.08355 2477.22602  -0.377 0.706075    
## ATNS_Score.c:C2   -0.36972    0.09635 2582.53095  -3.837 0.000127 ***
## ATNS_Score.c:C3   -0.03004    0.08826 2498.11201  -0.340 0.733618    
## ATNS_Score.c:C4   -0.29759    0.08125 2462.61500  -3.663 0.000255 ***
## ATNS_Score.c:C5   -0.11099    0.08211 2467.54893  -1.352 0.176558    
## ATNS_Score.c:C6    0.18864    0.09664 2585.83370   1.952 0.051037 .  
## ATNS_Score.c:C7    0.20430    0.09695 2590.10449   2.107 0.035195 *  
## ATNS_Score.c:C8    0.31372    0.09750 2584.96609   3.218 0.001308 ** 
## ATNS_Score.c:C9    0.14631    0.08289 2469.30122   1.765 0.077670 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.911,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.76 0.93 23.95 – 27.58 27.83 <0.001
ATNS Score c -0.39 0.04 -0.48 – -0.31 -9.11 <0.001
C1 -14.01 1.77 -17.49 – -10.54 -7.91 <0.001
C2 -18.78 2.06 -22.82 – -14.74 -9.12 <0.001
C3 -17.48 1.83 -21.05 – -13.90 -9.58 <0.001
C4 -9.23 1.82 -12.80 – -5.67 -5.08 <0.001
C5 -11.40 1.80 -14.93 – -7.86 -6.32 <0.001
C6 -1.54 2.10 -5.65 – 2.57 -0.74 0.461
C7 22.32 2.06 18.28 – 26.36 10.83 <0.001
C8 30.47 2.11 26.33 – 34.60 14.45 <0.001
C9 26.89 1.78 23.39 – 30.38 15.09 <0.001
ATNS Score c * C1 -0.03 0.08 -0.20 – 0.13 -0.38 0.706
ATNS Score c * C2 -0.37 0.10 -0.56 – -0.18 -3.84 <0.001
ATNS Score c * C3 -0.03 0.09 -0.20 – 0.14 -0.34 0.734
ATNS Score c * C4 -0.30 0.08 -0.46 – -0.14 -3.66 <0.001
ATNS Score c * C5 -0.11 0.08 -0.27 – 0.05 -1.35 0.177
ATNS Score c * C6 0.19 0.10 -0.00 – 0.38 1.95 0.051
ATNS Score c * C7 0.20 0.10 0.01 – 0.39 2.11 0.035
ATNS Score c * C8 0.31 0.10 0.12 – 0.50 3.22 0.001
ATNS Score c * C9 0.15 0.08 -0.02 – 0.31 1.77 0.078
Random Effects
σ2 1012.32
τ00 id 518.23
ICC 0.34
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.211 / 0.478
Q.2 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
modA.9114 <- lmer(BRDiff ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30068
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9857 -0.5450  0.0357  0.5830  3.1327 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 464.3    21.55   
##  Residual             900.8    30.01   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 2.567e+01  8.760e-01  1.015e+03  29.306  < 2e-16
## ATNS_Score.c               -3.526e-01  4.080e-02  1.018e+03  -8.642  < 2e-16
## Naturalness.c               6.645e-01  3.639e-02  2.919e+03  18.260  < 2e-16
## C1                         -4.201e+00  1.761e+00  2.523e+03  -2.385  0.01713
## C2                         -8.793e+00  2.015e+00  2.618e+03  -4.365 1.32e-05
## C3                         -1.174e+01  1.748e+00  2.487e+03  -6.717 2.29e-11
## C4                         -5.152e+00  1.728e+00  2.476e+03  -2.982  0.00289
## C5                         -8.028e+00  1.710e+00  2.475e+03  -4.696 2.80e-06
## C6                         -1.025e+00  1.978e+00  2.576e+03  -0.518  0.60434
## C7                          1.299e+01  2.009e+00  2.597e+03   6.467 1.19e-10
## C8                          1.981e+01  2.066e+00  2.627e+03   9.587  < 2e-16
## C9                          1.242e+01  1.855e+00  2.569e+03   6.697 2.60e-11
## ATNS_Score.c:Naturalness.c  6.563e-03  1.437e-03  2.923e+03   4.566 5.17e-06
## ATNS_Score.c:C1             3.277e-02  8.223e-02  2.514e+03   0.399  0.69026
## ATNS_Score.c:C2            -2.038e-01  9.344e-02  2.620e+03  -2.181  0.02927
## ATNS_Score.c:C3             6.651e-02  8.384e-02  2.490e+03   0.793  0.42765
## ATNS_Score.c:C4            -1.769e-01  7.732e-02  2.459e+03  -2.288  0.02220
## ATNS_Score.c:C5            -1.731e-02  7.802e-02  2.467e+03  -0.222  0.82444
## ATNS_Score.c:C6             1.614e-01  9.124e-02  2.579e+03   1.769  0.07705
## ATNS_Score.c:C7             7.619e-02  9.410e-02  2.621e+03   0.810  0.41820
## ATNS_Score.c:C8             1.057e-01  9.496e-02  2.619e+03   1.113  0.26591
## ATNS_Score.c:C9            -2.545e-02  8.429e-02  2.526e+03  -0.302  0.76270
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                         *  
## C2                         ***
## C3                         ***
## C4                         ** 
## C5                         ***
## C6                            
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c ***
## ATNS_Score.c:C1               
## ATNS_Score.c:C2            *  
## ATNS_Score.c:C3               
## ATNS_Score.c:C4            *  
## ATNS_Score.c:C5               
## ATNS_Score.c:C6            .  
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9114,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.67 0.88 23.95 – 27.39 29.31 <0.001
ATNS Score c -0.35 0.04 -0.43 – -0.27 -8.64 <0.001
Naturalness c 0.66 0.04 0.59 – 0.74 18.26 <0.001
C1 -4.20 1.76 -7.65 – -0.75 -2.39 0.017
C2 -8.79 2.01 -12.74 – -4.84 -4.36 <0.001
C3 -11.74 1.75 -15.17 – -8.32 -6.72 <0.001
C4 -5.15 1.73 -8.54 – -1.76 -2.98 0.003
C5 -8.03 1.71 -11.38 – -4.68 -4.70 <0.001
C6 -1.03 1.98 -4.90 – 2.85 -0.52 0.604
C7 12.99 2.01 9.05 – 16.93 6.47 <0.001
C8 19.81 2.07 15.76 – 23.86 9.59 <0.001
C9 12.42 1.86 8.79 – 16.06 6.70 <0.001
ATNS Score c *
Naturalness c
0.01 0.00 0.00 – 0.01 4.57 <0.001
ATNS Score c * C1 0.03 0.08 -0.13 – 0.19 0.40 0.690
ATNS Score c * C2 -0.20 0.09 -0.39 – -0.02 -2.18 0.029
ATNS Score c * C3 0.07 0.08 -0.10 – 0.23 0.79 0.428
ATNS Score c * C4 -0.18 0.08 -0.33 – -0.03 -2.29 0.022
ATNS Score c * C5 -0.02 0.08 -0.17 – 0.14 -0.22 0.824
ATNS Score c * C6 0.16 0.09 -0.02 – 0.34 1.77 0.077
ATNS Score c * C7 0.08 0.09 -0.11 – 0.26 0.81 0.418
ATNS Score c * C8 0.11 0.09 -0.08 – 0.29 1.11 0.266
ATNS Score c * C9 -0.03 0.08 -0.19 – 0.14 -0.30 0.763
Random Effects
σ2 900.83
τ00 id 464.31
ICC 0.34
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.291 / 0.532

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict the benefit-risk difference, over and above climate change method contrasts?
modA.913 <- lmer(BRDiff ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 +(1|id), data = L)

summary(modA.913)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30481
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3454 -0.5378  0.0342  0.5745  3.2309 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  576.9   24.02   
##  Residual             1020.7   31.95   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      25.75179    0.95843 1016.41635  26.869  < 2e-16 ***
## CNS_Score.c       0.12554    0.05746 1018.83094   2.185  0.02913 *  
## C1              -13.75806    1.78623 2444.47732  -7.702 1.93e-14 ***
## C2              -18.95037    2.07804 2558.14981  -9.119  < 2e-16 ***
## C3              -17.80864    1.83980 2457.20129  -9.680  < 2e-16 ***
## C4               -8.65442    1.83143 2453.12941  -4.726 2.43e-06 ***
## C5              -11.40057    1.81636 2450.42756  -6.277 4.08e-10 ***
## C6               -1.43943    2.11875 2555.95359  -0.679  0.49696    
## C7               22.21281    2.07938 2553.26199  10.682  < 2e-16 ***
## C8               30.31422    2.12441 2558.60447  14.269  < 2e-16 ***
## C9               26.76316    1.79820 2445.49599  14.883  < 2e-16 ***
## CNS_Score.c:C1    0.14127    0.10383 2433.75164   1.361  0.17378    
## CNS_Score.c:C2   -0.55897    0.12854 2565.96003  -4.349 1.42e-05 ***
## CNS_Score.c:C3   -0.05848    0.10966 2453.13784  -0.533  0.59389    
## CNS_Score.c:C4   -0.20800    0.10585 2448.35332  -1.965  0.04951 *  
## CNS_Score.c:C5   -0.19088    0.11236 2466.72449  -1.699  0.08947 .  
## CNS_Score.c:C6    0.01044    0.12139 2557.18965   0.086  0.93146    
## CNS_Score.c:C7    0.33119    0.12579 2559.02354   2.633  0.00852 ** 
## CNS_Score.c:C8    0.38991    0.12818 2559.16525   3.042  0.00238 ** 
## CNS_Score.c:C9    0.20349    0.11332 2469.54501   1.796  0.07266 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.913,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.75 0.96 23.87 – 27.63 26.87 <0.001
CNS Score c 0.13 0.06 0.01 – 0.24 2.18 0.029
C1 -13.76 1.79 -17.26 – -10.26 -7.70 <0.001
C2 -18.95 2.08 -23.02 – -14.88 -9.12 <0.001
C3 -17.81 1.84 -21.42 – -14.20 -9.68 <0.001
C4 -8.65 1.83 -12.25 – -5.06 -4.73 <0.001
C5 -11.40 1.82 -14.96 – -7.84 -6.28 <0.001
C6 -1.44 2.12 -5.59 – 2.71 -0.68 0.497
C7 22.21 2.08 18.14 – 26.29 10.68 <0.001
C8 30.31 2.12 26.15 – 34.48 14.27 <0.001
C9 26.76 1.80 23.24 – 30.29 14.88 <0.001
CNS Score c * C1 0.14 0.10 -0.06 – 0.34 1.36 0.174
CNS Score c * C2 -0.56 0.13 -0.81 – -0.31 -4.35 <0.001
CNS Score c * C3 -0.06 0.11 -0.27 – 0.16 -0.53 0.594
CNS Score c * C4 -0.21 0.11 -0.42 – -0.00 -1.97 0.049
CNS Score c * C5 -0.19 0.11 -0.41 – 0.03 -1.70 0.089
CNS Score c * C6 0.01 0.12 -0.23 – 0.25 0.09 0.931
CNS Score c * C7 0.33 0.13 0.08 – 0.58 2.63 0.009
CNS Score c * C8 0.39 0.13 0.14 – 0.64 3.04 0.002
CNS Score c * C9 0.20 0.11 -0.02 – 0.43 1.80 0.073
Random Effects
σ2 1020.75
τ00 id 576.86
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.175 / 0.473
Q.2 (CONNECTEDNESS TO NATURE) How does connectedness to nature depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
modA.9135 <- lmer(BRDiff ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.9135)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30152.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3773 -0.5327  0.0180  0.5775  3.0285 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 527.2    22.96   
##  Residual             905.1    30.09   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                2.552e+01  9.112e-01  1.014e+03  28.009  < 2e-16 ***
## CNS_Score.c                1.324e-01  5.462e-02  1.017e+03   2.423  0.01555 *  
## Naturalness.c              6.922e-01  3.666e-02  2.895e+03  18.882  < 2e-16 ***
## C1                        -3.368e+00  1.771e+00  2.492e+03  -1.902  0.05726 .  
## C2                        -8.645e+00  2.033e+00  2.589e+03  -4.253 2.19e-05 ***
## C3                        -1.183e+01  1.762e+00  2.459e+03  -6.714 2.34e-11 ***
## C4                        -4.930e+00  1.737e+00  2.444e+03  -2.838  0.00458 ** 
## C5                        -8.089e+00  1.721e+00  2.448e+03  -4.701 2.74e-06 ***
## C6                        -8.380e-01  1.998e+00  2.545e+03  -0.419  0.67498    
## C7                         1.251e+01  2.026e+00  2.567e+03   6.175 7.65e-10 ***
## C8                         1.962e+01  2.080e+00  2.590e+03   9.435  < 2e-16 ***
## C9                         1.182e+01  1.870e+00  2.538e+03   6.322 3.05e-10 ***
## CNS_Score.c:Naturalness.c  4.150e-03  2.052e-03  2.933e+03   2.023  0.04321 *  
## CNS_Score.c:C1             2.381e-01  1.041e-01  2.539e+03   2.286  0.02233 *  
## CNS_Score.c:C2            -3.656e-01  1.240e-01  2.591e+03  -2.948  0.00323 ** 
## CNS_Score.c:C3             3.554e-02  1.047e-01  2.447e+03   0.339  0.73434    
## CNS_Score.c:C4            -1.629e-01  1.010e-01  2.446e+03  -1.614  0.10666    
## CNS_Score.c:C5            -1.296e-01  1.066e-01  2.459e+03  -1.217  0.22390    
## CNS_Score.c:C6            -1.013e-02  1.145e-01  2.544e+03  -0.088  0.92953    
## CNS_Score.c:C7             1.485e-01  1.229e-01  2.582e+03   1.208  0.22704    
## CNS_Score.c:C8             2.290e-01  1.248e-01  2.570e+03   1.835  0.06660 .  
## CNS_Score.c:C9             8.448e-02  1.176e-01  2.597e+03   0.719  0.47244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9135,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.52 0.91 23.74 – 27.31 28.01 <0.001
CNS Score c 0.13 0.05 0.03 – 0.24 2.42 0.015
Naturalness c 0.69 0.04 0.62 – 0.76 18.88 <0.001
C1 -3.37 1.77 -6.84 – 0.10 -1.90 0.057
C2 -8.64 2.03 -12.63 – -4.66 -4.25 <0.001
C3 -11.83 1.76 -15.29 – -8.38 -6.71 <0.001
C4 -4.93 1.74 -8.34 – -1.52 -2.84 0.005
C5 -8.09 1.72 -11.46 – -4.71 -4.70 <0.001
C6 -0.84 2.00 -4.76 – 3.08 -0.42 0.675
C7 12.51 2.03 8.54 – 16.48 6.18 <0.001
C8 19.62 2.08 15.55 – 23.70 9.43 <0.001
C9 11.82 1.87 8.16 – 15.49 6.32 <0.001
CNS Score c * Naturalness
c
0.00 0.00 0.00 – 0.01 2.02 0.043
CNS Score c * C1 0.24 0.10 0.03 – 0.44 2.29 0.022
CNS Score c * C2 -0.37 0.12 -0.61 – -0.12 -2.95 0.003
CNS Score c * C3 0.04 0.10 -0.17 – 0.24 0.34 0.734
CNS Score c * C4 -0.16 0.10 -0.36 – 0.04 -1.61 0.107
CNS Score c * C5 -0.13 0.11 -0.34 – 0.08 -1.22 0.224
CNS Score c * C6 -0.01 0.11 -0.23 – 0.21 -0.09 0.930
CNS Score c * C7 0.15 0.12 -0.09 – 0.39 1.21 0.227
CNS Score c * C8 0.23 0.12 -0.02 – 0.47 1.84 0.067
CNS Score c * C9 0.08 0.12 -0.15 – 0.31 0.72 0.472
Random Effects
σ2 905.12
τ00 id 527.19
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.255 / 0.529

