Install Packagaes
#install.packages("dslabs")
library("dslabs")
data(package="dslabs")
list.files(system.file("script", package = "dslabs"))
## [1] "make-admissions.R"
## [2] "make-brca.R"
## [3] "make-brexit_polls.R"
## [4] "make-death_prob.R"
## [5] "make-divorce_margarine.R"
## [6] "make-gapminder-rdas.R"
## [7] "make-greenhouse_gases.R"
## [8] "make-historic_co2.R"
## [9] "make-mnist_27.R"
## [10] "make-movielens.R"
## [11] "make-murders-rda.R"
## [12] "make-na_example-rda.R"
## [13] "make-nyc_regents_scores.R"
## [14] "make-olive.R"
## [15] "make-outlier_example.R"
## [16] "make-polls_2008.R"
## [17] "make-polls_us_election_2016.R"
## [18] "make-reported_heights-rda.R"
## [19] "make-research_funding_rates.R"
## [20] "make-stars.R"
## [21] "make-temp_carbon.R"
## [22] "make-tissue-gene-expression.R"
## [23] "make-trump_tweets.R"
## [24] "make-weekly_us_contagious_diseases.R"
## [25] "save-gapminder-example-csv.R"
Select Admissions Dataset
data("admissions")
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
Load Theme and Color Libraries
library(ggthemes)
library(ggrepel)
library(RColorBrewer)
Structure Admissions Dataset
str(admissions)
## 'data.frame': 12 obs. of 4 variables:
## $ major : chr "A" "B" "C" "D" ...
## $ gender : chr "men" "men" "men" "men" ...
## $ admitted : num 62 63 37 33 28 6 82 68 34 35 ...
## $ applicants: num 825 560 325 417 191 373 108 25 593 375 ...
Install Highcharter
#install.packages("highcharter")
library(highcharter)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
##
## Attaching package: 'highcharter'
## The following object is masked from 'package:dslabs':
##
## stars
Number of Admitted Students by Major and Gender
highchart() %>%
hc_add_series(data=admissions,
type = "area",
hcaes(x=major, y = admitted, group = gender)) %>%
hc_plotOptions(series = list(stacking="normal")) %>%
hc_xAxis(categories=admissions$major, title= list(text="Major")) %>%
hc_yAxis(title = list(text = "Number of Admitted Applicants")) %>%
hc_legend(align="right", verticalAlign="bottom") %>%
hc_colors (brewer.pal(7, "Set2")) %>%
hc_title(text = "Number of Admitted Students by Major and Gender")
Number of Admitted Students by Major and Gender
Using a Different Stacking Option
highchart() %>%
hc_add_series(data=admissions,
type = "area",
hcaes(x=major, y = admitted, group = gender)) %>%
hc_plotOptions(series = list(stacking="percent")) %>%
hc_xAxis(categories=admissions$major, title= list(text="Major")) %>%
hc_yAxis(title = list(text = "Number of Admitted Applicants")) %>%
hc_legend(align="right", verticalAlign="bottom") %>%
hc_colors (brewer.pal(4, "Set1")) %>%
hc_title(text = "Number of Admitted Students by Major and Gender")
Using the admissions dataset, these graphs show the number of
admitted students by major and gender. The first graph is displayed as a
normal stack and the second graph is displayed using a percentage
stack.