library(Seurat)
## Attaching SeuratObject
library(SeuratWrappers)
library(slingshot)
## Loading required package: princurve
library(cowplot)
library(ggplot2)
library(devtools)
## Loading required package: usethis
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
pbmc <- readRDS("/mnt/nectar_volume/home/eraz0001/pbmc_human/pbmc_tutorial_final.rds")
current.cluster.ids <- c(0:8)
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono", "NK", "DC", "Platelet")
pbmc@meta.data$celltype <- plyr::mapvalues(x = pbmc@meta.data[,"seurat_clusters"], from = current.cluster.ids, to = new.cluster.ids)
head(pbmc@meta.data)
## orig.ident nCount_RNA nFeature_RNA percent.mt percent_ribo
## AAACATACAACCAC-1 pbmc3k 2419 779 3.0177759 43.69574
## AAACATTGAGCTAC-1 pbmc3k 4903 1352 3.7935958 42.40261
## AAACATTGATCAGC-1 pbmc3k 3147 1129 0.8897363 31.68097
## AAACCGTGCTTCCG-1 pbmc3k 2639 960 1.7430845 24.25161
## AAACCGTGTATGCG-1 pbmc3k 980 521 1.2244898 14.89796
## AAACGCACTGGTAC-1 pbmc3k 2163 781 1.6643551 36.19972
## RNA_snn_res.0.5 seurat_clusters celltype
## AAACATACAACCAC-1 2 2 Memory CD4 T
## AAACATTGAGCTAC-1 3 3 B
## AAACATTGATCAGC-1 2 2 Memory CD4 T
## AAACCGTGCTTCCG-1 1 1 CD14+ Mono
## AAACCGTGTATGCG-1 6 6 NK
## AAACGCACTGGTAC-1 2 2 Memory CD4 T
DimPlot(pbmc)

sub1 <- subset(pbmc, cells=rownames(pbmc@meta.data[pbmc@meta.data$celltype %in% c("Naive CD4 T", "B", "CD14+ Mono", "Memory CD4 T"),]))
sub_sce1 <- as.SingleCellExperiment(sub1)
kiri <- sub_sce1@int_colData$reducedDims@listData$PCA[,1:20]
sub_sce1@int_colData$reducedDims@listData$PCA <- kiri
temp <- grep( "^MT-", rownames(sub_sce1), ignore.case = F, value = T)
sub_sce1 <- sub_sce1[!rownames(sub_sce1) %in% temp,]
temp2 <- grep( "^RP", rownames(sub_sce1), ignore.case = F, value = T)
sub_sce1 <- sub_sce1[!rownames(sub_sce1) %in% temp2,]
sub_slingshot1 <- slingshot(sub_sce1, clusterLabels = "celltype", reducedDim = 'UMAP', start.clus="Naive CD4 T", end.clus="B")
## Using full covariance matrix
summary(sub_slingshot1$slingPseudotime_1)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 2.962 17.616 15.486 20.917 36.797 536
print(SlingshotDataSet(sub_slingshot1))
## class: SlingshotDataSet
##
## Samples Dimensions
## 2007 2
##
## lineages: 2
## Lineage1: Naive CD4 T CD14+ Mono B
## Lineage2: Naive CD4 T Memory CD4 T
##
## curves: 2
## Curve1: Length: 36.797 Samples: 1404.51
## Curve2: Length: 11.712 Samples: 1151.79
sub1@meta.data$celltype <- factor(sub1@meta.data$celltype, levels = c("Memory CD4 T", "Naive CD4 T", "CD14+ Mono", "B"))
print(SlingshotDataSet(sub_slingshot1))
## class: SlingshotDataSet
##
## Samples Dimensions
## 2007 2
##
## lineages: 2
## Lineage1: Naive CD4 T CD14+ Mono B
## Lineage2: Naive CD4 T Memory CD4 T
##
## curves: 2
## Curve1: Length: 36.797 Samples: 1404.51
## Curve2: Length: 11.712 Samples: 1151.79
t1 <- sub_slingshot1$slingPseudotime_1
gene.list1 <- c("CD14","LYZ","IL7R","CCR7")
loess_data1 <- BiocGenerics::as.data.frame(sub1@assays$RNA@data[gene.list1,])
loess_data1 = loess_data1[,order(t1)]
temp1 <- loess_data1
temp1 <- t(temp1)
temp1 = as.data.frame(temp1)
temp1$index = 1:nrow(temp1)
temp1$ct = sub1@meta.data$celltype[order(t1)]
p1 <- ggplot(temp1, aes(y = CD14, x = index)) + geom_smooth(method = loess,level=1-1e-10) + coord_cartesian(ylim = c(0, 4.2))
p2 <- ggplot(temp1, aes(y = LYZ, x = index)) + geom_smooth(method = loess,level=1-1e-10) + coord_cartesian(ylim = c(0, 4.2))
p3 <- ggplot(temp1, aes(y = IL7R, x = index)) + geom_smooth(method = loess,level=1-1e-10) + coord_cartesian(ylim = c(0, 4.2))
p4 <- ggplot(temp1, aes(y = CCR7, x = index)) + geom_smooth(method = loess,level=1-1e-10) + coord_cartesian(ylim = c(0, 4.2))
plot_grid(p1, p2, p3, p4)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'

session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.0.2 (2020-06-22)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_AU.UTF-8
## ctype en_AU.UTF-8
## tz Australia/Melbourne
## date 2022-06-27
## pandoc 2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] CRAN (R 4.0.2)
## ape 5.6-1 2022-01-07 [1] CRAN (R 4.0.2)
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