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict the benefit-risk difference, over and above climate change method contrasts?
modA.914 <- lmer(BRDiff ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 +(1|id), data = L)

summary(modA.914)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30315.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0407 -0.5521  0.0426  0.5749  3.1791 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  441     21.00   
##  Residual             1016     31.87   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           25.73297    0.88408 1019.14407  29.107  < 2e-16 ***
## CCBelief_Score.c       0.51455    0.03758 1024.58438  13.693  < 2e-16 ***
## C1                   -13.87528    1.76502 2505.39277  -7.861 5.60e-15 ***
## C2                   -19.05907    2.04925 2627.34172  -9.301  < 2e-16 ***
## C3                   -17.60710    1.81527 2520.62979  -9.699  < 2e-16 ***
## C4                    -8.30169    1.81173 2516.62952  -4.582 4.83e-06 ***
## C5                   -11.79535    1.79606 2514.86953  -6.567 6.20e-11 ***
## C6                    -1.43291    2.08301 2627.66246  -0.688   0.4916    
## C7                    22.29106    2.04805 2623.88916  10.884  < 2e-16 ***
## C8                    30.20208    2.09456 2629.49223  14.419  < 2e-16 ***
## C9                    26.75941    1.77676 2512.46341  15.061  < 2e-16 ***
## CCBelief_Score.c:C1   -0.06219    0.07459 2506.42187  -0.834   0.4045    
## CCBelief_Score.c:C2   -0.48178    0.08155 2618.88446  -5.907 3.92e-09 ***
## CCBelief_Score.c:C3    0.02147    0.07666 2519.97611   0.280   0.7794    
## CCBelief_Score.c:C4   -0.08658    0.07290 2493.04610  -1.188   0.2350    
## CCBelief_Score.c:C5    0.04612    0.07896 2534.07771   0.584   0.5593    
## CCBelief_Score.c:C6   -0.01734    0.09199 2634.89402  -0.188   0.8505    
## CCBelief_Score.c:C7    0.38924    0.08856 2632.59432   4.395 1.15e-05 ***
## CCBelief_Score.c:C8    0.16784    0.09045 2633.07147   1.856   0.0636 .  
## CCBelief_Score.c:C9    0.08541    0.07807 2531.89488   1.094   0.2740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.914,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.73 0.88 24.00 – 27.47 29.11 <0.001
CCBelief Score c 0.51 0.04 0.44 – 0.59 13.69 <0.001
C1 -13.88 1.77 -17.34 – -10.41 -7.86 <0.001
C2 -19.06 2.05 -23.08 – -15.04 -9.30 <0.001
C3 -17.61 1.82 -21.17 – -14.05 -9.70 <0.001
C4 -8.30 1.81 -11.85 – -4.75 -4.58 <0.001
C5 -11.80 1.80 -15.32 – -8.27 -6.57 <0.001
C6 -1.43 2.08 -5.52 – 2.65 -0.69 0.492
C7 22.29 2.05 18.28 – 26.31 10.88 <0.001
C8 30.20 2.09 26.10 – 34.31 14.42 <0.001
C9 26.76 1.78 23.28 – 30.24 15.06 <0.001
CCBelief Score c * C1 -0.06 0.07 -0.21 – 0.08 -0.83 0.405
CCBelief Score c * C2 -0.48 0.08 -0.64 – -0.32 -5.91 <0.001
CCBelief Score c * C3 0.02 0.08 -0.13 – 0.17 0.28 0.779
CCBelief Score c * C4 -0.09 0.07 -0.23 – 0.06 -1.19 0.235
CCBelief Score c * C5 0.05 0.08 -0.11 – 0.20 0.58 0.559
CCBelief Score c * C6 -0.02 0.09 -0.20 – 0.16 -0.19 0.851
CCBelief Score c * C7 0.39 0.09 0.22 – 0.56 4.40 <0.001
CCBelief Score c * C8 0.17 0.09 -0.01 – 0.35 1.86 0.064
CCBelief Score c * C9 0.09 0.08 -0.07 – 0.24 1.09 0.274
Random Effects
σ2 1015.87
τ00 id 441.04
ICC 0.30
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.248 / 0.476
Q.2 (CLIMATE CHANGE BELIEF) How does climate change belief depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
modA.9145 <- lmer(BRDiff ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9145)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29984.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5446 -0.5604  0.0221  0.5776  2.9929 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 400.7    20.02   
##  Residual             901.3    30.02   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.559e+01  8.390e-01  1.020e+03  30.494
## CCBelief_Score.c                4.755e-01  3.582e-02  1.038e+03  13.276
## Naturalness.c                   6.728e-01  3.582e-02  2.952e+03  18.785
## C1                             -3.844e+00  1.749e+00  2.563e+03  -2.197
## C2                             -9.475e+00  2.006e+00  2.665e+03  -4.724
## C3                             -1.199e+01  1.738e+00  2.527e+03  -6.898
## C4                             -4.752e+00  1.719e+00  2.511e+03  -2.764
## C5                             -8.622e+00  1.701e+00  2.514e+03  -5.067
## C6                             -6.393e-01  1.965e+00  2.621e+03  -0.325
## C7                              1.305e+01  1.996e+00  2.640e+03   6.538
## C8                              2.015e+01  2.049e+00  2.664e+03   9.833
## C9                              1.220e+01  1.845e+00  2.617e+03   6.611
## CCBelief_Score.c:Naturalness.c -3.625e-03  1.352e-03  2.962e+03  -2.680
## CCBelief_Score.c:C1            -9.586e-02  7.329e-02  2.555e+03  -1.308
## CCBelief_Score.c:C2            -4.529e-01  7.885e-02  2.633e+03  -5.744
## CCBelief_Score.c:C3             1.644e-02  7.273e-02  2.517e+03   0.226
## CCBelief_Score.c:C4            -8.259e-02  6.906e-02  2.483e+03  -1.196
## CCBelief_Score.c:C5             2.473e-02  7.473e-02  2.522e+03   0.331
## CCBelief_Score.c:C6            -6.164e-02  8.694e-02  2.648e+03  -0.709
## CCBelief_Score.c:C7             3.919e-01  8.565e-02  2.660e+03   4.575
## CCBelief_Score.c:C8             1.758e-01  8.683e-02  2.671e+03   2.025
## CCBelief_Score.c:C9             1.848e-01  8.129e-02  2.673e+03   2.274
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                < 2e-16 ***
## Naturalness.c                   < 2e-16 ***
## C1                              0.02809 *  
## C2                             2.43e-06 ***
## C3                             6.63e-12 ***
## C4                              0.00575 ** 
## C5                             4.33e-07 ***
## C6                              0.74490    
## C7                             7.48e-11 ***
## C8                              < 2e-16 ***
## C9                             4.61e-11 ***
## CCBelief_Score.c:Naturalness.c  0.00739 ** 
## CCBelief_Score.c:C1             0.19100    
## CCBelief_Score.c:C2            1.03e-08 ***
## CCBelief_Score.c:C3             0.82121    
## CCBelief_Score.c:C4             0.23185    
## CCBelief_Score.c:C5             0.74071    
## CCBelief_Score.c:C6             0.47833    
## CCBelief_Score.c:C7            4.97e-06 ***
## CCBelief_Score.c:C8             0.04297 *  
## CCBelief_Score.c:C9             0.02307 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9145,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.59 0.84 23.94 – 27.23 30.49 <0.001
CCBelief Score c 0.48 0.04 0.41 – 0.55 13.28 <0.001
Naturalness c 0.67 0.04 0.60 – 0.74 18.79 <0.001
C1 -3.84 1.75 -7.27 – -0.41 -2.20 0.028
C2 -9.48 2.01 -13.41 – -5.54 -4.72 <0.001
C3 -11.99 1.74 -15.40 – -8.58 -6.90 <0.001
C4 -4.75 1.72 -8.12 – -1.38 -2.76 0.006
C5 -8.62 1.70 -11.96 – -5.29 -5.07 <0.001
C6 -0.64 1.96 -4.49 – 3.21 -0.33 0.745
C7 13.05 2.00 9.14 – 16.97 6.54 <0.001
C8 20.15 2.05 16.13 – 24.16 9.83 <0.001
C9 12.20 1.85 8.58 – 15.82 6.61 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.01 – -0.00 -2.68 0.007
CCBelief Score c * C1 -0.10 0.07 -0.24 – 0.05 -1.31 0.191
CCBelief Score c * C2 -0.45 0.08 -0.61 – -0.30 -5.74 <0.001
CCBelief Score c * C3 0.02 0.07 -0.13 – 0.16 0.23 0.821
CCBelief Score c * C4 -0.08 0.07 -0.22 – 0.05 -1.20 0.232
CCBelief Score c * C5 0.02 0.07 -0.12 – 0.17 0.33 0.741
CCBelief Score c * C6 -0.06 0.09 -0.23 – 0.11 -0.71 0.478
CCBelief Score c * C7 0.39 0.09 0.22 – 0.56 4.58 <0.001
CCBelief Score c * C8 0.18 0.09 0.01 – 0.35 2.03 0.043
CCBelief Score c * C9 0.18 0.08 0.03 – 0.34 2.27 0.023
Random Effects
σ2 901.30
τ00 id 400.69
ICC 0.31
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.325 / 0.533

