#install.packages('rvest')
#Loading the rvest package
#install.packages('plotly')
library(rvest)
## Warning: package 'rvest' was built under R version 4.2.1
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ readr::guess_encoding() masks rvest::guess_encoding()
## ✖ dplyr::lag() masks stats::lag()
library(plotly)
## Warning: package 'plotly' was built under R version 4.2.1
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
information from 2016 top 100 movies
url <- 'http://www.imdb.com/search/title/?count=100&release_date=2016,2016&title_type=feature'
webpage <- read_html(url)
#save_url(webpage, filename='webpage.html')
#Using CSS selectors to scrape the rankings section
rank_data_html <- html_nodes(webpage,'.text-primary')
#Converting the ranking data to text
rank_data <- html_text(rank_data_html)
#Let's have a look at the rankings
head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
#Data-Preprocessing: Converting rankings to numerical
rank_data<-as.numeric(rank_data)
#Let's have another look at the rankings
head(rank_data)
## [1] 1 2 3 4 5 6
length(rank_data)
## [1] 100
#Using CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')
#Converting the title data to text
title_data <- html_text(title_data_html)
#Let's have a look at the title
head(title_data)
## [1] "Doctor Strange"
## [2] "Rogue One: A Star Wars Story"
## [3] "Suicide Squad"
## [4] "Fantastic Beasts and Where to Find Them"
## [5] "La La Land"
## [6] "Moana"
length(title_data)
## [1] 100
#Using CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')
#Converting the description data to text
description_data <- html_text(description_data_html)
#Let's have a look at the description data
head(description_data)
## [1] "\nWhile on a journey of physical and spiritual healing, a brilliant neurosurgeon is drawn into the world of the mystic arts."
## [2] "\nIn a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."
## [3] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [4] "\nThe adventures of writer Newt Scamander in New York's secret community of witches and wizards seventy years before Harry Potter reads his book in school."
## [5] "\nWhile navigating their careers in Los Angeles, a pianist and an actress fall in love while attempting to reconcile their aspirations for the future."
## [6] "\nIn Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches Moana's island, she answers the Ocean's call to seek out the Demigod to set things right."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)
#Let's have another look at the description data
head(description_data)
## [1] "While on a journey of physical and spiritual healing, a brilliant neurosurgeon is drawn into the world of the mystic arts."
## [2] "In a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death Star, the Empire's ultimate weapon of destruction."
## [3] "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [4] "The adventures of writer Newt Scamander in New York's secret community of witches and wizards seventy years before Harry Potter reads his book in school."
## [5] "While navigating their careers in Los Angeles, a pianist and an actress fall in love while attempting to reconcile their aspirations for the future."
## [6] "In Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches Moana's island, she answers the Ocean's call to seek out the Demigod to set things right."
length(description_data)
## [1] 100
#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)
#Let's have a look at the runtime
head(runtime_data)
## [1] "115 min" "133 min" "123 min" "132 min" "128 min" "107 min"
#Data-Preprocessing: removing mins and converting it to numerical
runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)
#Let's have another look at the runtime data
head(runtime_data)
## [1] 115 133 123 132 128 107
length(runtime_data)
## [1] 100
#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')
#Converting the genre data to text
genre_data <- html_text(genre_data_html)
#Let's have a look at the runtime
head(genre_data)
## [1] "\nAction, Adventure, Fantasy "
## [2] "\nAction, Adventure, Sci-Fi "
## [3] "\nAction, Adventure, Fantasy "
## [4] "\nAdventure, Family, Fantasy "
## [5] "\nComedy, Drama, Music "
## [6] "\nAnimation, Adventure, Comedy "
#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)
#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)
#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)
#Convering each genre from text to factor
genre_data<-as.factor(genre_data)
