Transformando datos

t.exp<- (lung$time)/30
t.plant<- lung$age
hibrido<- lung$sex
severidad <- lung$ph.ecog
estado<- lung$status
N17 <- lung$meal.cal
P17<- lung$wt.loss

sup.caf<-data.frame(hibrido,t.exp,t.plant, estado, severidad, N17, P17 )
#View(sup.caf)

Creando data frame como si fuera para cultivo de café

caf.sur<-Surv(sup.caf$t.exp, sup.caf$estado)

modelado no- parámetrico

caf.fit<-survfit(caf.sur~1)
summary(caf.fit)
## Call: survfit(formula = caf.sur ~ 1)
## 
##    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.167    228       1   0.9956 0.00438       0.9871        1.000
##   0.367    227       3   0.9825 0.00869       0.9656        1.000
##   0.400    224       1   0.9781 0.00970       0.9592        0.997
##   0.433    223       2   0.9693 0.01142       0.9472        0.992
##   0.500    221       1   0.9649 0.01219       0.9413        0.989
##   0.867    220       1   0.9605 0.01290       0.9356        0.986
##   1.000    219       1   0.9561 0.01356       0.9299        0.983
##   1.033    218       1   0.9518 0.01419       0.9243        0.980
##   1.767    217       2   0.9430 0.01536       0.9134        0.974
##   1.800    215       1   0.9386 0.01590       0.9079        0.970
##   1.967    214       1   0.9342 0.01642       0.9026        0.967
##   2.000    213       2   0.9254 0.01740       0.8920        0.960
##   2.033    211       1   0.9211 0.01786       0.8867        0.957
##   2.067    210       1   0.9167 0.01830       0.8815        0.953
##   2.167    209       2   0.9079 0.01915       0.8711        0.946
##   2.367    207       1   0.9035 0.01955       0.8660        0.943
##   2.633    206       1   0.8991 0.01995       0.8609        0.939
##   2.700    205       2   0.8904 0.02069       0.8507        0.932
##   2.933    203       2   0.8816 0.02140       0.8406        0.925
##   3.067    201       1   0.8772 0.02174       0.8356        0.921
##   3.100    199       1   0.8728 0.02207       0.8306        0.917
##   3.167    198       2   0.8640 0.02271       0.8206        0.910
##   3.500    196       1   0.8596 0.02302       0.8156        0.906
##   3.567    194       2   0.8507 0.02362       0.8056        0.898
##   3.667    192       1   0.8463 0.02391       0.8007        0.894
##   3.867    191       1   0.8418 0.02419       0.7957        0.891
##   3.933    190       1   0.8374 0.02446       0.7908        0.887
##   4.067    189       1   0.8330 0.02473       0.7859        0.883
##   4.367    188       1   0.8285 0.02500       0.7810        0.879
##   4.400    187       2   0.8197 0.02550       0.7712        0.871
##   4.500    185       1   0.8153 0.02575       0.7663        0.867
##   4.733    184       1   0.8108 0.02598       0.7615        0.863
##   4.800    183       1   0.8064 0.02622       0.7566        0.859
##   4.833    182       2   0.7975 0.02667       0.7469        0.852
##   4.900    180       1   0.7931 0.02688       0.7421        0.848
##   5.100    179       1   0.7887 0.02710       0.7373        0.844
##   5.200    178       2   0.7798 0.02751       0.7277        0.836
##   5.433    176       3   0.7665 0.02809       0.7134        0.824
##   5.533    173       2   0.7577 0.02845       0.7039        0.816
##   5.567    171       1   0.7532 0.02863       0.6991        0.811
##   5.667    170       1   0.7488 0.02880       0.6944        0.807
##   5.833    