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict the benefit-risk difference, over and above climate change method contrasts?
modA.916 <- lmer(BRDiff ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.916)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30523
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0020 -0.5453  0.0412  0.5735  3.0893 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  589.2   24.27   
##  Residual             1030.0   32.09   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              2.585e+01  9.665e-01  1.016e+03  26.745  < 2e-16 ***
## Collectivism_Score.c    -3.640e-02  4.058e-02  1.020e+03  -0.897   0.3700    
## C1                      -1.405e+01  1.795e+00  2.438e+03  -7.827 7.41e-15 ***
## C2                      -1.906e+01  2.092e+00  2.551e+03  -9.111  < 2e-16 ***
## C3                      -1.786e+01  1.847e+00  2.452e+03  -9.672  < 2e-16 ***
## C4                      -8.711e+00  1.839e+00  2.448e+03  -4.736 2.30e-06 ***
## C5                      -1.118e+01  1.832e+00  2.446e+03  -6.100 1.23e-09 ***
## C6                      -1.668e+00  2.124e+00  2.553e+03  -0.785   0.4323    
## C7                       2.286e+01  2.092e+00  2.549e+03  10.925  < 2e-16 ***
## C8                       3.015e+01  2.135e+00  2.553e+03  14.120  < 2e-16 ***
## C9                       2.702e+01  1.805e+00  2.441e+03  14.967  < 2e-16 ***
## Collectivism_Score.c:C1 -2.320e-02  8.176e-02  2.477e+03  -0.284   0.7767    
## Collectivism_Score.c:C2  5.489e-02  8.461e-02  2.548e+03   0.649   0.5166    
## Collectivism_Score.c:C3 -5.806e-04  7.829e-02  2.457e+03  -0.007   0.9941    
## Collectivism_Score.c:C4  5.309e-02  7.770e-02  2.453e+03   0.683   0.4945    
## Collectivism_Score.c:C5  1.087e-01  7.459e-02  2.435e+03   1.458   0.1450    
## Collectivism_Score.c:C6  3.354e-02  8.947e-02  2.556e+03   0.375   0.7078    
## Collectivism_Score.c:C7 -2.041e-01  9.069e-02  2.556e+03  -2.251   0.0245 *  
## Collectivism_Score.c:C8 -2.426e-02  8.990e-02  2.561e+03  -0.270   0.7873    
## Collectivism_Score.c:C9 -8.700e-02  7.703e-02  2.452e+03  -1.129   0.2588    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.916,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.85 0.97 23.95 – 27.74 26.75 <0.001
Collectivism Score c -0.04 0.04 -0.12 – 0.04 -0.90 0.370
C1 -14.05 1.79 -17.56 – -10.53 -7.83 <0.001
C2 -19.06 2.09 -23.16 – -14.96 -9.11 <0.001
C3 -17.86 1.85 -21.48 – -14.24 -9.67 <0.001
C4 -8.71 1.84 -12.32 – -5.10 -4.74 <0.001
C5 -11.18 1.83 -14.77 – -7.58 -6.10 <0.001
C6 -1.67 2.12 -5.83 – 2.50 -0.79 0.432
C7 22.86 2.09 18.75 – 26.96 10.92 <0.001
C8 30.15 2.14 25.96 – 34.33 14.12 <0.001
C9 27.02 1.81 23.48 – 30.56 14.97 <0.001
Collectivism Score c * C1 -0.02 0.08 -0.18 – 0.14 -0.28 0.777
Collectivism Score c * C2 0.05 0.08 -0.11 – 0.22 0.65 0.517
Collectivism Score c * C3 -0.00 0.08 -0.15 – 0.15 -0.01 0.994
Collectivism Score c * C4 0.05 0.08 -0.10 – 0.21 0.68 0.494
Collectivism Score c * C5 0.11 0.07 -0.04 – 0.26 1.46 0.145
Collectivism Score c * C6 0.03 0.09 -0.14 – 0.21 0.37 0.708
Collectivism Score c * C7 -0.20 0.09 -0.38 – -0.03 -2.25 0.024
Collectivism Score c * C8 -0.02 0.09 -0.20 – 0.15 -0.27 0.787
Collectivism Score c * C9 -0.09 0.08 -0.24 – 0.06 -1.13 0.259
Random Effects
σ2 1030.04
τ00 id 589.21
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.165 / 0.469
Q.2 (COLLECTIVISM) How does collectivism depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
modA.9166 <- lmer(BRDiff ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9166)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30184
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4954 -0.5367  0.0288  0.5655  2.9099 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 535.9    23.15   
##  Residual             910.1    30.17   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         2.560e+01  9.170e-01  1.014e+03  27.919
## Collectivism_Score.c               -2.947e-02  3.851e-02  1.019e+03  -0.765
## Naturalness.c                       7.091e-01  3.673e-02  2.895e+03  19.307
## C1                                 -3.407e+00  1.777e+00  2.492e+03  -1.917
## C2                                 -8.816e+00  2.041e+00  2.581e+03  -4.320
## C3                                 -1.184e+01  1.765e+00  2.457e+03  -6.706
## C4                                 -4.926e+00  1.742e+00  2.440e+03  -2.829
## C5                                 -7.698e+00  1.734e+00  2.444e+03  -4.440
## C6                                 -9.659e-01  1.999e+00  2.542e+03  -0.483
## C7                                  1.302e+01  2.034e+00  2.563e+03   6.403
## C8                                  1.932e+01  2.086e+00  2.585e+03   9.262
## C9                                  1.173e+01  1.878e+00  2.540e+03   6.247
## Collectivism_Score.c:Naturalness.c  1.583e-03  1.442e-03  2.889e+03   1.098
## Collectivism_Score.c:C1            -2.167e-02  8.106e-02  2.534e+03  -0.267
## Collectivism_Score.c:C2             3.997e-02  8.245e-02  2.593e+03   0.485
## Collectivism_Score.c:C3             4.065e-02  7.474e-02  2.450e+03   0.544
## Collectivism_Score.c:C4             7.501e-02  7.337e-02  2.446e+03   1.022
## Collectivism_Score.c:C5             1.612e-01  7.089e-02  2.430e+03   2.273
## Collectivism_Score.c:C6             1.976e-02  8.423e-02  2.544e+03   0.235
## Collectivism_Score.c:C7            -2.407e-01  8.850e-02  2.586e+03  -2.719
## Collectivism_Score.c:C8            -8.815e-02  8.838e-02  2.589e+03  -0.997
## Collectivism_Score.c:C9            -6.420e-02  7.898e-02  2.534e+03  -0.813
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.44422    
## Naturalness.c                       < 2e-16 ***
## C1                                  0.05538 .  
## C2                                 1.62e-05 ***
## C3                                 2.48e-11 ***
## C4                                  0.00471 ** 
## C5                                 9.38e-06 ***
## C6                                  0.62903    
## C7                                 1.81e-10 ***
## C8                                  < 2e-16 ***
## C9                                 4.88e-10 ***
## Collectivism_Score.c:Naturalness.c  0.27229    
## Collectivism_Score.c:C1             0.78925    
## Collectivism_Score.c:C2             0.62789    
## Collectivism_Score.c:C3             0.58657    
## Collectivism_Score.c:C4             0.30672    
## Collectivism_Score.c:C5             0.02310 *  
## Collectivism_Score.c:C6             0.81455    
## Collectivism_Score.c:C7             0.00658 ** 
## Collectivism_Score.c:C8             0.31868    
## Collectivism_Score.c:C9             0.41638    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9166,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.60 0.92 23.80 – 27.40 27.92 <0.001
Collectivism Score c -0.03 0.04 -0.10 – 0.05 -0.77 0.444
Naturalness c 0.71 0.04 0.64 – 0.78 19.31 <0.001
C1 -3.41 1.78 -6.89 – 0.08 -1.92 0.055
C2 -8.82 2.04 -12.82 – -4.81 -4.32 <0.001
C3 -11.84 1.77 -15.30 – -8.38 -6.71 <0.001
C4 -4.93 1.74 -8.34 – -1.51 -2.83 0.005
C5 -7.70 1.73 -11.10 – -4.30 -4.44 <0.001
C6 -0.97 2.00 -4.89 – 2.95 -0.48 0.629
C7 13.02 2.03 9.03 – 17.01 6.40 <0.001
C8 19.32 2.09 15.23 – 23.41 9.26 <0.001
C9 11.73 1.88 8.05 – 15.41 6.25 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.10 0.272
Collectivism Score c * C1 -0.02 0.08 -0.18 – 0.14 -0.27 0.789
Collectivism Score c * C2 0.04 0.08 -0.12 – 0.20 0.48 0.628
Collectivism Score c * C3 0.04 0.07 -0.11 – 0.19 0.54 0.587
Collectivism Score c * C4 0.08 0.07 -0.07 – 0.22 1.02 0.307
Collectivism Score c * C5 0.16 0.07 0.02 – 0.30 2.27 0.023
Collectivism Score c * C6 0.02 0.08 -0.15 – 0.18 0.23 0.815
Collectivism Score c * C7 -0.24 0.09 -0.41 – -0.07 -2.72 0.007
Collectivism Score c * C8 -0.09 0.09 -0.26 – 0.09 -1.00 0.319
Collectivism Score c * C9 -0.06 0.08 -0.22 – 0.09 -0.81 0.416
Random Effects
σ2 910.13
τ00 id 535.87
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.249 / 0.527

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict the benefit-risk difference, over and above climate change method contrasts?
modA.917 <- lmer(BRDiff ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.917)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30509.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9148 -0.5435  0.0469  0.5673  3.3342 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  585.9   24.21   
##  Residual             1028.7   32.07   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                25.85656    0.96465 1018.56175  26.804  < 2e-16 ***
## Individualism_Score.c       0.07607    0.05730 1023.65525   1.327  0.18464    
## C1                        -14.09011    1.79384 2441.20741  -7.855 5.95e-15 ***
## C2                        -18.49949    2.09470 2553.94019  -8.832  < 2e-16 ***
## C3                        -17.90662    1.84588 2454.58973  -9.701  < 2e-16 ***
## C4                         -8.62947    1.83670 2449.61778  -4.698 2.77e-06 ***
## C5                        -11.33797    1.82359 2448.95430  -6.217 5.92e-10 ***
## C6                         -1.54721    2.12688 2555.87686  -0.727  0.46701    
## C7                         22.41130    2.08629 2552.05956  10.742  < 2e-16 ***
## C8                         30.30384    2.13638 2555.62671  14.185  < 2e-16 ***
## C9                         26.87813    1.80374 2443.68235  14.901  < 2e-16 ***
## Individualism_Score.c:C1   -0.04787    0.10630 2440.42634  -0.450  0.65252    
## Individualism_Score.c:C2   -0.37170    0.11823 2551.00130  -3.144  0.00169 ** 
## Individualism_Score.c:C3   -0.08378    0.11387 2474.63843  -0.736  0.46195    
## Individualism_Score.c:C4    0.04282    0.10965 2453.54669   0.391  0.69614    
## Individualism_Score.c:C5    0.07321    0.10923 2452.78669   0.670  0.50279    
## Individualism_Score.c:C6    0.05733    0.13136 2561.57579   0.436  0.66255    
## Individualism_Score.c:C7    0.02378    0.13167 2561.86819   0.181  0.85668    
## Individualism_Score.c:C8    0.09655    0.12171 2554.43105   0.793  0.42768    
## Individualism_Score.c:C9   -0.01260    0.10528 2440.55024  -0.120  0.90473    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.917,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.86 0.96 23.97 – 27.75 26.80 <0.001
Individualism Score c 0.08 0.06 -0.04 – 0.19 1.33 0.184
C1 -14.09 1.79 -17.61 – -10.57 -7.85 <0.001
C2 -18.50 2.09 -22.61 – -14.39 -8.83 <0.001
C3 -17.91 1.85 -21.53 – -14.29 -9.70 <0.001
C4 -8.63 1.84 -12.23 – -5.03 -4.70 <0.001
C5 -11.34 1.82 -14.91 – -7.76 -6.22 <0.001
C6 -1.55 2.13 -5.72 – 2.62 -0.73 0.467
C7 22.41 2.09 18.32 – 26.50 10.74 <0.001
C8 30.30 2.14 26.11 – 34.49 14.18 <0.001
C9 26.88 1.80 23.34 – 30.41 14.90 <0.001
Individualism Score c *
C1
-0.05 0.11 -0.26 – 0.16 -0.45 0.653
Individualism Score c *
C2
-0.37 0.12 -0.60 – -0.14 -3.14 0.002
Individualism Score c *
C3
-0.08 0.11 -0.31 – 0.14 -0.74 0.462
Individualism Score c *
C4
0.04 0.11 -0.17 – 0.26 0.39 0.696
Individualism Score c *
C5
0.07 0.11 -0.14 – 0.29 0.67 0.503
Individualism Score c *
C6
0.06 0.13 -0.20 – 0.31 0.44 0.663
Individualism Score c *
C7
0.02 0.13 -0.23 – 0.28 0.18 0.857
Individualism Score c *
C8
0.10 0.12 -0.14 – 0.34 0.79 0.428
Individualism Score c *
C9
-0.01 0.11 -0.22 – 0.19 -0.12 0.905
Random Effects
σ2 1028.74
τ00 id 585.94
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.167 / 0.469
Q.2 (INDIVIDUALISM) How does individualism depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
modA.9177 <- lmer(BRDiff ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.9177)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30167.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4387 -0.5230  0.0317  0.5675  3.0862 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 531.1    23.05   
##  Residual             909.0    30.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          2.563e+01  9.142e-01  1.018e+03  28.038
## Individualism_Score.c                9.138e-02  5.430e-02  1.023e+03   1.683
## Naturalness.c                        7.024e-01  3.682e-02  2.894e+03  19.079
## C1                                  -3.566e+00  1.776e+00  2.493e+03  -2.007
## C2                                  -8.240e+00  2.043e+00  2.582e+03  -4.033
## C3                                  -1.192e+01  1.764e+00  2.459e+03  -6.757
## C4                                  -4.840e+00  1.739e+00  2.443e+03  -2.783
## C5                                  -7.973e+00  1.724e+00  2.448e+03  -4.623
## C6                                  -8.179e-01  2.002e+00  2.547e+03  -0.409
## C7                                   1.261e+01  2.028e+00  2.566e+03   6.215
## C8                                   1.959e+01  2.087e+00  2.589e+03   9.387
## C9                                   1.170e+01  1.873e+00  2.536e+03   6.247
## Individualism_Score.c:Naturalness.c  3.862e-03  2.079e-03  2.931e+03   1.857
## Individualism_Score.c:C1            -4.785e-03  1.051e-01  2.494e+03  -0.046
## Individualism_Score.c:C2            -3.151e-01  1.157e-01  2.584e+03  -2.724
## Individualism_Score.c:C3            -9.043e-03  1.088e-01  2.478e+03  -0.083
## Individualism_Score.c:C4             8.652e-02  1.040e-01  2.453e+03   0.832
## Individualism_Score.c:C5             1.677e-01  1.036e-01  2.446e+03   1.620
## Individualism_Score.c:C6             7.365e-02  1.236e-01  2.552e+03   0.596
## Individualism_Score.c:C7            -8.299e-02  1.273e-01  2.574e+03  -0.652
## Individualism_Score.c:C8             1.519e-02  1.205e-01  2.596e+03   0.126
## Individualism_Score.c:C9            -1.136e-01  1.095e-01  2.540e+03  -1.037
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                0.09274 .  
## Naturalness.c                        < 2e-16 ***
## C1                                   0.04482 *  
## C2                                  5.68e-05 ***
## C3                                  1.75e-11 ***
## C4                                   0.00543 ** 
## C5                                  3.97e-06 ***
## C6                                   0.68289    
## C7                                  5.96e-10 ***
## C8                                   < 2e-16 ***
## C9                                  4.89e-10 ***
## Individualism_Score.c:Naturalness.c  0.06341 .  
## Individualism_Score.c:C1             0.96371    
## Individualism_Score.c:C2             0.00649 ** 
## Individualism_Score.c:C3             0.93374    
## Individualism_Score.c:C4             0.40548    
## Individualism_Score.c:C5             0.10546    
## Individualism_Score.c:C6             0.55136    
## Individualism_Score.c:C7             0.51438    
## Individualism_Score.c:C8             0.89967    
## Individualism_Score.c:C9             0.29974    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9177,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.63 0.91 23.84 – 27.43 28.04 <0.001
Individualism Score c 0.09 0.05 -0.02 – 0.20 1.68 0.093
Naturalness c 0.70 0.04 0.63 – 0.77 19.08 <0.001
C1 -3.57 1.78 -7.05 – -0.08 -2.01 0.045
C2 -8.24 2.04 -12.25 – -4.23 -4.03 <0.001
C3 -11.92 1.76 -15.38 – -8.46 -6.76 <0.001
C4 -4.84 1.74 -8.25 – -1.43 -2.78 0.005
C5 -7.97 1.72 -11.35 – -4.59 -4.62 <0.001
C6 -0.82 2.00 -4.74 – 3.11 -0.41 0.683
C7 12.61 2.03 8.63 – 16.58 6.22 <0.001
C8 19.59 2.09 15.50 – 23.68 9.39 <0.001
C9 11.70 1.87 8.03 – 15.38 6.25 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.01 1.86 0.063
Individualism Score c *
C1
-0.00 0.11 -0.21 – 0.20 -0.05 0.964
Individualism Score c *
C2
-0.32 0.12 -0.54 – -0.09 -2.72 0.006
Individualism Score c *
C3
-0.01 0.11 -0.22 – 0.20 -0.08 0.934
Individualism Score c *
C4
0.09 0.10 -0.12 – 0.29 0.83 0.405
Individualism Score c *
C5
0.17 0.10 -0.04 – 0.37 1.62 0.105
Individualism Score c *
C6
0.07 0.12 -0.17 – 0.32 0.60 0.551
Individualism Score c *
C7
-0.08 0.13 -0.33 – 0.17 -0.65 0.514
Individualism Score c *
C8
0.02 0.12 -0.22 – 0.25 0.13 0.900
Individualism Score c *
C9
-0.11 0.11 -0.33 – 0.10 -1.04 0.300
Random Effects
σ2 908.98
τ00 id 531.07
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.251 / 0.527