#Let's have another look at the genre data
head(genre_data)
## [1] Action Action Action Adventure Comedy Animation
## Levels: Action Adventure Animation Biography Comedy Crime Drama Horror
length(genre_data)
## [1] 100
#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
#Converting the ratings data to text
rating_data <- html_text(rating_data_html)
#Let's have a look at the ratings
head(rating_data)
## [1] "7.5" "7.8" "5.9" "7.2" "8.0" "7.6"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)
#Let's have another look at the ratings data
head(rating_data)
## [1] 7.5 7.8 5.9 7.2 8.0 7.6
length(rating_data)
## [1] 100
#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
#Converting the votes data to text
votes_data <- html_text(votes_data_html)
#Let's have a look at the votes data
head(votes_data)
## [1] "716,649" "613,137" "675,128" "466,933" "569,578" "324,382"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)
#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#Let's have another look at the votes data
head(votes_data)
## [1] 716649 613137 675128 466933 569578 324382
length(votes_data)
## [1] 100
#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
#Converting the directors data to text
directors_data <- html_text(directors_data_html)
#Let's have a look at the directors data
head(directors_data)
## [1] "Scott Derrickson" "Gareth Edwards" "David Ayer" "David Yates"
## [5] "Damien Chazelle" "Ron Clements"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)
length(directors_data)
## [1] 100
#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)
#Let's have a look at the actors data
head(actors_data)
## [1] "Benedict Cumberbatch" "Felicity Jones" "Will Smith"
## [4] "Eddie Redmayne" "Ryan Gosling" "Auli'i Cravalho"
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)
length(actors_data)
## [1] 100
ratings_bar_data <- html_nodes(webpage,'.ratings-bar') %>%
# scrape the ratings bar and convert to text
html_text2()
head(ratings_bar_data)
## [1] "7.5\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.5/10 X \n72 Metascore"
## [2] "7.8\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.8/10 X \n65 Metascore"
## [3] "5.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 5.9/10 X \n40 Metascore"
## [4] "7.2\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.2/10 X \n66 Metascore"
## [5] "8.0\nRate this\n 1 2 3 4 5 6 7 8 9 10 8/10 X \n94 Metascore"
## [6] "7.6\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.6/10 X \n81 Metascore"
metascore_data <- str_match(ratings_bar_data, "\\d{2} Metascore") %>% # extract Metascore
str_match("\\d{2}") %>%
as.numeric() # convert to number
length(metascore_data)
## [1] 100
metascore_data
## [1] 72 65 40 66 94 81 65 71 59 75 84 81 57 62 51 74 41 72 78 51 42 42 88 67 73
## [26] 52 47 79 54 32 64 68 48 66 44 76 71 42 70 37 60 99 81 57 NA 51 44 25 60 NA
## [51] 42 78 52 32 96 33 59 NA 77 81 69 40 66 62 79 36 77 65 26 66 77 66 83 45 48
## [76] 74 47 35 67 39 81 60 58 33 46 58 61 NA 65 68 28 60 62 23 65 34 NA 69 44 22
summary(metascore_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 22.00 44.50 62.00 59.28 72.00 99.00 5
# scrape the votes bar and convert to text
votes_bar_data <- html_nodes(webpage,'.sort-num_votes-visible') %>%
html_text2()
head(votes_bar_data) # look at the votes bar data
## [1] "Votes: 716,649 | Gross: $232.64M" "Votes: 613,137 | Gross: $532.18M"
## [3] "Votes: 675,128 | Gross: $325.10M" "Votes: 466,933 | Gross: $234.04M"
## [5] "Votes: 569,578 | Gross: $151.10M" "Votes: 324,382 | Gross: $248.76M"
gross_data <- str_match(votes_bar_data, "\\$.+$") # extract the gross earnings
gross_data <- gsub("M","",gross_data) # clean data: remove 'M' sign
gross_data <- substring(gross_data,2,6) %>% # clean data: remove '$' sign
as.numeric()
length(gross_data)
## [1] 100
movies_df<-data.frame(Rank = rank_data, Title = title_data, Description = description_data,
Runtime = runtime_data, Genre = genre_data, Rating = rating_data,
Director = directors_data, Actors = actors_data,
Metascore = metascore_data, Votes = votes_data, Gross_Earning_in_Mil = gross_data)
# I removed director and actor data from the dataframe since they currently only have 99 observations
#Director = directors_data, Actor = actors_data
#Structure of the data frame
str(movies_df)
## 'data.frame': 100 obs. of 11 variables:
## $ Rank : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Title : chr "Doctor Strange" "Rogue One: A Star Wars Story" "Suicide Squad" "Fantastic Beasts and Where to Find Them" ...
