Let us continue getting started with R as we start discussing
important statistical concepts.
Solution
Given that \(x_1 = 71, x_2 = 69, x_3 =
79\)
we want to find \(x_4\) such that
the mean (average) grade is \(\bar{x} >=
70\)
Notice that in this case \(n =
4\).
According to the information above: \(70
\times 4 = 71 + 69 + 79 + x_4\)
so when \(x_4 = 61\), the quiz
average will be 70.
# Grades so far
grades_before <- c(71, 69, 79)
# Average quiz grade wanted
wanted_grade <- 70
# Number of quizzes
n_quizzes <- 4
# Needed grade on quiz 4
x_4 <- n_quizzes*wanted_grade - sum(grades_before)
# Minimum grade needed by Kate
x_4
[1] 61
According to the calculations above, Kate must score 61 or better on
the final quiz to get an average quiz grade of at least 70.
We could confirm this, by using the function mean()
in
R
# Quiz grades
kate_grades <- c(71, 69, 79,61)
# Find mean
mean(kate_grades)
[1] 70
# Find standard deviation
sd(kate_grades)
[1] 7.393691
# Find maximum grade
max(kate_grades)
[1] 79
# Find minimum grade
min(kate_grades)
[1] 61
We can also use the summary()
function to find basic
statistics, including the median!
summary(kate_grades)
Min. 1st Qu. Median Mean 3rd Qu. Max.
61 67 70 70 73 79
Next, I would like you to explain in detail every single task we
completed above. In addition, let us deal with a similar case scenario
and complete every single task we executed in Case-scenario 1.
Frank must take six quizzes in a Physics class. If his scores on the
first five quizzes are 41, 69,63,94, and 99, what score does he need on
the final quiz for his overall mean to be at least 70?
###Now let us go back to Case-scenario 1
Another useful function is quantile
to find
# the 25%
quantile(kate_grades, 1/4)
25%
67
# the 75%
quantile(kate_grades, 3/4)
75%
73
# the function IQR finds the interquantile range
# IQR(x) = quantile(x, 3/4) - quantile(x, 1/4)
IQR(kate_grades)
[1] 6
?quantile
Make comments about the output and run a similar query using
Frank_grades.
Case-scenario 2
The average salary of 10 men is 72,000 and the average salary of 4
women is 84,000. Find the mean salary of all 14 people.
Solution
We can easily find the joined mean by adding both mean and dividing
by the total number of people.
Let \(n_1 = 10\) denote the number
of men, and \(y_1 = 72000\) their mean
salary. Let \(n_2 = 4\) the number of
women and \(y_2 = 84000\) their mean
salary. Then the mean salary of all 16 individuals is: \(\frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}\)
We can compute this in R as follows:
n_1 <- 10
n_2 <- 4
y_1 <- 72000
y_2 <- 84000
# Mean salary overall
salary_ave <- (n_1*y_1 + n_2*y_2)/(n_1+n_2)
salary_ave
[1] 75428.57
Solve a similar problem by changing the number of men and women as
well as the average income for each group. Make comments about the
output.
Case-scenario 3
The frequency distribution below lists the results of a test given in
Professor Wang’s String theory class.
10 |
5 |
9 |
10 |
8 |
6 |
7 |
8 |
6 |
3 |
5 |
2 |
Find the mean,the median and the standard deviation of the
scores.
What percentage of the data lies within one standard deviation of
the mean?
What percentage of the data lies within two standard deviations
of the mean?
What percent of the data lies within three standard deviations of
the mean?
Draw a histogram to illustrate the data.
Solution
The allScores.csv
file contains all the students’ scores
in the quiz. We can read this file in R
using the
read.csv()
function (hint:First create a csv file with 6
rows and 2 columns)
getwd()
[1] "C:/Users/npenaper/Downloads"
scores <- read.table("allScores.csv", header = TRUE, sep = ",")
WangScores <- scores$Score
View(scores)
View(WangScores)
Make comments about the code we just ran above.