Political Ideology

Q.1 (POLITICAL ORIENTATION) How does individualism predict the benefit-risk difference, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.918 <- lmer(BRDiff ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.918)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 +  
##     Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c *  
##     C7 + Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30455.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8884 -0.5422  0.0468  0.5726  3.0205 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  584     24.17   
##  Residual             1035     32.18   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     25.8207     0.9647 1017.2485  26.766  < 2e-16 ***
## Ideology.c       1.9860     1.6914 1019.4445   1.174    0.241    
## C1             -13.9998     1.8008 2444.7078  -7.774 1.11e-14 ***
## C2             -19.0499     2.0919 2556.4924  -9.106  < 2e-16 ***
## C3             -17.8122     1.8514 2458.4257  -9.621  < 2e-16 ***
## C4              -8.5941     1.8416 2451.9061  -4.667 3.23e-06 ***
## C5             -11.3789     1.8342 2450.7388  -6.204 6.45e-10 ***
## C6              -1.5819     2.1267 2556.9068  -0.744    0.457    
## C7              22.5066     2.0926 2556.2799  10.755  < 2e-16 ***
## C8              30.1890     2.1396 2559.6403  14.110  < 2e-16 ***
## C9              27.0995     1.8181 2449.7537  14.905  < 2e-16 ***
## Ideology.c:C1    1.0399     3.2031 2459.7429   0.325    0.745    
## Ideology.c:C2    0.2817     3.7222 2573.4284   0.076    0.940    
## Ideology.c:C3   -0.4996     3.3002 2482.8042  -0.151    0.880    
## Ideology.c:C4   -2.9491     3.3059 2484.2353  -0.892    0.372    
## Ideology.c:C5   -0.4011     3.1688 2460.1482  -0.127    0.899    
## Ideology.c:C6    0.9404     3.5770 2560.3265   0.263    0.793    
## Ideology.c:C7    0.1574     3.8684 2567.9686   0.041    0.968    
## Ideology.c:C8    2.5642     3.6713 2565.0543   0.698    0.485    
## Ideology.c:C9    1.5593     3.2308 2460.4617   0.483    0.629    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.918,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.82 0.96 23.93 – 27.71 26.77 <0.001
Ideology c 1.99 1.69 -1.33 – 5.30 1.17 0.240
C1 -14.00 1.80 -17.53 – -10.47 -7.77 <0.001
C2 -19.05 2.09 -23.15 – -14.95 -9.11 <0.001
C3 -17.81 1.85 -21.44 – -14.18 -9.62 <0.001
C4 -8.59 1.84 -12.21 – -4.98 -4.67 <0.001
C5 -11.38 1.83 -14.98 – -7.78 -6.20 <0.001
C6 -1.58 2.13 -5.75 – 2.59 -0.74 0.457
C7 22.51 2.09 18.40 – 26.61 10.76 <0.001
C8 30.19 2.14 25.99 – 34.38 14.11 <0.001
C9 27.10 1.82 23.53 – 30.66 14.91 <0.001
Ideology c * C1 1.04 3.20 -5.24 – 7.32 0.32 0.745
Ideology c * C2 0.28 3.72 -7.02 – 7.58 0.08 0.940
Ideology c * C3 -0.50 3.30 -6.97 – 5.97 -0.15 0.880
Ideology c * C4 -2.95 3.31 -9.43 – 3.53 -0.89 0.372
Ideology c * C5 -0.40 3.17 -6.61 – 5.81 -0.13 0.899
Ideology c * C6 0.94 3.58 -6.07 – 7.95 0.26 0.793
Ideology c * C7 0.16 3.87 -7.43 – 7.74 0.04 0.968
Ideology c * C8 2.56 3.67 -4.63 – 9.76 0.70 0.485
Ideology c * C9 1.56 3.23 -4.78 – 7.89 0.48 0.629
Random Effects
σ2 1035.44
τ00 id 583.96
ICC 0.36
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.164 / 0.465
Q.2 (POLITICAL ORIENTATION) How does individualism depend on naturalness perception in predicting the benefit-risk difference, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.9188 <- lmer(BRDiff ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.9188)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 30111.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3921 -0.5371  0.0290  0.5757  2.9087 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 531.2    23.05   
##  Residual             916.1    30.27   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                25.56220    0.91554 1015.95879  27.920  < 2e-16 ***
## Ideology.c                  2.41832    1.60711 1021.83410   1.505  0.13270    
## Naturalness.c               0.70879    0.03687 2899.39072  19.226  < 2e-16 ***
## C1                         -3.33516    1.78486 2498.58710  -1.869  0.06180 .  
## C2                         -8.66767    2.04214 2587.10921  -4.244 2.27e-05 ***
## C3                        -11.85475    1.77050 2462.37460  -6.696 2.65e-11 ***
## C4                         -4.80507    1.74490 2444.14888  -2.754  0.00593 ** 
## C5                         -8.01659    1.73639 2450.54853  -4.617 4.10e-06 ***
## C6                         -0.88124    2.00343 2547.39741  -0.440  0.66007    
## C7                         12.70657    2.03722 2570.49081   6.237 5.19e-10 ***
## C8                         19.45456    2.09094 2591.78139   9.304  < 2e-16 ***
## C9                         11.64949    1.88966 2545.95853   6.165 8.18e-10 ***
## Ideology.c:Naturalness.c    0.02127    0.06521 2856.71685   0.326  0.74431    
## Ideology.c:C1               0.75303    3.13143 2481.21488   0.240  0.80998    
## Ideology.c:C2               2.53630    3.69575 2679.40777   0.686  0.49260    
## Ideology.c:C3              -0.26573    3.14185 2485.27290  -0.085  0.93260    
## Ideology.c:C4              -2.08615    3.13092 2496.02309  -0.666  0.50528    
## Ideology.c:C5              -1.81604    2.98806 2450.84414  -0.608  0.54340    
## Ideology.c:C6               0.10060    3.37207 2544.75807   0.030  0.97620    
## Ideology.c:C7               1.46074    3.78908 2613.84612   0.386  0.69989    
## Ideology.c:C8               2.28133    3.57400 2581.25891   0.638  0.52333    
## Ideology.c:C9              -1.12997    3.31369 2574.00086  -0.341  0.73313    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9188,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 25.56 0.92 23.77 – 27.36 27.92 <0.001
Ideology c 2.42 1.61 -0.73 – 5.57 1.50 0.132
Naturalness c 0.71 0.04 0.64 – 0.78 19.23 <0.001
C1 -3.34 1.78 -6.83 – 0.16 -1.87 0.062
C2 -8.67 2.04 -12.67 – -4.66 -4.24 <0.001
C3 -11.85 1.77 -15.33 – -8.38 -6.70 <0.001
C4 -4.81 1.74 -8.23 – -1.38 -2.75 0.006
C5 -8.02 1.74 -11.42 – -4.61 -4.62 <0.001
C6 -0.88 2.00 -4.81 – 3.05 -0.44 0.660
C7 12.71 2.04 8.71 – 16.70 6.24 <0.001
C8 19.45 2.09 15.35 – 23.55 9.30 <0.001
C9 11.65 1.89 7.94 – 15.35 6.16 <0.001
Ideology c * Naturalness
c
0.02 0.07 -0.11 – 0.15 0.33 0.744
Ideology c * C1 0.75 3.13 -5.39 – 6.89 0.24 0.810
Ideology c * C2 2.54 3.70 -4.71 – 9.78 0.69 0.493
Ideology c * C3 -0.27 3.14 -6.43 – 5.89 -0.08 0.933
Ideology c * C4 -2.09 3.13 -8.23 – 4.05 -0.67 0.505
Ideology c * C5 -1.82 2.99 -7.67 – 4.04 -0.61 0.543
Ideology c * C6 0.10 3.37 -6.51 – 6.71 0.03 0.976
Ideology c * C7 1.46 3.79 -5.97 – 8.89 0.39 0.700
Ideology c * C8 2.28 3.57 -4.73 – 9.29 0.64 0.523
Ideology c * C9 -1.13 3.31 -7.63 – 5.37 -0.34 0.733
Random Effects
σ2 916.10
τ00 id 531.21
ICC 0.37
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.247 / 0.523

Familiarity/Understanding (Mean score)

Q.1 How do climate change method contrasts predict familiarity/understanding?
modA.920 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.920)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27119.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0412 -0.5869 -0.0111  0.5966  3.1013 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.7    14.31   
##  Residual             329.5    18.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   54.4788     0.5608 1019.6835  97.137  < 2e-16 ***
## C1           -18.6588     1.0176 2429.9000 -18.337  < 2e-16 ***
## C2            12.8814     1.1847 2540.1072  10.873  < 2e-16 ***
## C3           -16.1090     1.0468 2442.9867 -15.389  < 2e-16 ***
## C4           -16.5934     1.0420 2438.5014 -15.925  < 2e-16 ***
## C5           -22.1040     1.0346 2436.3623 -21.364  < 2e-16 ***
## C6             5.1720     1.2045 2541.1519   4.294 1.82e-05 ***
## C7            27.7437     1.1846 2538.2041  23.421  < 2e-16 ***
## C8            31.6044     1.2114 2541.7653  26.090  < 2e-16 ***
## C9            12.8248     1.0232 2432.9494  12.534  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.030                                                        
## C2  0.024 -0.093                                                 
## C3 -0.017 -0.113 -0.076                                          
## C4 -0.019 -0.110 -0.099 -0.117                                   
## C5 -0.022 -0.106 -0.087 -0.115 -0.108                            
## C6  0.033 -0.095 -0.169 -0.110 -0.098 -0.098                     
## C7  0.024 -0.082 -0.167 -0.095 -0.093 -0.098 -0.168              
## C8  0.036 -0.104 -0.169 -0.105 -0.095 -0.098 -0.170 -0.169       
## C9 -0.027 -0.109 -0.109 -0.109 -0.116 -0.110 -0.094 -0.090 -0.083
tab_model(modA.920,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.38 – 55.58 97.14 <0.001
C1 -18.66 1.02 -20.65 – -16.66 -18.34 <0.001
C2 12.88 1.18 10.56 – 15.20 10.87 <0.001
C3 -16.11 1.05 -18.16 – -14.06 -15.39 <0.001
C4 -16.59 1.04 -18.64 – -14.55 -15.93 <0.001
C5 -22.10 1.03 -24.13 – -20.08 -21.36 <0.001
C6 5.17 1.20 2.81 – 7.53 4.29 <0.001
C7 27.74 1.18 25.42 – 30.07 23.42 <0.001
C8 31.60 1.21 29.23 – 33.98 26.09 <0.001
C9 12.82 1.02 10.82 – 14.83 12.53 <0.001
Random Effects
σ2 329.45
τ00 id 204.67
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.403 / 0.632