## Biobase 2.50.0 2020-10-27 [1] Bioconductor
## BiocGenerics 0.36.1 2021-04-16 [1] Bioconductor
## BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.0.2)
## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.0.2)
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.0.2)
## bslib 0.3.1 2021-10-06 [1] CRAN (R 4.0.2)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.0.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.2)
## cli 3.2.0 2022-02-14 [1] CRAN (R 4.0.2)
## cluster 2.1.3 2022-03-28 [1] CRAN (R 4.0.2)
## codetools 0.2-16 2018-12-24 [2] CRAN (R 4.0.2)
## colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.0.2)
## cowplot * 1.1.1 2020-12-30 [1] CRAN (R 4.0.2)
## crayon 1.4.2 2021-10-29 [1] CRAN (R 4.0.2)
## data.table 1.14.2 2021-09-27 [1] CRAN (R 4.0.2)
## DBI 1.1.2 2021-12-20 [1] CRAN (R 4.0.2)
## DelayedArray 0.16.3 2021-03-24 [1] Bioconductor
## deldir 1.0-6 2021-10-23 [1] CRAN (R 4.0.2)
## desc 1.4.0 2021-09-28 [1] CRAN (R 4.0.2)
## devtools * 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## digest 0.6.29 2021-12-01 [1] CRAN (R 4.0.2)
## dplyr * 1.0.8 2022-02-08 [1] CRAN (R 4.0.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.2)
## evaluate 0.15 2022-02-18 [1] CRAN (R 4.0.2)
## fansi 1.0.2 2022-01-14 [1] CRAN (R 4.0.2)
## farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
## fitdistrplus 1.1-6 2021-09-28 [1] CRAN (R 4.0.2)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.0.2)
## future 1.23.0 2021-10-31 [1] CRAN (R 4.0.2)
## future.apply 1.8.1 2021-08-10 [1] CRAN (R 4.0.2)
## generics 0.1.2 2022-01-31 [1] CRAN (R 4.0.2)
## GenomeInfoDb 1.26.7 2021-04-08 [1] Bioconductor
## GenomeInfoDbData 1.2.4 2022-02-02 [1] Bioconductor
## GenomicRanges 1.42.0 2020-10-27 [1] Bioconductor
## ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.0.2)
## ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.0.2)
## ggridges 0.5.3 2021-01-08 [1] CRAN (R 4.0.2)
## globals 0.14.0 2020-11-22 [1] CRAN (R 4.0.2)
## glue 1.6.1 2022-01-22 [1] CRAN (R 4.0.2)
## goftest 1.2-3 2021-10-07 [1] CRAN (R 4.0.2)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
## highr 0.9 2021-04-16 [1] CRAN (R 4.0.2)
## htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.0.2)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.0.2)
## httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.0.2)
## httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
## ica 1.0-2 2018-05-24 [1] CRAN (R 4.0.2)
## igraph 1.2.11 2022-01-04 [1] CRAN (R 4.0.2)
## IRanges 2.24.1 2020-12-12 [1] Bioconductor
## irlba 2.3.5 2021-12-06 [1] CRAN (R 4.0.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.0.2)
## jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.0.2)
## KernSmooth 2.23-17 2020-04-26 [2] CRAN (R 4.0.2)
## knitr 1.39 2022-04-26 [1] CRAN (R 4.0.2)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.0.2)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.0.2)
## lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.2)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.0.2)
## leiden 0.3.9 2021-07-27 [1] CRAN (R 4.0.2)
## lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.0.2)
## listenv 0.8.0 2019-12-05 [1] CRAN (R 4.0.2)
## lmtest 0.9-39 2021-11-07 [1] CRAN (R 4.0.2)
## magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.0.2)
## MASS 7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
## Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.0.2)
