library(Seurat)
## Attaching SeuratObject
library(SeuratWrappers)
library(slingshot)
## Loading required package: princurve
library(cowplot)
library(ggplot2)
library(devtools)
## Loading required package: usethis
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
pbmc <- readRDS("/mnt/nectar_volume/home/eraz0001/pbmc_human/pbmc_tutorial_final.rds")
current.cluster.ids <- c(0:8)
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono", "NK", "DC", "Platelet")
pbmc@meta.data$celltype <- plyr::mapvalues(x = pbmc@meta.data[,"seurat_clusters"], from = current.cluster.ids, to = new.cluster.ids)
head(pbmc@meta.data)
## orig.ident nCount_RNA nFeature_RNA percent.mt percent_ribo
## AAACATACAACCAC-1 pbmc3k 2419 779 3.0177759 43.69574
## AAACATTGAGCTAC-1 pbmc3k 4903 1352 3.7935958 42.40261
## AAACATTGATCAGC-1 pbmc3k 3147 1129 0.8897363 31.68097
## AAACCGTGCTTCCG-1 pbmc3k 2639 960 1.7430845 24.25161
## AAACCGTGTATGCG-1 pbmc3k 980 521 1.2244898 14.89796
## AAACGCACTGGTAC-1 pbmc3k 2163 781 1.6643551 36.19972
## RNA_snn_res.0.5 seurat_clusters celltype
## AAACATACAACCAC-1 2 2 Memory CD4 T
## AAACATTGAGCTAC-1 3 3 B
## AAACATTGATCAGC-1 2 2 Memory CD4 T
## AAACCGTGCTTCCG-1 1 1 CD14+ Mono
## AAACCGTGTATGCG-1 6 6 NK
## AAACGCACTGGTAC-1 2 2 Memory CD4 T
DimPlot(pbmc)

pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
## Calculating cluster Naive CD4 T
## Calculating cluster CD14+ Mono
## Calculating cluster Memory CD4 T
## Calculating cluster B
## Calculating cluster CD8 T
## Calculating cluster FCGR3A+ Mono
## Calculating cluster NK
## Calculating cluster DC
## Calculating cluster Platelet
pbmc.markers %>%
group_by(cluster) %>%
slice_max(n = 10, order_by = avg_log2FC)
## # A tibble: 90 × 7
## # Groups: cluster [9]
## p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
## <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <chr>
## 1 1.17e- 83 1.33 0.435 0.108 1.60e- 79 Naive CD4 T CCR7
## 2 1.74e-109 1.07 0.897 0.593 2.39e-105 Naive CD4 T LDHB
## 3 3.28e- 49 1.05 0.333 0.103 4.50e- 45 Naive CD4 T LEF1
## 4 9.31e- 44 1.03 0.328 0.11 1.28e- 39 Naive CD4 T PRKCQ-AS1
## 5 6.66e- 49 0.983 0.623 0.358 9.13e- 45 Naive CD4 T NOSIP
## 6 8.94e- 79 0.954 0.838 0.403 1.23e- 74 Naive CD4 T CD3D
## 7 4.69e- 43 0.946 0.435 0.184 6.43e- 39 Naive CD4 T PIK3IP1
## 8 2.44e- 33 0.933 0.262 0.087 3.34e- 29 Naive CD4 T MAL
## 9 3.05e- 53 0.849 0.722 0.399 4.19e- 49 Naive CD4 T CD3E
## 10 3.86e-110 0.779 0.99 0.977 5.29e-106 Naive CD4 T RPS3A
## # … with 80 more rows
pbmc.markers %>%
group_by(cluster) %>%
top_n(n = 3, wt = avg_log2FC) -> top3
markers <- top3$gene
markers
## [1] "LDHB" "CCR7" "LEF1" "S100A9" "S100A8" "LYZ"
## [7] "LTB" "CD2" "AQP3" "CD79A" "CD79B" "TCL1A"
## [13] "CCL5" "GZMK" "GZMH" "FCGR3A" "LST1" "FCER1G"
## [19] "GZMB" "FGFBP2" "GNLY" "FCER1A" "HLA-DQA1" "HLA-DPB1"
## [25] "PF4" "GNG11" "PPBP"
DotPlot(pbmc, features = markers, cols=c("#5F4B8BFF", "#ED2B33FF"), assay = "RNA", col.min = 0.3, col.max = 0.8, dot.min=0.12, dot.scale = 1,
cluster.idents=F)+
scale_size(range = c(0, 5))+
scale_size_area(max_size = 5)+
#scale_color_viridis_c(name = 'log2 (count + 1)') +
cowplot::theme_cowplot() +
theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=1, size = 8, family="TT Times New Roman"),
axis.text.y = element_text(angle = 0, vjust = 0.5, hjust=1, size = 8.5, family="TT Times New Roman"),
legend.text = element_text(size=8),
legend.title = element_text(size = 9)) +
scale_color_gradientn(colours = viridis::magma(20), limits = c(0,1), oob = scales::squish, name = 'log2 (count + 1)')
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## Scale for 'size' is already present. Adding another scale for 'size', which
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Warning: Removed 120 rows containing missing values (geom_point).