167       1   0.7443 0.02898       0.6896        0.803
##   5.867    165       1   0.7398 0.02915       0.6848        0.799
##   5.900    164       1   0.7353 0.02932       0.6800        0.795
##   5.967    162       2   0.7262 0.02965       0.6704        0.787
##   6.000    160       1   0.7217 0.02981       0.6655        0.783
##   6.033    159       2   0.7126 0.03012       0.6559        0.774
##   6.067    157       1   0.7081 0.03027       0.6511        0.770
##   6.100    156       1   0.7035 0.03041       0.6464        0.766
##   6.200    154       1   0.6989 0.03056       0.6416        0.761
##   6.300    152       1   0.6943 0.03070       0.6367        0.757
##   6.467    149       1   0.6897 0.03085       0.6318        0.753
##   6.567    147       1   0.6850 0.03099       0.6269        0.749
##   6.633    145       1   0.6803 0.03113       0.6219        0.744
##   6.700    144       2   0.6708 0.03141       0.6120        0.735
##   6.733    142       1   0.6661 0.03154       0.6071        0.731
##   6.900    139       1   0.6613 0.03168       0.6020        0.726
##   6.933    138       1   0.6565 0.03181       0.5970        0.722
##   7.000    137       1   0.6517 0.03194       0.5920        0.717
##   7.067    135       1   0.6469 0.03206       0.5870        0.713
##   7.267    134       1   0.6421 0.03218       0.5820        0.708
##   7.400    132       1   0.6372 0.03231       0.5769        0.704
##   7.433    130       1   0.6323 0.03243       0.5718        0.699
##   7.533    126       1   0.6273 0.03256       0.5666        0.694
##   7.633    125       1   0.6223 0.03268       0.5614        0.690
##   7.667    124       1   0.6172 0.03280       0.5562        0.685
##   7.967    121       2   0.6070 0.03304       0.5456        0.675
##   8.167    117       1   0.6019 0.03316       0.5402        0.670
##   8.200    116       1   0.5967 0.03328       0.5349        0.666
##   8.900    112       1   0.5913 0.03341       0.5294        0.661
##   8.933    111       1   0.5860 0.03353       0.5239        0.656
##   8.967    110       1   0.5807 0.03364       0.5184        0.651
##   9.000    108       1   0.5753 0.03376       0.5128        0.645
##   9.433    104       1   0.5698 0.03388       0.5071        0.640
##   9.467    103       1   0.5642 0.03400       0.5014        0.635
##   9.500    101       2   0.5531 0.03424       0.4899        0.624
##   9.533     99       1   0.5475 0.03434       0.4841        0.619
##   9.600     98       1   0.5419 0.03444       0.4784        0.614
##   9.700     97       1   0.5363 0.03454       0.4727        0.608
##   9.767     94       1   0.5306 0.03464       0.4669        0.603
##  10.033     91       1   0.5248 0.03475       0.4609        0.597
##  10.100     89       1   0.5189 0.03485       0.4549        0.592
##  10.167     87       1   0.5129 0.03496       0.4488        0.586
##  10.200     86       1   0.5070 0.03506       0.4427        0.581
##  10.333     85       2   0.4950 0.03523       0.4306        0.569
##  10.667     82       1   0.4890 0.03532       0.4244        0.563
##  10.967     81       1   0.4830 0.03539       0.4183        0.558
##  11.233     79       1   0.4768 0.03547       0.4121        0.552
##  11.333     78       1   0.4707 0.03554       0.4060        0.546
##  11.500     77       1   0.4646 0.03560       0.3998        0.540
##  