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict familiarity/understanding, over and above climate change method contrasts?
modA.921 <- lmer(FR ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.921)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c * C3 +  
##     ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c * C6 +  
##     ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27138.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8477 -0.5853 -0.0075  0.5996  2.9912 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 202.0    14.21   
##  Residual             328.6    18.13   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       54.44594    0.55840 1015.80657  97.504  < 2e-16 ***
## ATNS_Score.c      -0.07283    0.02599 1016.90238  -2.802  0.00518 ** 
## C1               -18.62310    1.01595 2421.07890 -18.331  < 2e-16 ***
## C2                12.91255    1.18287 2531.88233  10.916  < 2e-16 ***
## C3               -16.12189    1.04659 2434.93899 -15.404  < 2e-16 ***
## C4               -16.69598    1.04182 2433.39446 -16.026  < 2e-16 ***
## C5               -22.03961    1.03345 2430.01241 -21.326  < 2e-16 ***
## C6                 5.13503    1.20331 2533.24466   4.267 2.05e-05 ***
## C7                27.76291    1.18334 2530.57035  23.461  < 2e-16 ***
## C8                31.65122    1.21053 2535.14160  26.147  < 2e-16 ***
## C9                12.77171    1.02188 2425.25000  12.498  < 2e-16 ***
## ATNS_Score.c:C1    0.06039    0.04791 2432.53962   1.261  0.20760    
## ATNS_Score.c:C2   -0.08955    0.05533 2532.37450  -1.618  0.10568    
## ATNS_Score.c:C3    0.07389    0.05062 2451.78661   1.460  0.14454    
## ATNS_Score.c:C4   -0.07478    0.04658 2418.70829  -1.605  0.10855    
## ATNS_Score.c:C5    0.03996    0.04707 2423.35536   0.849  0.39598    
## ATNS_Score.c:C6   -0.04744    0.05550 2535.49970  -0.855  0.39273    
## ATNS_Score.c:C7    0.07819    0.05568 2539.86532   1.404  0.16039    
## ATNS_Score.c:C8    0.03434    0.05599 2534.44754   0.613  0.53966    
## ATNS_Score.c:C9   -0.11122    0.04752 2424.75377  -2.340  0.01935 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.921,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.45 0.56 53.35 – 55.54 97.50 <0.001
ATNS Score c -0.07 0.03 -0.12 – -0.02 -2.80 0.005
C1 -18.62 1.02 -20.62 – -16.63 -18.33 <0.001
C2 12.91 1.18 10.59 – 15.23 10.92 <0.001
C3 -16.12 1.05 -18.17 – -14.07 -15.40 <0.001
C4 -16.70 1.04 -18.74 – -14.65 -16.03 <0.001
C5 -22.04 1.03 -24.07 – -20.01 -21.33 <0.001
C6 5.14 1.20 2.78 – 7.49 4.27 <0.001
C7 27.76 1.18 25.44 – 30.08 23.46 <0.001
C8 31.65 1.21 29.28 – 34.02 26.15 <0.001
C9 12.77 1.02 10.77 – 14.78 12.50 <0.001
ATNS Score c * C1 0.06 0.05 -0.03 – 0.15 1.26 0.208
ATNS Score c * C2 -0.09 0.06 -0.20 – 0.02 -1.62 0.106
ATNS Score c * C3 0.07 0.05 -0.03 – 0.17 1.46 0.145
ATNS Score c * C4 -0.07 0.05 -0.17 – 0.02 -1.61 0.109
ATNS Score c * C5 0.04 0.05 -0.05 – 0.13 0.85 0.396
ATNS Score c * C6 -0.05 0.06 -0.16 – 0.06 -0.85 0.393
ATNS Score c * C7 0.08 0.06 -0.03 – 0.19 1.40 0.160
ATNS Score c * C8 0.03 0.06 -0.08 – 0.14 0.61 0.540
ATNS Score c * C9 -0.11 0.05 -0.20 – -0.02 -2.34 0.019
Random Effects
σ2 328.58
τ00 id 202.04
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.408 / 0.633
Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on perceptions of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
modA.9213 <- lmer(FR ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9213)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26950.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8111 -0.5690 -0.0025  0.5935  3.2482 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 210.9    14.52   
##  Residual             297.4    17.24   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 5.432e+01  5.573e-01  1.012e+03  97.474  < 2e-16
## ATNS_Score.c               -5.733e-02  2.595e-02  1.015e+03  -2.209   0.0274
## Naturalness.c               3.151e-01  2.142e-02  2.829e+03  14.709  < 2e-16
## C1                         -1.386e+01  1.024e+00  2.441e+03 -13.533  < 2e-16
## C2                          1.752e+01  1.175e+00  2.527e+03  14.914  < 2e-16
## C3                         -1.353e+01  1.016e+00  2.408e+03 -13.312  < 2e-16
## C4                         -1.497e+01  1.004e+00  2.397e+03 -14.911  < 2e-16
## C5                         -2.061e+01  9.933e-01  2.396e+03 -20.748  < 2e-16
## C6                          5.458e+00  1.152e+00  2.488e+03   4.737 2.29e-06
## C7                          2.340e+01  1.171e+00  2.508e+03  19.987  < 2e-16
## C8                          2.684e+01  1.205e+00  2.535e+03  22.275  < 2e-16
## C9                          6.006e+00  1.080e+00  2.484e+03   5.560 2.98e-08
## ATNS_Score.c:Naturalness.c -3.418e-04  8.464e-04  2.835e+03  -0.404   0.6864
## ATNS_Score.c:C1             3.338e-02  4.782e-02  2.433e+03   0.698   0.4852
## ATNS_Score.c:C2            -6.569e-02  5.449e-02  2.530e+03  -1.206   0.2281
## ATNS_Score.c:C3             9.525e-02  4.873e-02  2.410e+03   1.955   0.0507
## ATNS_Score.c:C4            -3.813e-02  4.491e-02  2.383e+03  -0.849   0.3959
## ATNS_Score.c:C5             5.922e-02  4.532e-02  2.390e+03   1.307   0.1914
## ATNS_Score.c:C6            -6.583e-02  5.314e-02  2.491e+03  -1.239   0.2156
## ATNS_Score.c:C7             7.105e-02  5.487e-02  2.531e+03   1.295   0.1955
## ATNS_Score.c:C8            -5.512e-03  5.537e-02  2.528e+03  -0.100   0.9207
## ATNS_Score.c:C9            -1.145e-01  4.904e-02  2.444e+03  -2.336   0.0196
##                               
## (Intercept)                ***
## ATNS_Score.c               *  
## Naturalness.c              ***
## C1                         ***
## C2                         ***
## C3                         ***
## C4                         ***
## C5                         ***
## C6                         ***
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c    
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3            .  
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9            *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9213,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.32 0.56 53.23 – 55.41 97.47 <0.001
ATNS Score c -0.06 0.03 -0.11 – -0.01 -2.21 0.027
Naturalness c 0.32 0.02 0.27 – 0.36 14.71 <0.001
C1 -13.86 1.02 -15.87 – -11.85 -13.53 <0.001
C2 17.52 1.17 15.21 – 19.82 14.91 <0.001
C3 -13.53 1.02 -15.52 – -11.53 -13.31 <0.001
C4 -14.97 1.00 -16.93 – -13.00 -14.91 <0.001
C5 -20.61 0.99 -22.56 – -18.66 -20.75 <0.001
C6 5.46 1.15 3.20 – 7.72 4.74 <0.001
C7 23.40 1.17 21.10 – 25.69 19.99 <0.001
C8 26.84 1.20 24.48 – 29.20 22.27 <0.001
C9 6.01 1.08 3.89 – 8.12 5.56 <0.001
ATNS Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.40 0.686
ATNS Score c * C1 0.03 0.05 -0.06 – 0.13 0.70 0.485
ATNS Score c * C2 -0.07 0.05 -0.17 – 0.04 -1.21 0.228
ATNS Score c * C3 0.10 0.05 -0.00 – 0.19 1.95 0.051
ATNS Score c * C4 -0.04 0.04 -0.13 – 0.05 -0.85 0.396
ATNS Score c * C5 0.06 0.05 -0.03 – 0.15 1.31 0.191
ATNS Score c * C6 -0.07 0.05 -0.17 – 0.04 -1.24 0.216
ATNS Score c * C7 0.07 0.05 -0.04 – 0.18 1.29 0.195
ATNS Score c * C8 -0.01 0.06 -0.11 – 0.10 -0.10 0.921
ATNS Score c * C9 -0.11 0.05 -0.21 – -0.02 -2.34 0.020
Random Effects
σ2 297.35
τ00 id 210.91
ICC 0.41
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.438 / 0.671

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict familiarity/understanding, over and above climate change method contrasts?
modA.923 <- lmer(FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.923)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27130.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9338 -0.5868 -0.0118  0.5966  3.0822 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.6    14.30   
##  Residual             327.0    18.08   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     5.449e+01  5.603e-01  1.018e+03  97.242  < 2e-16 ***
## CNS_Score.c     7.218e-02  3.359e-02  1.020e+03   2.149  0.03189 *  
## C1             -1.862e+01  1.015e+00  2.421e+03 -18.355  < 2e-16 ***
## C2              1.288e+01  1.181e+00  2.531e+03  10.902  < 2e-16 ***
## C3             -1.608e+01  1.045e+00  2.434e+03 -15.383  < 2e-16 ***
## C4             -1.667e+01  1.040e+00  2.430e+03 -16.026  < 2e-16 ***
## C5             -2.211e+01  1.032e+00  2.427e+03 -21.428  < 2e-16 ***
## C6              5.506e+00  1.205e+00  2.529e+03   4.571 5.08e-06 ***
## C7              2.752e+01  1.182e+00  2.526e+03  23.283  < 2e-16 ***
## C8              3.162e+01  1.208e+00  2.532e+03  26.180  < 2e-16 ***
## C9              1.272e+01  1.021e+00  2.422e+03  12.451  < 2e-16 ***
## CNS_Score.c:C1 -3.690e-02  5.897e-02  2.411e+03  -0.626  0.53152    
## CNS_Score.c:C2 -1.273e-01  7.308e-02  2.539e+03  -1.742  0.08157 .  
## CNS_Score.c:C3  8.545e-03  6.229e-02  2.430e+03   0.137  0.89090    
## CNS_Score.c:C4 -1.290e-01  6.012e-02  2.425e+03  -2.145  0.03205 *  
## CNS_Score.c:C5 -1.165e-01  6.383e-02  2.443e+03  -1.825  0.06806 .  
## CNS_Score.c:C6  1.797e-01  6.902e-02  2.531e+03   2.604  0.00926 ** 
## CNS_Score.c:C7  1.756e-01  7.151e-02  2.532e+03   2.455  0.01414 *  
## CNS_Score.c:C8  3.698e-02  7.287e-02  2.532e+03   0.507  0.61193    
## CNS_Score.c:C9  4.567e-02  6.438e-02  2.445e+03   0.709  0.47816    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.923,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.49 0.56 53.39 – 55.59 97.24 <0.001
CNS Score c 0.07 0.03 0.01 – 0.14 2.15 0.032
C1 -18.62 1.01 -20.61 – -16.63 -18.35 <0.001
C2 12.88 1.18 10.56 – 15.20 10.90 <0.001
C3 -16.08 1.05 -18.13 – -14.03 -15.38 <0.001
C4 -16.67 1.04 -18.71 – -14.63 -16.03 <0.001
C5 -22.11 1.03 -24.13 – -20.09 -21.43 <0.001
C6 5.51 1.20 3.14 – 7.87 4.57 <0.001
C7 27.52 1.18 25.21 – 29.84 23.28 <0.001
C8 31.62 1.21 29.25 – 33.99 26.18 <0.001
C9 12.72 1.02 10.71 – 14.72 12.45 <0.001
CNS Score c * C1 -0.04 0.06 -0.15 – 0.08 -0.63 0.532
CNS Score c * C2 -0.13 0.07 -0.27 – 0.02 -1.74 0.082
CNS Score c * C3 0.01 0.06 -0.11 – 0.13 0.14 0.891
CNS Score c * C4 -0.13 0.06 -0.25 – -0.01 -2.15 0.032
CNS Score c * C5 -0.12 0.06 -0.24 – 0.01 -1.83 0.068
CNS Score c * C6 0.18 0.07 0.04 – 0.32 2.60 0.009
CNS Score c * C7 0.18 0.07 0.04 – 0.32 2.46 0.014
CNS Score c * C8 0.04 0.07 -0.11 – 0.18 0.51 0.612
CNS Score c * C9 0.05 0.06 -0.08 – 0.17 0.71 0.478
Random Effects
σ2 327.05
τ00 id 204.62
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.407 / 0.635
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
modA.923 <- lmer(FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.923)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27130.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9338 -0.5868 -0.0118  0.5966  3.0822 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.6    14.30   
##  Residual             327.0    18.08   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     5.449e+01  5.603e-01  1.018e+03  97.242  < 2e-16 ***
## CNS_Score.c     7.218e-02  3.359e-02  1.020e+03   2.149  0.03189 *  
## C1             -1.862e+01  1.015e+00  2.421e+03 -18.355  < 2e-16 ***
## C2              1.288e+01  1.181e+00  2.531e+03  10.902  < 2e-16 ***
## C3             -1.608e+01  1.045e+00  2.434e+03 -15.383  < 2e-16 ***
## C4             -1.667e+01  1.040e+00  2.430e+03 -16.026  < 2e-16 ***
## C5             -2.211e+01  1.032e+00  2.427e+03 -21.428  < 2e-16 ***
## C6              5.506e+00  1.205e+00  2.529e+03   4.571 5.08e-06 ***
## C7              2.752e+01  1.182e+00  2.526e+03  23.283  < 2e-16 ***
## C8              3.162e+01  1.208e+00  2.532e+03  26.180  < 2e-16 ***
## C9              1.272e+01  1.021e+00  2.422e+03  12.451  < 2e-16 ***
## CNS_Score.c:C1 -3.690e-02  5.897e-02  2.411e+03  -0.626  0.53152    
## CNS_Score.c:C2 -1.273e-01  7.308e-02  2.539e+03  -1.742  0.08157 .  
## CNS_Score.c:C3  8.545e-03  6.229e-02  2.430e+03   0.137  0.89090    
## CNS_Score.c:C4 -1.290e-01  6.012e-02  2.425e+03  -2.145  0.03205 *  
## CNS_Score.c:C5 -1.165e-01  6.383e-02  2.443e+03  -1.825  0.06806 .  
## CNS_Score.c:C6  1.797e-01  6.902e-02  2.531e+03   2.604  0.00926 ** 
## CNS_Score.c:C7  1.756e-01  7.151e-02  2.532e+03   2.455  0.01414 *  
## CNS_Score.c:C8  3.698e-02  7.287e-02  2.532e+03   0.507  0.61193    
## CNS_Score.c:C9  4.567e-02  6.438e-02  2.445e+03   0.709  0.47816    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.923,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.49 0.56 53.39 – 55.59 97.24 <0.001
CNS Score c 0.07 0.03 0.01 – 0.14 2.15 0.032
C1 -18.62 1.01 -20.61 – -16.63 -18.35 <0.001
C2 12.88 1.18 10.56 – 15.20 10.90 <0.001
C3 -16.08 1.05 -18.13 – -14.03 -15.38 <0.001
C4 -16.67 1.04 -18.71 – -14.63 -16.03 <0.001
C5 -22.11 1.03 -24.13 – -20.09 -21.43 <0.001
C6 5.51 1.20 3.14 – 7.87 4.57 <0.001
C7 27.52 1.18 25.21 – 29.84 23.28 <0.001
C8 31.62 1.21 29.25 – 33.99 26.18 <0.001
C9 12.72 1.02 10.71 – 14.72 12.45 <0.001
CNS Score c * C1 -0.04 0.06 -0.15 – 0.08 -0.63 0.532
CNS Score c * C2 -0.13 0.07 -0.27 – 0.02 -1.74 0.082
CNS Score c * C3 0.01 0.06 -0.11 – 0.13 0.14 0.891
CNS Score c * C4 -0.13 0.06 -0.25 – -0.01 -2.15 0.032
CNS Score c * C5 -0.12 0.06 -0.24 – 0.01 -1.83 0.068
CNS Score c * C6 0.18 0.07 0.04 – 0.32 2.60 0.009
CNS Score c * C7 0.18 0.07 0.04 – 0.32 2.46 0.014
CNS Score c * C8 0.04 0.07 -0.11 – 0.18 0.51 0.612
CNS Score c * C9 0.05 0.06 -0.08 – 0.17 0.71 0.478
Random Effects
σ2 327.05
τ00 id 204.62
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.407 / 0.635