## $ Description : chr "While on a journey of physical and spiritual healing, a brilliant neurosurgeon is drawn into the world of the mystic arts." "In a time of conflict, a group of unlikely heroes band together on a mission to steal the plans to the Death St"| __truncated__ "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive "| __truncated__ "The adventures of writer Newt Scamander in New York's secret community of witches and wizards seventy years bef"| __truncated__ ...
## $ Runtime : num 115 133 123 132 128 107 108 139 108 147 ...
## $ Genre : Factor w/ 8 levels "Action","Adventure",..: 1 1 1 2 5 3 1 4 3 1 ...
## $ Rating : num 7.5 7.8 5.9 7.2 8 7.6 8 8.1 7.1 7.8 ...
## $ Director : Factor w/ 96 levels "Alessandro Carloni",..: 84 31 22 25 17 80 92 62 33 6 ...
## $ Actors : Factor w/ 90 levels "Adam Sandler",..: 7 32 89 24 74 5 75 4 58 17 ...
## $ Metascore : num 72 65 40 66 94 81 65 71 59 75 ...
## $ Votes : num 716649 613137 675128 466933 569578 ...
## $ Gross_Earning_in_Mil: num 233 532 325 234 151 ...
# p1 <- qplot(data = movies_df,Runtime,fill = Genre,bins = 30)
p1 <- movies_df %>%
ggplot(aes(x=Runtime, fill = Genre)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Genre") +
labs(title = "Top 100 Movies of 2016 Runtime by Genre")
ggplotly(p1)
movies_df %>%
rownames_to_column(var = "Name") %>%
filter(Runtime == max(Runtime))
## Name Rank Title
## 1 97 97 Batman v Superman: Dawn of Justice Ultimate Edition
## Description
## 1 Batman is manipulated by Lex Luthor to fear Superman. Superman´s existence is meanwhile dividing the world and he is framed for murder during an international crisis. The heroes clash and force the neutral Wonder Woman to reemerge.
## Runtime Genre Rating Director Actors Metascore Votes
## 1 182 Action 7.2 Zack Snyder Amy Adams NA 47724
## Gross_Earning_in_Mil
## 1 NA
p2 <- movies_df %>%
ggplot(aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre, text = paste("Movie Title:", title_data)), alpha = 0.7) +
labs(title = "Top 100 Movies of 2016 Runtime by Ratings")
## Warning: Ignoring unknown aesthetics: text
p2
movies_df %>%
rownames_to_column(var = "Name") %>%
filter(Runtime >= 130 & Runtime <= 160) %>%
filter(Votes == max(Votes))
## Name Rank Title
## 1 10 10 Captain America: Civil War
## Description
## 1 Political involvement in the Avengers' affairs causes a rift between Captain America and Iron Man.
## Runtime Genre Rating Director Actors Metascore Votes
## 1 147 Action 7.8 Anthony Russo Chris Evans 75 761537
## Gross_Earning_in_Mil
## 1 408
p3 <- movies_df %>%
ggplot(aes(x=Runtime,y=Gross_Earning_in_Mil))+
geom_point(aes(size = Rating,col = Genre), alpha = 0.5) +
labs(title = "Top 100 Movies of 2016 Runtime by Gross Earnings in Millions") +
scale_y_continuous("Gross Earnings in Millions", limits =c(-10, 600))
p3
## Warning: Removed 14 rows containing missing values (geom_point).
movies_df %>%
rownames_to_column(var = "Name") %>%
filter(Runtime >= 100 & Runtime <=120 & !is.na(Gross_Earning_in_Mil)) %>%
group_by(Genre) %>%
summarize(averageGross = mean(Gross_Earning_in_Mil)) %>%
filter(averageGross == max(averageGross))
## # A tibble: 1 × 2
## Genre averageGross
## <fct> <dbl>
## 1 Animation 216.