session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.0.2 (2020-06-22)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_AU.UTF-8
## ctype en_AU.UTF-8
## tz Australia/Melbourne
## date 2022-06-27
## pandoc 2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] CRAN (R 4.0.2)
## ape 5.6-1 2022-01-07 [1] CRAN (R 4.0.2)
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
## Biobase 2.50.0 2020-10-27 [1] Bioconductor
## BiocGenerics 0.36.1 2021-04-16 [1] Bioconductor
## BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.0.2)
## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.0.2)
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.0.2)
## bslib 0.3.1 2021-10-06 [1] CRAN (R 4.0.2)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.0.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.2)
## cli 3.2.0 2022-02-14 [1] CRAN (R 4.0.2)
## cluster 2.1.3 2022-03-28 [1] CRAN (R 4.0.2)
## codetools 0.2-16 2018-12-24 [2] CRAN (R 4.0.2)
## colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.0.2)
## cowplot * 1.1.1 2020-12-30 [1] CRAN (R 4.0.2)
## crayon 1.4.2 2021-10-29 [1] CRAN (R 4.0.2)
## data.table 1.14.2 2021-09-27 [1] CRAN (R 4.0.2)
## DBI 1.1.2 2021-12-20 [1] CRAN (R 4.0.2)
## DelayedArray 0.16.3 2021-03-24 [1] Bioconductor
## deldir 1.0-6 2021-10-23 [1] CRAN (R 4.0.2)
## desc 1.4.0 2021-09-28 [1] CRAN (R 4.0.2)
## devtools * 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## digest 0.6.29 2021-12-01 [1] CRAN (R 4.0.2)
## dplyr * 1.0.8 2022-02-08 [1] CRAN (R 4.0.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.2)
## evaluate 0.15 2022-02-18 [1] CRAN (R 4.0.2)
## fansi 1.0.2 2022-01-14 [1] CRAN (R 4.0.2)
## farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
## fitdistrplus 1.1-6 2021-09-28 [1] CRAN (R 4.0.2)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.0.2)
## future 1.23.0 2021-10-31 [1] CRAN (R 4.0.2)
## future.apply 1.8.1 2021-08-10 [1] CRAN (R 4.0.2)
## generics 0.1.2 2022-01-31 [1] CRAN (R 4.0.2)
## GenomeInfoDb 1.26.7 2021-04-08 [1] Bioconductor
## GenomeInfoDbData 1.2.4 2022-02-02 [1] Bioconductor
## GenomicRanges 1.42.0 2020-10-27 [1] Bioconductor
## ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.0.2)
## ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.0.2)
## ggridges 0.5.3 2021-01-08 [1] CRAN (R 4.0.2)
## globals 0.14.0 2020-11-22 [1] CRAN (R 4.0.2)
## glue 1.6.1 2022-01-22 [1] CRAN (R 4.0.2)
## goftest 1.2-3 2021-10-07 [1] CRAN (R 4.0.2)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
## highr 0.9 2021-04-16 [1] CRAN (R 4.0.2)
## htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.0.2)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.0.2)
## httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.0.2)
## httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
## ica 1.0-2 2018-05-24 [1] CRAN (R 4.0.2)
## igraph 1.2.11 2022-01-04 [1] CRAN (R 4.0.2)
## IRanges 2.24.1 2020-12-12 [1] Bioconductor
## irlba 2.3.5 2021-12-06 [1] CRAN (R 4.0.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.0.2)
## jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.0.2)
## KernSmooth 2.23-17 2020-04-26 [2] CRAN (R 4.0.2)
## knitr 1.39 2022-04-26 [1] CRAN (R 4.0.2)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.0.2)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.0.2)
## lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.2)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.0.2)
## leiden 0.3.9 2021-07-27 [1] CRAN (R 4.0.2)
## lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.0.2)
## limma 3.46.0 2020-10-27 [1] Bioconductor
## listenv 0.8.0 2019-12-05 [1] CRAN (R 4.0.2)
## lmtest 0.9-39 2021-11-07 [1] CRAN (R 4.0.2)
## magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.0.2)
## MASS 7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
## Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.0.2)