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict familiarity/understanding, over and above climate change method contrasts?
modA.924 <- lmer(FR ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.924)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 + CCBelief_Score.c *  
##     C3 + CCBelief_Score.c * C4 + CCBelief_Score.c * C5 + CCBelief_Score.c *  
##     C6 + CCBelief_Score.c * C7 + CCBelief_Score.c * C8 + CCBelief_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27141.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0540 -0.5796 -0.0068  0.6002  3.1052 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 203.8    14.28   
##  Residual             327.9    18.11   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.447e+01  5.598e-01  1.017e+03  97.301  < 2e-16 ***
## CCBelief_Score.c     4.238e-02  2.379e-02  1.021e+03   1.782  0.07511 .  
## C1                  -1.865e+01  1.015e+00  2.419e+03 -18.373  < 2e-16 ***
## C2                   1.281e+01  1.183e+00  2.531e+03  10.829  < 2e-16 ***
## C3                  -1.610e+01  1.045e+00  2.433e+03 -15.417  < 2e-16 ***
## C4                  -1.667e+01  1.042e+00  2.429e+03 -15.992  < 2e-16 ***
## C5                  -2.197e+01  1.033e+00  2.428e+03 -21.255  < 2e-16 ***
## C6                   5.145e+00  1.202e+00  2.531e+03   4.280 1.94e-05 ***
## C7                   2.776e+01  1.182e+00  2.527e+03  23.488  < 2e-16 ***
## C8                   3.169e+01  1.209e+00  2.532e+03  26.213  < 2e-16 ***
## C9                   1.272e+01  1.022e+00  2.426e+03  12.447  < 2e-16 ***
## CCBelief_Score.c:C1  7.846e-03  4.291e-02  2.421e+03   0.183  0.85494    
## CCBelief_Score.c:C2 -4.562e-02  4.706e-02  2.524e+03  -0.969  0.33241    
## CCBelief_Score.c:C3 -1.117e-02  4.412e-02  2.432e+03  -0.253  0.80020    
## CCBelief_Score.c:C4 -6.334e-02  4.192e-02  2.409e+03  -1.511  0.13094    
## CCBelief_Score.c:C5 -1.379e-01  4.546e-02  2.446e+03  -3.034  0.00244 ** 
## CCBelief_Score.c:C6  5.830e-02  5.310e-02  2.537e+03   1.098  0.27233    
## CCBelief_Score.c:C7  1.186e-01  5.112e-02  2.536e+03   2.320  0.02040 *  
## CCBelief_Score.c:C8 -1.074e-02  5.221e-02  2.536e+03  -0.206  0.83696    
## CCBelief_Score.c:C9  9.335e-02  4.494e-02  2.443e+03   2.077  0.03787 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.924,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.47 0.56 53.37 – 55.56 97.30 <0.001
CCBelief Score c 0.04 0.02 -0.00 – 0.09 1.78 0.075
C1 -18.65 1.02 -20.65 – -16.66 -18.37 <0.001
C2 12.81 1.18 10.49 – 15.13 10.83 <0.001
C3 -16.10 1.04 -18.15 – -14.06 -15.42 <0.001
C4 -16.67 1.04 -18.72 – -14.63 -15.99 <0.001
C5 -21.97 1.03 -23.99 – -19.94 -21.26 <0.001
C6 5.14 1.20 2.79 – 7.50 4.28 <0.001
C7 27.76 1.18 25.44 – 30.08 23.49 <0.001
C8 31.69 1.21 29.32 – 34.06 26.21 <0.001
C9 12.72 1.02 10.72 – 14.73 12.45 <0.001
CCBelief Score c * C1 0.01 0.04 -0.08 – 0.09 0.18 0.855
CCBelief Score c * C2 -0.05 0.05 -0.14 – 0.05 -0.97 0.332
CCBelief Score c * C3 -0.01 0.04 -0.10 – 0.08 -0.25 0.800
CCBelief Score c * C4 -0.06 0.04 -0.15 – 0.02 -1.51 0.131
CCBelief Score c * C5 -0.14 0.05 -0.23 – -0.05 -3.03 0.002
CCBelief Score c * C6 0.06 0.05 -0.05 – 0.16 1.10 0.272
CCBelief Score c * C7 0.12 0.05 0.02 – 0.22 2.32 0.020
CCBelief Score c * C8 -0.01 0.05 -0.11 – 0.09 -0.21 0.837
CCBelief Score c * C9 0.09 0.04 0.01 – 0.18 2.08 0.038
Random Effects
σ2 327.90
τ00 id 203.84
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.407 / 0.634
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perceptinos of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
modA.9245 <- lmer(FR ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9245)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26952.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0453 -0.5663 -0.0022  0.5792  3.1989 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 212.7    14.58   
##  Residual             296.7    17.23   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     5.437e+01  5.585e-01  1.014e+03  97.341
## CCBelief_Score.c                2.718e-02  2.381e-02  1.029e+03   1.141
## Naturalness.c                   3.124e-01  2.133e-02  2.831e+03  14.647
## C1                             -1.396e+01  1.023e+00  2.440e+03 -13.652
## C2                              1.737e+01  1.177e+00  2.531e+03  14.763
## C3                             -1.349e+01  1.015e+00  2.407e+03 -13.299
## C4                             -1.501e+01  1.003e+00  2.392e+03 -14.962
## C5                             -2.053e+01  9.928e-01  2.396e+03 -20.677
## C6                              5.477e+00  1.151e+00  2.490e+03   4.759
## C7                              2.341e+01  1.170e+00  2.507e+03  20.006
## C8                              2.697e+01  1.202e+00  2.529e+03  22.432
## C9                              5.982e+00  1.081e+00  2.489e+03   5.536
## CCBelief_Score.c:Naturalness.c -5.081e-04  8.060e-04  2.850e+03  -0.630
## CCBelief_Score.c:C1             1.162e-02  4.283e-02  2.434e+03   0.271
## CCBelief_Score.c:C2            -1.803e-02  4.621e-02  2.502e+03  -0.390
## CCBelief_Score.c:C3            -8.841e-03  4.245e-02  2.399e+03  -0.208
## CCBelief_Score.c:C4            -5.594e-02  4.025e-02  2.370e+03  -1.390
## CCBelief_Score.c:C5            -1.395e-01  4.362e-02  2.403e+03  -3.199
## CCBelief_Score.c:C6             3.999e-02  5.098e-02  2.517e+03   0.784
## CCBelief_Score.c:C7             1.065e-01  5.025e-02  2.527e+03   2.119
## CCBelief_Score.c:C8            -2.091e-02  5.096e-02  2.537e+03  -0.410
## CCBelief_Score.c:C9             1.080e-01  4.772e-02  2.542e+03   2.264
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                 0.2540    
## Naturalness.c                   < 2e-16 ***
## C1                              < 2e-16 ***
## C2                              < 2e-16 ***
## C3                              < 2e-16 ***
## C4                              < 2e-16 ***
## C5                              < 2e-16 ***
## C6                             2.06e-06 ***
## C7                              < 2e-16 ***
## C8                              < 2e-16 ***
## C9                             3.42e-08 ***
## CCBelief_Score.c:Naturalness.c   0.5285    
## CCBelief_Score.c:C1              0.7862    
## CCBelief_Score.c:C2              0.6964    
## CCBelief_Score.c:C3              0.8350    
## CCBelief_Score.c:C4              0.1647    
## CCBelief_Score.c:C5              0.0014 ** 
## CCBelief_Score.c:C6              0.4329    
## CCBelief_Score.c:C7              0.0342 *  
## CCBelief_Score.c:C8              0.6817    
## CCBelief_Score.c:C9              0.0236 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9245,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.37 0.56 53.27 – 55.46 97.34 <0.001
CCBelief Score c 0.03 0.02 -0.02 – 0.07 1.14 0.254
Naturalness c 0.31 0.02 0.27 – 0.35 14.65 <0.001
C1 -13.96 1.02 -15.96 – -11.95 -13.65 <0.001
C2 17.37 1.18 15.07 – 19.68 14.76 <0.001
C3 -13.49 1.01 -15.48 – -11.50 -13.30 <0.001
C4 -15.01 1.00 -16.97 – -13.04 -14.96 <0.001
C5 -20.53 0.99 -22.48 – -18.58 -20.68 <0.001
C6 5.48 1.15 3.22 – 7.73 4.76 <0.001
C7 23.41 1.17 21.12 – 25.71 20.01 <0.001
C8 26.97 1.20 24.61 – 29.32 22.43 <0.001
C9 5.98 1.08 3.86 – 8.10 5.54 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.63 0.528
CCBelief Score c * C1 0.01 0.04 -0.07 – 0.10 0.27 0.786
CCBelief Score c * C2 -0.02 0.05 -0.11 – 0.07 -0.39 0.696
CCBelief Score c * C3 -0.01 0.04 -0.09 – 0.07 -0.21 0.835
CCBelief Score c * C4 -0.06 0.04 -0.13 – 0.02 -1.39 0.165
CCBelief Score c * C5 -0.14 0.04 -0.23 – -0.05 -3.20 0.001
CCBelief Score c * C6 0.04 0.05 -0.06 – 0.14 0.78 0.433
CCBelief Score c * C7 0.11 0.05 0.01 – 0.21 2.12 0.034
CCBelief Score c * C8 -0.02 0.05 -0.12 – 0.08 -0.41 0.682
CCBelief Score c * C9 0.11 0.05 0.01 – 0.20 2.26 0.024
Random Effects
σ2 296.71
τ00 id 212.65
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.437 / 0.672