## MatrixGenerics 1.2.1 2021-01-30 [1] Bioconductor
## matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.0.2)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.0.2)
## mgcv 1.8-31 2019-11-09 [2] CRAN (R 4.0.2)
## mime 0.12 2021-09-28 [1] CRAN (R 4.0.2)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.0.2)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
## nlme 3.1-148 2020-05-24 [2] CRAN (R 4.0.2)
## parallelly 1.30.0 2021-12-17 [1] CRAN (R 4.0.2)
## patchwork 1.1.1 2020-12-17 [1] CRAN (R 4.0.2)
## pbapply 1.5-0 2021-09-16 [1] CRAN (R 4.0.2)
## pillar 1.7.0 2022-02-01 [1] CRAN (R 4.0.2)
## pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.0.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
## pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.0.2)
## plotly 4.10.0 2021-10-09 [1] CRAN (R 4.0.2)
## plyr 1.8.6 2020-03-03 [1] CRAN (R 4.0.2)
## png 0.1-7 2013-12-03 [1] CRAN (R 4.0.2)
## polyclip 1.10-0 2019-03-14 [1] CRAN (R 4.0.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
## princurve * 2.1.6 2021-01-18 [1] CRAN (R 4.0.2)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.0.2)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
## purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
## R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.0.2)
## R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.0.2)
## R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.0.2)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.0.2)
## RANN 2.6.1 2019-01-08 [1] CRAN (R 4.0.2)
## RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.2)
## Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.0.2)
## RcppAnnoy 0.0.19 2021-07-30 [1] CRAN (R 4.0.2)
## RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.0.2)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.0.2)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.0.2)
## reticulate 1.24 2022-01-26 [1] CRAN (R 4.0.2)
## rlang 1.0.2 2022-03-04 [1] CRAN (R 4.0.2)
## rmarkdown 2.14 2022-04-25 [1] CRAN (R 4.0.2)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.0.2)
## rpart 4.1-15 2019-04-12 [2] CRAN (R 4.0.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
## rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.0.2)
## Rtsne 0.15 2018-11-10 [1] CRAN (R 4.0.2)
## S4Vectors 0.28.1 2020-12-09 [1] Bioconductor
## sass 0.4.0 2021-05-12 [1] CRAN (R 4.0.2)
## scales 1.2.0 2022-04-13 [1] CRAN (R 4.0.2)
## scattermore 0.7 2020-11-24 [1] CRAN (R 4.0.2)
## sctransform 0.3.3 2022-01-13 [1] CRAN (R 4.0.2)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.0.2)
## Seurat * 4.1.0 2022-01-14 [1] CRAN (R 4.0.2)
## SeuratObject * 4.0.4 2021-11-23 [1] CRAN (R 4.0.2)
## SeuratWrappers * 0.3.0 2022-02-02 [1] Github (satijalab/seurat-wrappers@8510069)
## shiny 1.7.1 2021-10-02 [1] CRAN (R 4.0.2)
## SingleCellExperiment 1.12.0 2020-10-27 [1] Bioconductor
## slingshot * 1.8.0 2020-10-27 [1] Bioconductor
## spatstat.core 2.3-2 2021-11-26 [1] CRAN (R 4.0.2)
## spatstat.data 2.1-2 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.geom 2.3-1 2021-12-10 [1] CRAN (R 4.0.2)
## spatstat.sparse 2.1-0 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.utils 2.3-0 2021-12-12 [1] CRAN (R 4.0.2)
## stringi 1.7.6 2021-11-29 [1] CRAN (R 4.0.2)
## stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
## SummarizedExperiment 1.20.0 2020-10-27 [1] Bioconductor
## survival 3.1-12 2020-04-10 [2] CRAN (R 4.0.2)
## tensor 1.5 2012-05-05 [1] CRAN (R 4.0.2)
## testthat 3.1.2 2022-01-20 [1] CRAN (R 4.0.2)
## tibble 3.1.6 2021-11-07 [1] CRAN (R 4.0.2)
## tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.0.2)
## tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.0.2)
## usethis * 2.1.5 2021-12-09 [1] CRAN (R 4.0.2)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.0.2)
## uwot 0.1.11 2021-12-02 [1] CRAN (R 4.0.2)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.0.2)
## viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.2)
## withr 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## xfun 0.30 2022-03-02 [1] CRAN (R 4.0.2)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.0.2)
## XVector 0.30.0 2020-10-27 [1] Bioconductor
## yaml 2.2.2 2022-01-25 [1] CRAN (R 4.0.2)
## zlibbioc 1.36.0 2020-10-27 [1] Bioconductor
## zoo 1.8-9 2021-03-09 [1] CRAN (R 4.0.2)
##
## [1] /mnt/nectar_volume/home/eraz0001/R/x86_64-pc-linux-gnu-library/4.0
## [2] /mnt/nectar_volume/software/apps/R/4.0.2/lib/R/library
##
## ──────────────────────────────────────────────────────────────────────────────
dev.off()
## null device
## 1