- To find the mean and the standard deviation
# Mean
Scores_mean <- mean(WangScores)
Scores_mean
[1] 8
# Median
Scores_median <- median(WangScores)
Scores_median
[1] 8
# Find number of observations
Scores_n <- length(WangScores)
# Find standard deviation
Scores_sd <- sd(WangScores)
- What percentage of the data lies within one standard deviation of
the mean?
scores_w1sd <- sum((WangScores - Scores_mean)/Scores_sd < 1)/ Scores_n
# Percentage of observation within one standard deviation of the mean
scores_w1sd
[1] 0.8529412
## Difference from empirical
scores_w1sd - 0.68
[1] 0.1729412
- What percentage of the data lies within two standard deviations of
the mean?
## Within 2 sd
scores_w2sd <- sum((WangScores - Scores_mean)/ Scores_sd < 2)/Scores_n
scores_w2sd
[1] 1
## Difference from empirical
scores_w2sd - 0.95
[1] 0.05
- What percent of the data lies within three standard deviations of
the mean?
## Within 3 sd
scores_w3sd <- sum((WangScores - Scores_mean)/ Scores_sd < 3)/Scores_n
scores_w3sd
[1] 1
## Difference from empirical
scores_w3sd - 0.9973
[1] 0.0027
Explain the implications of the results obtained in this problem. In
addition, create a similar query but this time addressing
Frank_Scores.
- Draw a histogram
# Create histogram
hist(WangScores)

Explain the output and create a similar histogram for
Frank_Scores.
LS0tDQp0aXRsZTogIkdldHRpbmcgU3RhcnRlZCB3aXRoIFIsUGFydCBJSSINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdA0KICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KDQpMZXQgdXMgY29udGludWUgZ2V0dGluZyBzdGFydGVkIHdpdGggUiBhcyB3ZSBzdGFydCBkaXNjdXNzaW5nIGltcG9ydGFudCBzdGF0aXN0aWNhbCBjb25jZXB0cy4NCg0KDQojIyBDYXNlLXNjZW5hcmlvIDENCkthdGUgbXVzdCB0YWtlIGZvdXIgcXVpenplcyBpbiBhIG1hdGggY2xhc3MuIElmIGhlciBzY29yZXMgb24gdGhlIGZpcnN0IHRocmVlIHF1aXp6ZXMgYXJlIDcxLCA2OSwgYW5kIDc5LCB3aGF0IHNjb3JlIGRvZXMgc2hlIG5lZWQgb24gdGhlIGZpbmFsIHF1aXogZm9yIGhlciBvdmVyYWxsIG1lYW4gdG8gYmUgYXQgbGVhc3QgNzA/DQoNCiMjIFNvbHV0aW9uDQoNCkdpdmVuIHRoYXQgDQokeF8xID0gNzEsIHhfMiA9IDY5LCB4XzMgPSA3OSQNCg0Kd2Ugd2FudCB0byBmaW5kICR4XzQkIHN1Y2ggdGhhdCB0aGUgbWVhbiAoYXZlcmFnZSkgZ3JhZGUgaXMgDQokXGJhcnt4fSA+PSA3MCQNCg0KTm90aWNlIHRoYXQgaW4gdGhpcyBjYXNlICRuID0gNCQuDQoNCkFjY29yZGluZyB0byB0aGUgaW5mb3JtYXRpb24gYWJvdmU6DQokNzAgXHRpbWVzIDQgPSA3MSArIDY5ICsgNzkgKyB4XzQkDQoNCnNvIHdoZW4gJHhfNCA9IDYxJCwgdGhlIHF1aXogYXZlcmFnZSB3aWxsIGJlIDcwLg0KDQoNCmBgYHtyfQ0KIyBHcmFkZXMgc28gZmFyDQpncmFkZXNfYmVmb3JlIDwtIGMoNzEsIDY5LCA3OSkNCiMgQXZlcmFnZSBxdWl6IGdyYWRlIHdhbnRlZA0Kd2FudGVkX2dyYWRlIDwtIDcwDQojIE51bWJlciBvZiBxdWl6emVzDQpuX3F1aXp6ZXMgPC0gNA0KIyBOZWVkZWQgZ3JhZGUgb24gcXVpeiA0DQp4XzQgPC0gbl9xdWl6emVzKndhbnRlZF9ncmFkZSAtIHN1bShncmFkZXNfYmVmb3JlKQ0KIyBNaW5pbXVtIGdyYWRlIG5lZWRlZCBieSBLYXRlDQp4XzQNCmBgYA0KDQpBY2NvcmRpbmcgdG8gdGhlIGNhbGN1bGF0aW9ucyBhYm92ZSwgS2F0ZSBtdXN0IHNjb3JlIDYxIG9yIGJldHRlciBvbiB0aGUgZmluYWwgcXVpeiB0byBnZXQgYW4gYXZlcmFnZSBxdWl6IGdyYWRlIG9mIGF0IGxlYXN0IDcwLg0KDQoNCldlIGNvdWxkIGNvbmZpcm0gdGhpcywgYnkgdXNpbmcgdGhlIGZ1bmN0aW9uIGBtZWFuKClgIGluIGBSYA0KDQpgYGB7cn0NCiMgUXVpeiBncmFkZXMNCmthdGVfZ3JhZGVzIDwtIGMoNzEsIDY5LCA3OSw2MSkNCiMgRmluZCBtZWFuDQptZWFuKGthdGVfZ3JhZGVzKQ0KIyBGaW5kIHN0YW5kYXJkIGRldmlhdGlvbg0Kc2Qoa2F0ZV9ncmFkZXMpDQojIEZpbmQgbWF4aW11bSBncmFkZQ0KbWF4KGthdGVfZ3JhZGVzKQ0KIyBGaW5kIG1pbmltdW0gZ3JhZGUNCm1pbihrYXRlX2dyYWRlcykNCmBgYA0KDQoNCg0KDQoNCldlIGNhbiBhbHNvIHVzZSB0aGUgYHN1bW1hcnkoKWAgZnVuY3Rpb24gdG8gZmluZCBiYXNpYyBzdGF0aXN0aWNzLCBpbmNsdWRpbmcgdGhlIG1lZGlhbiENCg0KYGBge3J9DQpzdW1tYXJ5KGthdGVfZ3JhZGVzKQ0KYGBgDQoNCg0KTmV4dCwgSSB3b3VsZCBsaWtlIHlvdSB0byBleHBsYWluIGluIGRldGFpbCBldmVyeSBzaW5nbGUgdGFzayB3ZSBjb21wbGV0ZWQgYWJvdmUuIEluIGFkZGl0aW9uLCBsZXQgdXMgZGVhbCB3aXRoIGEgc2ltaWxhciBjYXNlIHNjZW5hcmlvIGFuZCBjb21wbGV0ZSBldmVyeSBzaW5nbGUgdGFzayB3ZSBleGVjdXRlZCBpbiBDYXNlLXNjZW5hcmlvIDEuDQoNCg0KRnJhbmsgbXVzdCB0YWtlIHNpeCBxdWl6emVzIGluIGEgUGh5c2ljcyBjbGFzcy4gSWYgaGlzIHNjb3JlcyBvbiB0aGUgZmlyc3QgZml2ZSBxdWl6emVzIGFyZSA0MSwgNjksNjMsOTQsIGFuZCA5OSwgd2hhdCBzY29yZSBkb2VzIGhlIG5lZWQgb24gdGhlIGZpbmFsIHF1aXogZm9yIGhpcyBvdmVyYWxsIG1lYW4gdG8gYmUgYXQgbGVhc3QgNzA/DQoNCg0KDQoNCiMjI05vdyBsZXQgdXMgZ28gYmFjayB0byBDYXNlLXNjZW5hcmlvIDENCg0KQW5vdGhlciB1c2VmdWwgZnVuY3Rpb24gaXMgYHF1YW50aWxlYCB0byBmaW5kIA0KYGBge3J9DQojIHRoZSAyNSUgDQpxdWFudGlsZShrYXRlX2dyYWRlcywgMS80KQ0KIyB0aGUgNzUlDQpxdWFudGlsZShrYXRlX2dyYWRlcywgMy80KQ0KIyB0aGUgZnVuY3Rpb24gSVFSIGZpbmRzIHRoZSBpbnRlcnF1YW50aWxlIHJhbmdlDQojIElRUih4KSA9IHF1YW50aWxlKHgsIDMvNCkgLSBxdWFudGlsZSh4LCAxLzQpDQpJUVIoa2F0ZV9ncmFkZXMpDQpgYGANCg0KYGBge3J9DQo/cXVhbnRpbGUNCmBgYA0KDQoNCk1ha2UgY29tbWVudHMgYWJvdXQgdGhlIG91dHB1dCBhbmQgcnVuIGEgc2ltaWxhciBxdWVyeSB1c2luZyBGcmFua19ncmFkZXMuDQoNCg0KDQoNCiMgQ2FzZS1zY2VuYXJpbyAyDQoNCg0KVGhlIGF2ZXJhZ2Ugc2FsYXJ5IG9mIDEwIG1lbiBpcyA3MiwwMDAgYW5kIHRoZSBhdmVyYWdlIHNhbGFyeSBvZiA0IHdvbWVuIGlzIDg0LDAwMC4gRmluZCB0aGUgbWVhbiBzYWxhcnkgb2YgYWxsIDE0IHBlb3BsZS4NCg0KIyMgU29sdXRpb24NCg0KV2UgY2FuIGVhc2lseSBmaW5kIHRoZSBqb2luZWQgbWVhbiBieSBhZGRpbmcgYm90aCBtZWFuIGFuZCBkaXZpZGluZyBieSB0aGUgdG90YWwgbnVtYmVyIG9mIHBlb3BsZS4NCg0KTGV0ICRuXzEgPSAxMCQgZGVub3RlIHRoZSBudW1iZXIgb2YgbWVuLCBhbmQgJHlfMSA9IDcyMDAwJCB0aGVpciBtZWFuIHNhbGFyeS4gTGV0ICRuXzIgPSA0JCB0aGUgbnVtYmVyIG9mIHdvbWVuIGFuZCAkeV8yID0gODQwMDAkIHRoZWlyIG1lYW4gc2FsYXJ5Lg0KVGhlbiB0aGUgbWVhbiBzYWxhcnkgb2YgYWxsIDE2IGluZGl2aWR1YWxzIGlzOg0KJFxmcmFje25fMSB4XzEgKyBuXzIgeF8yfXtuXzEgKyBuXzJ9JA0KDQpXZSBjYW4gY29tcHV0ZSB0aGlzIGluIFIgYXMgZm9sbG93czoNCg0KYGBge3J9DQpuXzEgPC0gMTANCm5fMiA8LSA0DQp5XzEgPC0gNzIwMDANCnlfMiA8LSA4NDAwMA0KIyBNZWFuIHNhbGFyeSBvdmVyYWxsDQpzYWxhcnlfYXZlIDwtICAobl8xKnlfMSArIG5fMip5XzIpLyhuXzErbl8yKQ0Kc2FsYXJ5X2F2ZQ0KYGBgDQoNClNvbHZlIGEgc2ltaWxhciBwcm9ibGVtIGJ5IGNoYW5naW5nIHRoZSBudW1iZXIgb2YgbWVuIGFuZCB3b21lbiBhcyB3ZWxsIGFzIHRoZSBhdmVyYWdlIGluY29tZSBmb3IgZWFjaCBncm91cC4gTWFrZSBjb21tZW50cyBhYm91dCB0aGUgb3V0cHV0Lg0KDQoNCg0KDQoNCiMgQ2FzZS1zY2VuYXJpbyAzDQoNClRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGJlbG93IGxpc3RzIHRoZSByZXN1bHRzIG9mIGEgdGVzdCBnaXZlbiBpbiBQcm9mZXNzb3IgV2FuZydzIFN0cmluZyB0aGVvcnkgY2xhc3MuDQoNClNjb3JlICAgfCAgIE51bWJlciBvZiBzdHVkZW50cw0KLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KMTAgICAgICB8IDUNCjkgICAgICAgfCAxMA0KOCAgICAgICB8IDYNCjcgICAgICAgfCA4DQo2ICAgICAgIHwgMw0KNSAgICAgICB8IDINCg0KDQoNCjEuIEZpbmQgdGhlIG1lYW4sdGhlIG1lZGlhbiBhbmQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgc2NvcmVzLg0KDQoyLiBXaGF0IHBlcmNlbnRhZ2Ugb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gb25lIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgbWVhbj8NCg0KMy4gV2hhdCBwZXJjZW50YWdlIG9mIHRoZSBkYXRhIGxpZXMgd2l0aGluIHR3byBzdGFuZGFyZCBkZXZpYXRpb25zIG9mIHRoZSBtZWFuPw0KDQo0LiBXaGF0IHBlcmNlbnQgb2YgdGhlIGRhdGEgbGllcyB3aXRoaW4gdGhyZWUgc3RhbmRhcmQgZGV2aWF0aW9ucyBvZiB0aGUgbWVhbj8gDQoNCjUuIERyYXcgYSBoaXN0b2dyYW0gdG8gaWxsdXN0cmF0ZSB0aGUgZGF0YS4gDQoNCiMjIFNvbHV0aW9uDQoNClRoZSBgYWxsU2NvcmVzLmNzdmAgZmlsZSBjb250YWlucyBhbGwgdGhlIHN0dWRlbnRzJyBzY29yZXMgaW4gdGhlIHF1aXouIFdlIGNhbiByZWFkIHRoaXMgZmlsZSBpbiBgUmAgdXNpbmcgdGhlIGByZWFkLmNzdigpYCBmdW5jdGlvbiAoaGludDpGaXJzdCBjcmVhdGUgYSBjc3YgZmlsZSB3aXRoIDYgcm93cyBhbmQgMiBjb2x1bW5zKQ0KDQoNCmBgYHtyfQ0KZ2V0d2QoKQ0KYGBgDQoNCg0KYGBge3J9DQpzY29yZXMgPC0gcmVhZC50YWJsZSgiYWxsU2NvcmVzLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcCA9ICIsIikNCldhbmdTY29yZXMgPC0gc2NvcmVzJFNjb3JlDQpgYGANCg0KDQoNCmBgYHtyfQ0KVmlldyhzY29yZXMpDQpgYGANCg0KYGBge3J9DQpWaWV3KFdhbmdTY29yZXMpDQpgYGANCg0KDQoNCk1ha2UgY29tbWVudHMgYWJvdXQgdGhlIGNvZGUgd2UganVzdCByYW4gYWJvdmUuICANCg0KDQoxLiBUbyBmaW5kIHRoZSBtZWFuIGFuZCB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uDQoNCmBgYHtyfQ0KIyBNZWFuIA0KU2NvcmVzX21lYW4gIDwtIG1lYW4oV2FuZ1Njb3JlcykNClNjb3Jlc19tZWFuDQojIE1lZGlhbg0KU2NvcmVzX21lZGlhbiA8LSBtZWRpYW4oV2FuZ1Njb3JlcykNClNjb3Jlc19tZWRpYW4NCiMgRmluZCBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zDQpTY29yZXNfbiA8LSBsZW5ndGgoV2FuZ1Njb3JlcykNCiMgRmluZCBzdGFuZGFyZCBkZXZpYXRpb24NClNjb3Jlc19zZCA8LSBzZChXYW5nU2NvcmVzKQ0KYGBgDQoNCjIuIFdoYXQgcGVyY2VudGFnZSBvZiB0aGUgZGF0YSBsaWVzIHdpdGhpbiBvbmUgc3RhbmRhcmQgZGV2aWF0aW9uIG9mIHRoZSBtZWFuPw0KDQpgYGB7cn0NCnNjb3Jlc193MXNkIDwtIHN1bSgoV2FuZ1Njb3JlcyAtIFNjb3Jlc19tZWFuKS9TY29yZXNfc2QgPCAxKS8gU2NvcmVzX24NCiMgUGVyY2VudGFnZSBvZiBvYnNlcnZhdGlvbiB3aXRoaW4gb25lIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgbWVhbg0Kc2NvcmVzX3cxc2QNCiMjIERpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwgDQpzY29yZXNfdzFzZCAtIDAuNjgNCg0KYGBgDQoNCjMuIFdoYXQgcGVyY2VudGFnZSBvZiB0aGUgZGF0YSBsaWVzIHdpdGhpbiB0d28gc3RhbmRhcmQgZGV2aWF0aW9ucyBvZiB0aGUgbWVhbj8NCg0KYGBge3J9DQojIyBXaXRoaW4gMiBzZA0Kc2NvcmVzX3cyc2QgPC0gc3VtKChXYW5nU2NvcmVzIC0gU2NvcmVzX21lYW4pLyBTY29yZXNfc2QgPCAyKS9TY29yZXNfbg0Kc2NvcmVzX3cyc2QNCiMjIERpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwgDQpzY29yZXNfdzJzZCAtIDAuOTUNCmBgYA0KDQoNCjQuIFdoYXQgcGVyY2VudCBvZiB0aGUgZGF0YSBsaWVzIHdpdGhpbiB0aHJlZSBzdGFuZGFyZCBkZXZpYXRpb25zIG9mIHRoZSBtZWFuPw0KDQpgYGB7cn0NCiMjIFdpdGhpbiAzIHNkIA0Kc2NvcmVzX3czc2QgPC0gc3VtKChXYW5nU2NvcmVzIC0gU2NvcmVzX21lYW4pLyBTY29yZXNfc2QgPCAzKS9TY29yZXNfbg0Kc2NvcmVzX3czc2QNCiMjIERpZmZlcmVuY2UgZnJvbSBlbXBpcmljYWwgDQpzY29yZXNfdzNzZCAtIDAuOTk3Mw0KYGBgDQoNCkV4cGxhaW4gdGhlIGltcGxpY2F0aW9ucyBvZiB0aGUgcmVzdWx0cyBvYnRhaW5lZCBpbiB0aGlzIHByb2JsZW0uIEluIGFkZGl0aW9uLCBjcmVhdGUgYSBzaW1pbGFyIHF1ZXJ5IGJ1dCB0aGlzIHRpbWUgYWRkcmVzc2luZyBGcmFua19TY29yZXMuDQoNCg0KDQoNCg0KNS4gRHJhdyBhIGhpc3RvZ3JhbQ0KDQpgYGB7cn0NCiMgQ3JlYXRlIGhpc3RvZ3JhbQ0KaGlzdChXYW5nU2NvcmVzKQ0KYGBgDQoNCkV4cGxhaW4gdGhlIG91dHB1dCBhbmQgY3JlYXRlIGEgc2ltaWxhciBoaXN0b2dyYW0gZm9yIEZyYW5rX1Njb3Jlcy4NCg0KDQoNCg0KDQoNCg0KDQo=