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict familiarity/understanding, over and above climate change method contrasts?
modA.926 <- lmer(FR ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.926)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27137.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0741 -0.5856 -0.0118  0.5959  3.1429 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 207.4    14.40   
##  Residual             325.7    18.05   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              5.449e+01  5.624e-01  1.018e+03  96.887  < 2e-16 ***
## Collectivism_Score.c    -6.731e-03  2.361e-02  1.022e+03  -0.285 0.775676    
## C1                      -1.869e+01  1.013e+00  2.414e+03 -18.449  < 2e-16 ***
## C2                       1.269e+01  1.182e+00  2.523e+03  10.741  < 2e-16 ***
## C3                      -1.613e+01  1.042e+00  2.428e+03 -15.471  < 2e-16 ***
## C4                      -1.667e+01  1.038e+00  2.424e+03 -16.058  < 2e-16 ***
## C5                      -2.190e+01  1.034e+00  2.422e+03 -21.174  < 2e-16 ***
## C6                       5.098e+00  1.200e+00  2.525e+03   4.249 2.22e-05 ***
## C7                       2.785e+01  1.182e+00  2.522e+03  23.564  < 2e-16 ***
## C8                       3.162e+01  1.206e+00  2.525e+03  26.217  < 2e-16 ***
## C9                       1.295e+01  1.019e+00  2.417e+03  12.706  < 2e-16 ***
## Collectivism_Score.c:C1  2.183e-02  4.616e-02  2.452e+03   0.473 0.636344    
## Collectivism_Score.c:C2 -1.035e-01  4.779e-02  2.521e+03  -2.165 0.030518 *  
## Collectivism_Score.c:C3 -4.458e-02  4.419e-02  2.433e+03  -1.009 0.313175    
## Collectivism_Score.c:C4  5.096e-02  4.385e-02  2.428e+03   1.162 0.245324    
## Collectivism_Score.c:C5  1.030e-01  4.210e-02  2.411e+03   2.447 0.014471 *  
## Collectivism_Score.c:C6  6.400e-02  5.055e-02  2.528e+03   1.266 0.205551    
## Collectivism_Score.c:C7 -5.507e-02  5.123e-02  2.528e+03  -1.075 0.282586    
## Collectivism_Score.c:C8  5.185e-02  5.079e-02  2.533e+03   1.021 0.307398    
## Collectivism_Score.c:C9 -1.498e-01  4.348e-02  2.428e+03  -3.444 0.000582 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.926,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.49 0.56 53.39 – 55.59 96.89 <0.001
Collectivism Score c -0.01 0.02 -0.05 – 0.04 -0.29 0.776
C1 -18.69 1.01 -20.67 – -16.70 -18.45 <0.001
C2 12.69 1.18 10.38 – 15.01 10.74 <0.001
C3 -16.13 1.04 -18.17 – -14.08 -15.47 <0.001
C4 -16.67 1.04 -18.71 – -14.64 -16.06 <0.001
C5 -21.90 1.03 -23.92 – -19.87 -21.17 <0.001
C6 5.10 1.20 2.75 – 7.45 4.25 <0.001
C7 27.85 1.18 25.53 – 30.17 23.56 <0.001
C8 31.62 1.21 29.26 – 33.99 26.22 <0.001
C9 12.95 1.02 10.95 – 14.94 12.71 <0.001
Collectivism Score c * C1 0.02 0.05 -0.07 – 0.11 0.47 0.636
Collectivism Score c * C2 -0.10 0.05 -0.20 – -0.01 -2.16 0.031
Collectivism Score c * C3 -0.04 0.04 -0.13 – 0.04 -1.01 0.313
Collectivism Score c * C4 0.05 0.04 -0.04 – 0.14 1.16 0.245
Collectivism Score c * C5 0.10 0.04 0.02 – 0.19 2.45 0.014
Collectivism Score c * C6 0.06 0.05 -0.04 – 0.16 1.27 0.206
Collectivism Score c * C7 -0.06 0.05 -0.16 – 0.05 -1.07 0.283
Collectivism Score c * C8 0.05 0.05 -0.05 – 0.15 1.02 0.307
Collectivism Score c * C9 -0.15 0.04 -0.24 – -0.06 -3.44 0.001
Random Effects
σ2 325.73
τ00 id 207.36
ICC 0.39
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.406 / 0.637
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
modA.9267 <- lmer(FR ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling

## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.9267)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26943.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9164 -0.5685  0.0014  0.5842  3.3166 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 216.0    14.70   
##  Residual             294.1    17.15   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         5.438e+01  5.606e-01  1.013e+03  97.010
## Collectivism_Score.c               -3.588e-03  2.354e-02  1.018e+03  -0.152
## Naturalness.c                       3.149e-01  2.123e-02  2.829e+03  14.831
## C1                                 -1.396e+01  1.019e+00  2.436e+03 -13.698
## C2                                  1.726e+01  1.172e+00  2.518e+03  14.730
## C3                                 -1.345e+01  1.011e+00  2.403e+03 -13.299
## C4                                 -1.499e+01  9.975e-01  2.387e+03 -15.025
## C5                                 -2.038e+01  9.930e-01  2.390e+03 -20.525
## C6                                  5.399e+00  1.147e+00  2.480e+03   4.706
## C7                                  2.347e+01  1.168e+00  2.500e+03  20.105
## C8                                  2.681e+01  1.198e+00  2.521e+03  22.383
## C9                                  6.185e+00  1.078e+00  2.481e+03   5.740
## Collectivism_Score.c:Naturalness.c  8.720e-04  8.334e-04  2.822e+03   1.046
## Collectivism_Score.c:C1             2.394e-02  4.650e-02  2.475e+03   0.515
## Collectivism_Score.c:C2            -1.073e-01  4.735e-02  2.530e+03  -2.266
## Collectivism_Score.c:C3            -2.454e-02  4.281e-02  2.396e+03  -0.573
## Collectivism_Score.c:C4             6.308e-02  4.203e-02  2.392e+03   1.501
## Collectivism_Score.c:C5             1.270e-01  4.060e-02  2.378e+03   3.128
## Collectivism_Score.c:C6             5.946e-02  4.833e-02  2.483e+03   1.230
## Collectivism_Score.c:C7            -7.728e-02  5.082e-02  2.523e+03  -1.521
## Collectivism_Score.c:C8             2.224e-02  5.076e-02  2.526e+03   0.438
## Collectivism_Score.c:C9            -1.439e-01  4.531e-02  2.475e+03  -3.176
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.87887    
## Naturalness.c                       < 2e-16 ***
## C1                                  < 2e-16 ***
## C2                                  < 2e-16 ***
## C3                                  < 2e-16 ***
## C4                                  < 2e-16 ***
## C5                                  < 2e-16 ***
## C6                                 2.66e-06 ***
## C7                                  < 2e-16 ***
## C8                                  < 2e-16 ***
## C9                                 1.06e-08 ***
## Collectivism_Score.c:Naturalness.c  0.29550    
## Collectivism_Score.c:C1             0.60679    
## Collectivism_Score.c:C2             0.02351 *  
## Collectivism_Score.c:C3             0.56658    
## Collectivism_Score.c:C4             0.13348    
## Collectivism_Score.c:C5             0.00178 ** 
## Collectivism_Score.c:C6             0.21872    
## Collectivism_Score.c:C7             0.12849    
## Collectivism_Score.c:C8             0.66136    
## Collectivism_Score.c:C9             0.00151 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.9267,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.38 0.56 53.28 – 55.48 97.01 <0.001
Collectivism Score c -0.00 0.02 -0.05 – 0.04 -0.15 0.879
Naturalness c 0.31 0.02 0.27 – 0.36 14.83 <0.001
C1 -13.96 1.02 -15.95 – -11.96 -13.70 <0.001
C2 17.26 1.17 14.96 – 19.56 14.73 <0.001
C3 -13.45 1.01 -15.43 – -11.47 -13.30 <0.001
C4 -14.99 1.00 -16.94 – -13.03 -15.03 <0.001
C5 -20.38 0.99 -22.33 – -18.43 -20.53 <0.001
C6 5.40 1.15 3.15 – 7.65 4.71 <0.001
C7 23.47 1.17 21.18 – 25.76 20.11 <0.001
C8 26.81 1.20 24.46 – 29.15 22.38 <0.001
C9 6.19 1.08 4.07 – 8.30 5.74 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.05 0.295
Collectivism Score c * C1 0.02 0.05 -0.07 – 0.12 0.51 0.607
Collectivism Score c * C2 -0.11 0.05 -0.20 – -0.01 -2.27 0.023
Collectivism Score c * C3 -0.02 0.04 -0.11 – 0.06 -0.57 0.567
Collectivism Score c * C4 0.06 0.04 -0.02 – 0.15 1.50 0.133
Collectivism Score c * C5 0.13 0.04 0.05 – 0.21 3.13 0.002
Collectivism Score c * C6 0.06 0.05 -0.04 – 0.15 1.23 0.219
Collectivism Score c * C7 -0.08 0.05 -0.18 – 0.02 -1.52 0.128
Collectivism Score c * C8 0.02 0.05 -0.08 – 0.12 0.44 0.661
Collectivism Score c * C9 -0.14 0.05 -0.23 – -0.06 -3.18 0.002
Random Effects
σ2 294.10
τ00 id 215.98
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.437 / 0.675