11.600     76       1   0.4585 0.03565       0.3937        0.534
##  11.667     75       1   0.4524 0.03569       0.3876        0.528
##  11.700     74       1   0.4463 0.03573       0.3815        0.522
##  11.767     73       2   0.4340 0.03578       0.3693        0.510
##  12.033     70       1   0.4278 0.03581       0.3631        0.504
##  12.100     69       2   0.4154 0.03583       0.3508        0.492
##  12.133     67       1   0.4092 0.03582       0.3447        0.486
##  12.367     65       2   0.3966 0.03581       0.3323        0.473
##  12.900     60       1   0.3900 0.03582       0.3258        0.467
##  13.000     59       1   0.3834 0.03582       0.3193        0.460
##  13.133     58       1   0.3768 0.03580       0.3128        0.454
##  14.200     55       1   0.3700 0.03580       0.3060        0.447
##  14.267     54       1   0.3631 0.03579       0.2993        0.440
##  14.300     53       1   0.3563 0.03576       0.2926        0.434
##  14.433     52       1   0.3494 0.03573       0.2860        0.427
##  14.733     51       1   0.3426 0.03568       0.2793        0.420
##  14.800     50       1   0.3357 0.03561       0.2727        0.413
##  15.000     48       1   0.3287 0.03555       0.2659        0.406
##  15.167     47       1   0.3217 0.03548       0.2592        0.399
##  15.233     46       1   0.3147 0.03539       0.2525        0.392
##  15.333     44       1   0.3076 0.03530       0.2456        0.385
##  15.767     43       1   0.3004 0.03520       0.2388        0.378
##  15.900     42       1   0.2933 0.03508       0.2320        0.371
##  17.300     39       1   0.2857 0.03498       0.2248        0.363
##  17.333     38       1   0.2782 0.03485       0.2177        0.356
##  17.467     37       2   0.2632 0.03455       0.2035        0.340
##  17.767     34       1   0.2554 0.03439       0.1962        0.333
##  18.333     32       1   0.2475 0.03423       0.1887        0.325
##  18.600     30       1   0.2392 0.03407       0.1810        0.316
##  18.900     28       1   0.2307 0.03391       0.1729        0.308
##  19.133     27       1   0.2221 0.03371       0.1650        0.299
##  19.433     26       1   0.2136 0.03348       0.1571        0.290
##  20.433     24       1   0.2047 0.03325       0.1489        0.281
##  20.800     23       1   0.1958 0.03297       0.1407        0.272
##  21.367     22       1   0.1869 0.03265       0.1327        0.263
##  21.433     21       1   0.1780 0.03229       0.1247        0.254
##  21.800     20       1   0.1691 0.03188       0.1169        0.245
##  21.833     19       1   0.1602 0.03142       0.1091        0.235
##  22.900     18       1   0.1513 0.03090       0.1014        0.226
##  22.967     17       1   0.1424 0.03034       0.0938        0.216
##  23.500     16       1   0.1335 0.02972       0.0863        0.207
##  23.567     15       1   0.1246 0.02904       0.0789        0.197
##  24.267     14       1   0.1157 0.02830       0.0716        0.187
##  24.367     13       1   0.1068 0.02749       0.0645        0.177
##  24.500     12       1   0.0979 0.02660       0.0575        0.167
##  25.500     10       1   0.0881 0.02568       0.0498        0.156
##  26.367      9       1   0.0783 0.02462       0.0423        0.145
##  27.133      7       1   0.0671 0.02351       0.0338        0.133
##  29.433      4       1   0.0503 0.02285       0.0207        0.123