## MatrixGenerics 1.2.1 2021-01-30 [1] Bioconductor
## matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.0.2)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.0.2)
## mgcv 1.8-31 2019-11-09 [2] CRAN (R 4.0.2)
## mime 0.12 2021-09-28 [1] CRAN (R 4.0.2)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.0.2)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
## nlme 3.1-148 2020-05-24 [2] CRAN (R 4.0.2)
## parallelly 1.30.0 2021-12-17 [1] CRAN (R 4.0.2)
## patchwork 1.1.1 2020-12-17 [1] CRAN (R 4.0.2)
## pbapply 1.5-0 2021-09-16 [1] CRAN (R 4.0.2)
## pillar 1.7.0 2022-02-01 [1] CRAN (R 4.0.2)
## pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.0.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
## pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.0.2)
## plotly 4.10.0 2021-10-09 [1] CRAN (R 4.0.2)
## plyr 1.8.6 2020-03-03 [1] CRAN (R 4.0.2)
## png 0.1-7 2013-12-03 [1] CRAN (R 4.0.2)
## polyclip 1.10-0 2019-03-14 [1] CRAN (R 4.0.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
## princurve * 2.1.6 2021-01-18 [1] CRAN (R 4.0.2)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.0.2)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
## purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
## R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.0.2)
## R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.0.2)
## R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.0.2)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.0.2)
## RANN 2.6.1 2019-01-08 [1] CRAN (R 4.0.2)
## RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.2)
## Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.0.2)
## RcppAnnoy 0.0.19 2021-07-30 [1] CRAN (R 4.0.2)
## RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.0.2)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.0.2)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.0.2)
## reticulate 1.24 2022-01-26 [1] CRAN (R 4.0.2)
## rlang 1.0.2 2022-03-04 [1] CRAN (R 4.0.2)
## rmarkdown 2.14 2022-04-25 [1] CRAN (R 4.0.2)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.0.2)
## rpart 4.1-15 2019-04-12 [2] CRAN (R 4.0.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
## rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.0.2)
## Rtsne 0.15 2018-11-10 [1] CRAN (R 4.0.2)
## S4Vectors 0.28.1 2020-12-09 [1] Bioconductor
## sass 0.4.0 2021-05-12 [1] CRAN (R 4.0.2)
## scales 1.2.0 2022-04-13 [1] CRAN (R 4.0.2)
## scattermore 0.7 2020-11-24 [1] CRAN (R 4.0.2)
## sctransform 0.3.3 2022-01-13 [1] CRAN (R 4.0.2)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.0.2)
## Seurat * 4.1.0 2022-01-14 [1] CRAN (R 4.0.2)
## SeuratObject * 4.0.4 2021-11-23 [1] CRAN (R 4.0.2)
## SeuratWrappers * 0.3.0 2022-02-02 [1] Github (satijalab/seurat-wrappers@8510069)
## shiny 1.7.1 2021-10-02 [1] CRAN (R 4.0.2)
## SingleCellExperiment 1.12.0 2020-10-27 [1] Bioconductor
## slingshot * 1.8.0 2020-10-27 [1] Bioconductor
## spatstat.core 2.3-2 2021-11-26 [1] CRAN (R 4.0.2)
## spatstat.data 2.1-2 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.geom 2.3-1 2021-12-10 [1] CRAN (R 4.0.2)
## spatstat.sparse 2.1-0 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.utils 2.3-0 2021-12-12 [1] CRAN (R 4.0.2)
## stringi 1.7.6 2021-11-29 [1] CRAN (R 4.0.2)
## stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
## SummarizedExperiment 1.20.0 2020-10-27 [1] Bioconductor
## survival 3.1-12 2020-04-10 [2] CRAN (R 4.0.2)
## tensor 1.5 2012-05-05 [1] CRAN (R 4.0.2)
## testthat 3.1.2 2022-01-20 [1] CRAN (R 4.0.2)
## tibble 3.1.6 2021-11-07 [1] CRAN (R 4.0.2)
## tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.0.2)
## tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.0.2)
## usethis * 2.1.5 2021-12-09 [1] CRAN (R 4.0.2)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.0.2)
## uwot 0.1.11 2021-12-02 [1] CRAN (R 4.0.2)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.0.2)
## viridis 0.6.2 2021-10-13 [1] CRAN (R 4.0.2)
## viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.2)
## withr 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## xfun 0.30 2022-03-02 [1] CRAN (R 4.0.2)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.0.2)
## XVector 0.30.0 2020-10-27 [1] Bioconductor
## yaml 2.2.2 2022-01-25 [1] CRAN (R 4.0.2)
## zlibbioc 1.36.0 2020-10-27 [1] Bioconductor
## zoo 1.8-9 2021-03-09 [1] CRAN (R 4.0.2)
##
## [1] /mnt/nectar_volume/home/eraz0001/R/x86_64-pc-linux-gnu-library/4.0
## [2] /mnt/nectar_volume/software/apps/R/4.0.2/lib/R/library
##
## ──────────────────────────────────────────────────────────────────────────────