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict familiarity/understanding, over and above climate change method contrasts?
modA.927 <- lmer(FR ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.927)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27119.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0442 -0.5819 -0.0200  0.5925  3.0607 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 203.0    14.25   
##  Residual             326.2    18.06   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               5.450e+01  5.587e-01  1.019e+03  97.555  < 2e-16 ***
## Individualism_Score.c     1.055e-01  3.319e-02  1.024e+03   3.180  0.00152 ** 
## C1                       -1.869e+01  1.013e+00  2.421e+03 -18.445  < 2e-16 ***
## C2                        1.306e+01  1.184e+00  2.530e+03  11.034  < 2e-16 ***
## C3                       -1.614e+01  1.043e+00  2.434e+03 -15.481  < 2e-16 ***
## C4                       -1.660e+01  1.037e+00  2.429e+03 -15.997  < 2e-16 ***
## C5                       -2.208e+01  1.030e+00  2.428e+03 -21.436  < 2e-16 ***
## C6                        5.271e+00  1.202e+00  2.532e+03   4.385 1.21e-05 ***
## C7                        2.767e+01  1.179e+00  2.529e+03  23.461  < 2e-16 ***
## C8                        3.169e+01  1.208e+00  2.532e+03  26.240  < 2e-16 ***
## C9                        1.283e+01  1.019e+00  2.423e+03  12.598  < 2e-16 ***
## Individualism_Score.c:C1 -7.194e-02  6.004e-02  2.420e+03  -1.198  0.23096    
## Individualism_Score.c:C2 -1.661e-01  6.683e-02  2.528e+03  -2.486  0.01299 *  
## Individualism_Score.c:C3  2.015e-02  6.433e-02  2.453e+03   0.313  0.75417    
## Individualism_Score.c:C4 -3.411e-02  6.193e-02  2.433e+03  -0.551  0.58184    
## Individualism_Score.c:C5  2.418e-02  6.170e-02  2.432e+03   0.392  0.69521    
## Individualism_Score.c:C6  5.047e-02  7.426e-02  2.538e+03   0.680  0.49676    
## Individualism_Score.c:C7  7.987e-03  7.444e-02  2.538e+03   0.107  0.91456    
## Individualism_Score.c:C8  3.214e-02  6.880e-02  2.531e+03   0.467  0.64046    
## Individualism_Score.c:C9 -1.156e-01  5.947e-02  2.421e+03  -1.944  0.05201 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.927,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.50 0.56 53.41 – 55.60 97.56 <0.001
Individualism Score c 0.11 0.03 0.04 – 0.17 3.18 0.001
C1 -18.69 1.01 -20.68 – -16.70 -18.45 <0.001
C2 13.06 1.18 10.74 – 15.39 11.03 <0.001
C3 -16.14 1.04 -18.19 – -14.10 -15.48 <0.001
C4 -16.60 1.04 -18.63 – -14.56 -16.00 <0.001
C5 -22.08 1.03 -24.10 – -20.06 -21.44 <0.001
C6 5.27 1.20 2.91 – 7.63 4.38 <0.001
C7 27.67 1.18 25.35 – 29.98 23.46 <0.001
C8 31.69 1.21 29.32 – 34.06 26.24 <0.001
C9 12.83 1.02 10.84 – 14.83 12.60 <0.001
Individualism Score c *
C1
-0.07 0.06 -0.19 – 0.05 -1.20 0.231
Individualism Score c *
C2
-0.17 0.07 -0.30 – -0.04 -2.49 0.013
Individualism Score c *
C3
0.02 0.06 -0.11 – 0.15 0.31 0.754
Individualism Score c *
C4
-0.03 0.06 -0.16 – 0.09 -0.55 0.582
Individualism Score c *
C5
0.02 0.06 -0.10 – 0.15 0.39 0.695
Individualism Score c *
C6
0.05 0.07 -0.10 – 0.20 0.68 0.497
Individualism Score c *
C7
0.01 0.07 -0.14 – 0.15 0.11 0.915
Individualism Score c *
C8
0.03 0.07 -0.10 – 0.17 0.47 0.640
Individualism Score c *
C9
-0.12 0.06 -0.23 – 0.00 -1.94 0.052
Random Effects
σ2 326.23
τ00 id 202.98
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.410 / 0.636
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
modA.9275 <- lmer(FR ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.9275)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26924.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9802 -0.5737  0.0031  0.5899  3.2648 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 211.6    14.55   
##  Residual             294.5    17.16   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          5.439e+01  5.569e-01  1.014e+03  97.668
## Individualism_Score.c                1.129e-01  3.307e-02  1.019e+03   3.413
## Naturalness.c                        3.180e-01  2.129e-02  2.833e+03  14.938
## C1                                  -1.390e+01  1.019e+00  2.438e+03 -13.642
## C2                                   1.774e+01  1.174e+00  2.522e+03  15.109
## C3                                  -1.348e+01  1.011e+00  2.406e+03 -13.330
## C4                                  -1.490e+01  9.968e-01  2.391e+03 -14.947
## C5                                  -2.067e+01  9.886e-01  2.396e+03 -20.906
## C6                                   5.578e+00  1.149e+00  2.488e+03   4.853
## C7                                   2.326e+01  1.165e+00  2.506e+03  19.969
## C8                                   2.686e+01  1.199e+00  2.528e+03  22.401
## C9                                   6.002e+00  1.075e+00  2.479e+03   5.581
## Individualism_Score.c:Naturalness.c -9.161e-04  1.204e-03  2.876e+03  -0.761
## Individualism_Score.c:C1            -9.400e-02  6.032e-02  2.440e+03  -1.558
## Individualism_Score.c:C2            -1.790e-01  6.645e-02  2.524e+03  -2.693
## Individualism_Score.c:C3             3.039e-02  6.237e-02  2.424e+03   0.487
## Individualism_Score.c:C4            -3.120e-02  5.962e-02  2.401e+03  -0.523
## Individualism_Score.c:C5             5.055e-02  5.936e-02  2.394e+03   0.852
## Individualism_Score.c:C6             5.652e-02  7.099e-02  2.493e+03   0.796
## Individualism_Score.c:C7            -8.108e-03  7.311e-02  2.514e+03  -0.111
## Individualism_Score.c:C8             4.594e-02  6.925e-02  2.536e+03   0.663
## Individualism_Score.c:C9            -1.023e-01  6.288e-02  2.483e+03  -1.627
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c               0.000668 ***
## Naturalness.c                        < 2e-16 ***
## C1                                   < 2e-16 ***
## C2                                   < 2e-16 ***
## C3                                   < 2e-16 ***
## C4                                   < 2e-16 ***
## C5                                   < 2e-16 ***
## C6                                  1.29e-06 ***
## C7                                   < 2e-16 ***
## C8                                   < 2e-16 ***
## C9                                  2.65e-08 ***
## Individualism_Score.c:Naturalness.c 0.446766    
## Individualism_Score.c:C1            0.119280    
## Individualism_Score.c:C2            0.007119 ** 
## Individualism_Score.c:C3            0.626145    
## Individualism_Score.c:C4            0.600731    
## Individualism_Score.c:C5            0.394546    
## Individualism_Score.c:C6            0.426021    
## Individualism_Score.c:C7            0.911706    
## Individualism_Score.c:C8            0.507143    
## Individualism_Score.c:C9            0.103921    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9275,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.39 0.56 53.30 – 55.48 97.67 <0.001
Individualism Score c 0.11 0.03 0.05 – 0.18 3.41 0.001
Naturalness c 0.32 0.02 0.28 – 0.36 14.94 <0.001
C1 -13.90 1.02 -15.90 – -11.90 -13.64 <0.001
C2 17.74 1.17 15.44 – 20.04 15.11 <0.001
C3 -13.48 1.01 -15.46 – -11.50 -13.33 <0.001
C4 -14.90 1.00 -16.85 – -12.94 -14.95 <0.001
C5 -20.67 0.99 -22.61 – -18.73 -20.91 <0.001
C6 5.58 1.15 3.32 – 7.83 4.85 <0.001
C7 23.26 1.16 20.98 – 25.55 19.97 <0.001
C8 26.86 1.20 24.51 – 29.21 22.40 <0.001
C9 6.00 1.08 3.89 – 8.11 5.58 <0.001
Individualism Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.76 0.447
Individualism Score c *
C1
-0.09 0.06 -0.21 – 0.02 -1.56 0.119
Individualism Score c *
C2
-0.18 0.07 -0.31 – -0.05 -2.69 0.007
Individualism Score c *
C3
0.03 0.06 -0.09 – 0.15 0.49 0.626
Individualism Score c *
C4
-0.03 0.06 -0.15 – 0.09 -0.52 0.601
Individualism Score c *
C5
0.05 0.06 -0.07 – 0.17 0.85 0.395
Individualism Score c *
C6
0.06 0.07 -0.08 – 0.20 0.80 0.426
Individualism Score c *
C7
-0.01 0.07 -0.15 – 0.14 -0.11 0.912
Individualism Score c *
C8
0.05 0.07 -0.09 – 0.18 0.66 0.507
Individualism Score c *
C9
-0.10 0.06 -0.23 – 0.02 -1.63 0.104
Random Effects
σ2 294.46
τ00 id 211.63
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.441 / 0.675

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does political ideology predict familiarity/understanding, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.928 <- lmer(FR ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.928)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27074.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0079 -0.5875 -0.0110  0.6005  3.0505 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 203.9    14.28   
##  Residual             328.9    18.14   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     54.4843     0.5603 1018.1554  97.244  < 2e-16 ***
## Ideology.c      -2.0856     0.9823 1020.2570  -2.123    0.034 *  
## C1             -18.8043     1.0183 2423.0838 -18.466  < 2e-16 ***
## C2              12.8895     1.1839 2531.4970  10.887  < 2e-16 ***
## C3             -16.1147     1.0470 2436.3043 -15.391  < 2e-16 ***
## C4             -16.5885     1.0414 2429.8893 -15.929  < 2e-16 ***
## C5             -21.9216     1.0372 2428.7767 -21.136  < 2e-16 ***
## C6               5.1562     1.2036 2531.7660   4.284  1.9e-05 ***
## C7              27.7051     1.1843 2531.2158  23.395  < 2e-16 ***
## C8              31.6055     1.2109 2534.4250  26.101  < 2e-16 ***
## C9              12.8888     1.0281 2427.9536  12.536  < 2e-16 ***
## Ideology.c:C1   -3.8648     1.8114 2437.9196  -2.134    0.033 *  
## Ideology.c:C2    3.2028     2.1068 2548.5452   1.520    0.129    
## Ideology.c:C3   -0.7301     1.8666 2460.5939  -0.391    0.696    
## Ideology.c:C4   -0.6865     1.8699 2461.8692  -0.367    0.714    
## Ideology.c:C5   -2.3553     1.7920 2438.6126  -1.314    0.189    
## Ideology.c:C6    1.7774     2.0244 2535.5055   0.878    0.380    
## Ideology.c:C7    1.0662     2.1894 2542.6194   0.487    0.626    
## Ideology.c:C8    0.2298     2.0779 2540.1642   0.111    0.912    
## Ideology.c:C9    1.9378     1.8271 2438.3560   1.061    0.289    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.928,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.48 0.56 53.39 – 55.58 97.24 <0.001
Ideology c -2.09 0.98 -4.01 – -0.16 -2.12 0.034
C1 -18.80 1.02 -20.80 – -16.81 -18.47 <0.001
C2 12.89 1.18 10.57 – 15.21 10.89 <0.001
C3 -16.11 1.05 -18.17 – -14.06 -15.39 <0.001
C4 -16.59 1.04 -18.63 – -14.55 -15.93 <0.001
C5 -21.92 1.04 -23.96 – -19.89 -21.14 <0.001
C6 5.16 1.20 2.80 – 7.52 4.28 <0.001
C7 27.71 1.18 25.38 – 30.03 23.39 <0.001
C8 31.61 1.21 29.23 – 33.98 26.10 <0.001
C9 12.89 1.03 10.87 – 14.90 12.54 <0.001
Ideology c * C1 -3.86 1.81 -7.42 – -0.31 -2.13 0.033
Ideology c * C2 3.20 2.11 -0.93 – 7.33 1.52 0.129
Ideology c * C3 -0.73 1.87 -4.39 – 2.93 -0.39 0.696
Ideology c * C4 -0.69 1.87 -4.35 – 2.98 -0.37 0.714
Ideology c * C5 -2.36 1.79 -5.87 – 1.16 -1.31 0.189
Ideology c * C6 1.78 2.02 -2.19 – 5.75 0.88 0.380
Ideology c * C7 1.07 2.19 -3.23 – 5.36 0.49 0.626
Ideology c * C8 0.23 2.08 -3.84 – 4.30 0.11 0.912
Ideology c * C9 1.94 1.83 -1.64 – 5.52 1.06 0.289
Random Effects
σ2 328.94
τ00 id 203.92
ICC 0.38
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.406 / 0.633
Q.2 (POLITICAL IDEOLOGY) Does political ideology depend on perceptions of naturalness in predicting familiarity/understanding, over and above climate change method contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.9281 <- lmer(FR ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.9281)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 26865.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9582 -0.5714  0.0018  0.5918  3.1024 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213.7    14.62   
##  Residual             295.6    17.19   
## Number of obs: 3021, groups:  id, 1007
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                54.34197    0.55901 1012.82582  97.211  < 2e-16 ***
## Ideology.c                 -1.74779    0.98108 1018.17406  -1.782  0.07513 .  
## Naturalness.c               0.32237    0.02130 2834.36659  15.133  < 2e-16 ***
## C1                        -13.90299    1.02255 2440.87438 -13.596  < 2e-16 ***
## C2                         17.53947    1.17180 2523.33612  14.968  < 2e-16 ***
## C3                        -13.41566    1.01368 2406.58421 -13.235  < 2e-16 ***
## C4                        -14.90366    0.99870 2389.44489 -14.923  < 2e-16 ***
## C5                        -20.36526    0.99394 2395.45651 -20.489  < 2e-16 ***
## C6                          5.51551    1.14875 2485.29134   4.801 1.67e-06 ***
## C7                         23.16407    1.16862 2507.23489  19.822  < 2e-16 ***
## C8                         26.71987    1.19991 2527.49031  22.268  < 2e-16 ***
## C9                          5.99545    1.08350 2485.33805   5.533 3.47e-08 ***
## Ideology.c:Naturalness.c   -0.10444    0.03763 2788.59260  -2.775  0.00555 ** 
## Ideology.c:C1              -5.45758    1.79346 2424.36541  -3.043  0.00237 ** 
## Ideology.c:C2               2.26808    2.12445 2614.24787   1.068  0.28579    
## Ideology.c:C3              -1.44055    1.79957 2429.59811  -0.800  0.42350    
## Ideology.c:C4              -0.83551    1.79365 2439.41520  -0.466  0.64139    
## Ideology.c:C5              -3.27654    1.71046 2397.25636  -1.916  0.05554 .  
## Ideology.c:C6               1.24590    1.93345 2483.99100   0.644  0.51938    
## Ideology.c:C7               3.38287    2.17530 2548.91636   1.555  0.12004    
## Ideology.c:C8               1.55803    2.05059 2518.23641   0.760  0.44745    
## Ideology.c:C9               3.00702    1.90100 2512.36868   1.582  0.11382    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9281,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.34 0.56 53.25 – 55.44 97.21 <0.001
Ideology c -1.75 0.98 -3.67 – 0.18 -1.78 0.075
Naturalness c 0.32 0.02 0.28 – 0.36 15.13 <0.001
C1 -13.90 1.02 -15.91 – -11.90 -13.60 <0.001
C2 17.54 1.17 15.24 – 19.84 14.97 <0.001
C3 -13.42 1.01 -15.40 – -11.43 -13.23 <0.001
C4 -14.90 1.00 -16.86 – -12.95 -14.92 <0.001
C5 -20.37 0.99 -22.31 – -18.42 -20.49 <0.001
C6 5.52 1.15 3.26 – 7.77 4.80 <0.001
C7 23.16 1.17 20.87 – 25.46 19.82 <0.001
C8 26.72 1.20 24.37 – 29.07 22.27 <0.001
C9 6.00 1.08 3.87 – 8.12 5.53 <0.001
Ideology c * Naturalness
c
-0.10 0.04 -0.18 – -0.03 -2.78 0.006
Ideology c * C1 -5.46 1.79 -8.97 – -1.94 -3.04 0.002
Ideology c * C2 2.27 2.12 -1.90 – 6.43 1.07 0.286
Ideology c * C3 -1.44 1.80 -4.97 – 2.09 -0.80 0.423
Ideology c * C4 -0.84 1.79 -4.35 – 2.68 -0.47 0.641
Ideology c * C5 -3.28 1.71 -6.63 – 0.08 -1.92 0.056
Ideology c * C6 1.25 1.93 -2.55 – 5.04 0.64 0.519
Ideology c * C7 3.38 2.18 -0.88 – 7.65 1.56 0.120
Ideology c * C8 1.56 2.05 -2.46 – 5.58 0.76 0.447
Ideology c * C9 3.01 1.90 -0.72 – 6.73 1.58 0.114
Random Effects
σ2 295.63
τ00 id 213.71
ICC 0.42
N id 1007
Observations 3021
Marginal R2 / Conditional R2 0.438 / 0.674