Valores únicos

plot(caf.fit,xlab="Tiempo de supervivencia (meses)",ylab="Proporción de plantas vivas")
title("Curva de supervivenvia de proporción de individuos vs tiempo")
abline(h = 0.5, col='red')
abline(v = 10.32, col='red')
abline(h = c(0.25, 0.75), col='blue')
abline(v = c(5.65, 18.5), col='blue')

\[El\ tiempo\ requerido\ para\ una\ supervivencia\ del\ 75\%\ es\ de\ 5.65\ meses,\\ para\ que\ mueran\ el\ 50\%\ de\ las\ plantas\ 10.3\ meses,\\ y\ la\ mortalidad\ del\ 75\%\ se\ alcanza\ a\ los\ 18.5\ meses\ después\ de\ siembra.\] ### Intervalo

plot(caf.fit,xlab="Tiempo de supervivencia (meses)",ylab="Proporción de plantas vivas")
title("Curva de supervivenvia de proporción de individuos vs tiempo (zona de confianza)", cex.main = 1 )
abline(h = 0.5, col='red')
abline(v = 10.32, col='red')

points(c(10.32, 10.32), c(0.44, 0.58), pch =16, col='blue')
points(c(9.5, 12.2), c(0.5, 0.5), pch =16, col='red')

\[La\ zona\ de\ confianza\ indica\ una\ probabilidad\ de\ supervivencia\ entre\ el\ 44\%\ y\ 58\%\ a\ los\ 10.3\ meses,\\ mientras\ que\ entre\ los\ 9.5\ y\ 12.2\ meses\ la\ probabilidad\ de\ supervivencia\ es\ del\ 50\%\] ## Modelado no parámetrico

caf.fit.strata<-survfit(caf.sur~severidad,sup.caf)
plot(caf.fit.strata, lty = 1:4,col=1:4,xlab="Tiempo de supervivencia (meses)",ylab="Proporción de plantas vivas",
     lwd=3)
title("Curvas de supervivencia estratificadas por severidad ")
legend(20, .99, c("Severidad=0", "Severidad=1","Severidad=2","Severidad=3"), lty = 1:4,col=1:4, lwd=3)
abline(h = 0.5)
points(c(6.5, 10.32, 13.2), c(0.5, 0.5, 0.5 ), pch =16, col='red')

\[\small El\ grado\ de\ severidad\ 3\ lleva\ la\ proporción\ de\ plantas\ vivas\ a\ 0\%\ antes\ de\ los\ 5\ meses,\\ \small para\ la\ severidad\ de\ grado\ 2\ el\ 50\%\ de\ plantas\ muertas\ se\ alcanza\ a los\ 6.5\ meses,\\ \small para\ el\ grado\ 1\ a\ los\ 10.3\ meses\ y\ para\ el\ grado\ 0\ a\ los\ 13.2 meses.\\ \small Exceptuando\ el\ mayor\ y\ el\ menor\ grado\ de\ severidad,\ los\ grados\ 1\ y\ 2\ caen\ dentro\ de\ la\ zona\ de\ confianza\]

caf.fit.strata<-survfit(caf.sur~hibrido,sup.caf)
plot(caf.fit.strata, col=1:2, xlab = 'meses', lwd=3)
title("Curvas de supervivencia estratificadas por Híbrido ")
legend(20, .9, c("Híbrido 1", "Híbrido 2"), col=1:2, lwd=3)
abline(h = 0.5)
abline(h = 0.25)
abline(h = 0.08)

points(c(9, 14.2, 15.3, 23, 25.5  ), c(0.5, 0.5, 0.25, 0.25, 0.08), pch =16, col='red')

\[\small El\ híbrido\ 2\ tiene\ mejor\ proporción\ de\ supervivencia\ a\ lo\ largo\ del\ tiempo,\ el\ 50\%\ se\ alcanza\ a\ los\ 9\ meses\ en\ el\ híbrido\ 1\ y\ a\ los\ 14.2\ en\ el\ híbrido\ 2.\\ \small El\ 75\%\ de\ plantas\ muertas\ para\ el\ híbrido\ 1\ se\ presenta\ a\ los\ 15.3\ meses\ y\ para\ el\ hibrido\ 2\ a\ los\ 23\ meses.\\ \small Finalmente\ ambos\ convergen\ a\ los\ 25.5\ meses,\ dónde\ alcanzan\ una\ proporción\ del\ 92\%\ de\ plantas\ muertas\\ \small en\ el\ que\ el\ híbrido\ 2\ se\ mantiene\ y\ el\ híbrido\ 1\ sigue\ aumentando\ hasta\ el\ fin\ del\ experimento \] ## Intervalos de Confianza para el estimador Kaplan-Meier

library(km.ci)
## Warning: package 'km.ci' was built under R version 4.1.3
a<-km.ci(caf.fit, conf.level=0.95, tl=NA, tu=NA, method="loghall")

plot(a, lty=2, lwd=2,xlab = 'meses', col = 'red')
lines(caf.fit, lwd=2, lty=1, col = 'green')
lines(caf.fit, lwd=1, lty=4, conf.int=T, col = 'black')
linetype<-c(1, 2, 4)
title("Intervalos de confianza para distintos estimadores ")
legend(x = "topright", .9, c("Kaplan-Meier", "Hall-Wellner", "Pointwise"),
       lty = linetype,
       col = c('red', 'green', 'black'))

abline(h = 0.5, col='maroon3', lwd=2)
abline(v = 10.32, col='maroon3', lwd=2)

\[El~ estimador~ Hall-Wellner~ tiene~ intervalos~ más~ angostos,\\ por~ lo~ que~ podría~ dar~ resultados~ más~ precisos~ para~ describir~ la~ curva~ de~ supervivencia\] ## Estimador de riesgo acumulado

aalen.fit<- survfit(coxph(caf.sur~1), type="aalen")
sum_aalen.fit = summary(aalen.fit)

plot(aalen.fit,xlab = 'meses', col="red",lwd=1,lty=1)
title("Estimadores de riesgo acumulado ")
lines(caf.fit, lwd=1, lty=1)
legend("topright", .9,
       c("Nelson-Aalen", "Kaplan-Meier"),
       lty=c(1,1),
       col=c("red", "black"))

\[Ambos~ estimadores~ son~ muy~ similares\]

barplot(sum_aalen.fit$time, cumsum(sum_aalen.fit$n.event))
title("Gráfico de barras de las muertes acumuladas en el tiempo ")

mod_suv = lm(cumsum(sum_aalen.fit$n.event) ~ sum_aalen.fit$time)
summary(mod_suv)
## 
## Call:
## lm(formula = cumsum(sum_aalen.fit$n.event) ~ sum_aalen.fit$time)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -49.044 -11.535   4.049  12.868  20.208 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         22.1780     2.1715   10.21   <2e-16 ***
## sum_aalen.fit$time   6.5187     0.1773   36.76   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.43 on 137 degrees of freedom
## Multiple R-squared:  0.908,  Adjusted R-squared:  0.9073 
## F-statistic:  1352 on 1 and 137 DF,  p-value: < 2.2e-16
plot(sum_aalen.fit$time, cumsum(sum_aalen.fit$n.event),xlab="Tiempo de supervivencia (meses)",ylab="Plantas muertas", pch = 16)
abline(mod_suv)

\[La~ ocurrencia~ de~ muertes~ se~ puede~ estimar~ como~ producto~ de~ una~ regresión~ lineal,\\ ya~ que~ el~ r^2~ es~ de~ 0.90\]

survdiff(caf.sur~severidad,sup.caf)
## Call:
## survdiff(formula = caf.sur ~ severidad, data = sup.caf)
## 
## n=227, 1 observation deleted due to missingness.
## 
##               N Observed Expected (O-E)^2/E (O-E)^2/V
## severidad=0  63       37   54.153    5.4331    8.2119
## severidad=1 113       82   83.528    0.0279    0.0573
## severidad=2  50       44   26.147   12.1893   14.6491
## severidad=3   1        1    0.172    3.9733    4.0040
## 
##  Chisq= 22  on 3 degrees of freedom, p= 7e-05
# Prueba de log-rank or Mantel-Haenszel
survdiff(caf.sur~hibrido,sup.caf, rho = 0)
## Call:
## survdiff(formula = caf.sur ~ hibrido, data = sup.caf, rho = 0)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## hibrido=1 138      112     91.6      4.55      10.3
## hibrido=2  90       53     73.4      5.68      10.3
## 
##  Chisq= 10.3  on 1 degrees of freedom, p= 0.001
# Preuba de Peto & Peto modification of the Gehan-Wilcoxon test
survdiff(caf.sur~hibrido,sup.caf, rho = 1)
## Call:
## survdiff(formula = caf.sur ~ hibrido, data = sup.caf, rho = 1)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## hibrido=1 138     70.4     55.6      3.95      12.7
## hibrido=2  90     28.7     43.5      5.04      12.7
## 
##  Chisq= 12.7  on 1 degrees of freedom, p= 4e-04
survdiff(caf.sur~hibrido + severidad,sup.caf)
## Call:
## survdiff(formula = caf.sur ~ hibrido + severidad, data = sup.caf)
## 
## n=227, 1 observation deleted due to missingness.
## 
##                         N Observed Expected (O-E)^2/E (O-E)^2/V
## hibrido=1, severidad=0 36       28   33.051     0.772     0.986
## hibrido=1, severidad=1 71       54   43.318     2.634     3.636
## hibrido=1, severidad=2 29       28   14.416    12.799    14.128
## hibrido=1, severidad=3  1        1    0.172     3.973     4.004
## hibrido=2, severidad=0 27        9   21.101     6.940     8.020
## hibrido=2, severidad=1 42       28   40.210     3.707     4.999
## hibrido=2, severidad=2 21       16   11.731     1.553     1.693
## 
##  Chisq= 32.9  on 6 degrees of freedom, p= 1e-05

\[-Se~ rechaza~ la~ H_0~ de~ igualdad~ de~ supervivencia~ en~ los~ 4~ grupos~ funcionales\\ -Se~ rechaza~ la~ H_0~ de~ igualdad~ de~ supervivencia~ entre~ los~ tipos~ de~ híbridos~\\ - El~ híbrido~ 2~ tiene~ mejor~ supervivencia~ de ~acuerdo~ a ~las~ pruebas~ y~ los~ estimadores,\\ por~ lo~ que~ sería~ el~ mejor~ a~ utilizar~ para~ llevar~ a~ cabo~ el~ cultivo\]

caf.fit.strata<-survfit(caf.sur~hibrido,sup.caf)

plot(caf.fit.strata, conf.int = 0.95,
     col=1:2, xlab = 'meses', lwd=1)
title("Curvas de supervivencia estratificadas por híbrido y estimadores ")
legend("topright", .9, c("Hibrido 1", "Hibrido 2"), col=1:2, lwd=3)
# abline(v = 400)
abline(h = 0.25, col = 'maroon2', lwd=2)
abline(h = 0.5, col = 'maroon2')
abline(v = c(7, 10.66), col = 1)
abline(v = c(11.66, 18.3), col = 2)

\[-Para~ el~ hibrido~ el~ 50\%~ de~ supervivencia~ se~ da~ entre~ los~ 7~ y~ 10.6~ meses\\ - Para ~el~ hibrido~ 2~ el~ 50\%~ de~ supervivencia~ se~ da~ entre~ 11.6~ y~ 18.3~ meses\]

Modelo Parametrico

par.wei<-survreg(caf.sur~1,dist="w")
par.wei
## Call:
## survreg(formula = caf.sur ~ 1, dist = "w")
## 
## Coefficients:
## (Intercept) 
##    2.633707 
## 
## Scale= 0.7593936 
## 
## Loglik(model)= -592.7   Loglik(intercept only)= -592.7
## n= 228
kappa<-par.wei$scale
lambda<-exp(-par.wei$coeff[1])
zeit<-seq(from=0,to=36.6,length.out=33.3)
s<-exp(-(lambda*zeit)^kappa)
h<-lambda^kappa *kappa*zeit^(kappa-1)
par(mfrow=c(2,1))
plot(zeit,h,xlab="Meses",ylab="h(t)", pch = 16, cex = 0.6, las = 1)
plot(zeit,s,xlab="Meses",ylab="s(t)", pch = 16, cex = 0.6, las = 1)