##
## Registered S3 method overwritten by 'ggtree':
## method from
## identify.gg ggfun
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
## rowMedians
## The following objects are masked from 'package:matrixStats':
##
## anyMissing, rowMedians
## Attaching SeuratObject
##
## Attaching package: 'Seurat'
## The following object is masked from 'package:SummarizedExperiment':
##
## Assays
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:Biobase':
##
## combine
## The following objects are masked from 'package:GenomicRanges':
##
## intersect, setdiff, union
## The following object is masked from 'package:GenomeInfoDb':
##
## intersect
## The following objects are masked from 'package:IRanges':
##
## collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
##
## first, intersect, rename, setdiff, setequal, union
## The following objects are masked from 'package:BiocGenerics':
##
## combine, intersect, setdiff, union
## The following object is masked from 'package:matrixStats':
##
## count
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: shiny
## Loading required package: usethis
pbmc <- readRDS("/mnt/nectar_volume/home/eraz0001/pbmc_human/pbmc_tutorial_final.rds")
pbmc
## An object of class Seurat
## 13714 features across 2638 samples within 1 assay
## Active assay: RNA (13714 features, 2000 variable features)
## 2 dimensional reductions calculated: pca, umap
What if we change the seurat object to sce object.
pbmc.sce <- as.SingleCellExperiment(pbmc)
target <- colData(pbmc.sce)
target <- target$seurat_clusters
exprs <- as.data.frame(assay(pbmc.sce, 'logcounts'))
Create fcoex object
fc <- new_fcoex(data.frame(exprs),target)
## Created new fcoex object.
Once you have set up your fcoex object, the first step is to convert a count matrix into a binarized dataframe.
fc <- discretize(fc, number_of_bins = 8)
Getting the modules
fc <- find_cbf_modules(fc, verbose = FALSE, is_parallel = FALSE)
## Getting SU scores
## Running FCBF to find module headers
## [1] "Number of prospective features = 113"
## Calculating adjacency matrix
## Trimming and getting modules from adjacency matrix
fc <- get_nets(fc)
network_plots <- show_net(fc)
network_plots[["CD79A"]]
network_plots[["HLA-DRB1"]]
gmt_filename <- system.file("extdata", "pathways.gmt", package = "CEMiTool")
if (gmt_filename == "")
{
print("You likely need to install CEMiTool")
} else {
gmt_in <- pathwayPCA::read_gmt(gmt_filename, description = TRUE)
}
fc <- mod_ora(fc, gmt_in)
## --> No gene can be mapped....
## --> Expected input gene ID: SLC22A2,ABCC9,ABCG1,SLC22A1,RPL27A,vpr
## --> return NULL...
## Warning in FUN(X[[i]], ...): Enrichment for module PTPRCAP is NULL
## --> No gene can be mapped....
## --> Expected input gene ID: RPL10A,RPL35A,RPL17,RPS17,ABCC1,RPL19
## --> return NULL...
## Warning in FUN(X[[i]], ...): Enrichment for module S100A4 is NULL
fc <- plot_ora(fc)
save_plots(name = "fcoex_vignette", fc, force = TRUE, directory = "./Plots")
## $TYROBP
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
##
## $CD3D
##
## $S100A8
##
## $`HLA-DRB1`
##
## $LST1
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
##
## $CST3
##
## $CD79A
##
## $CST7
##
## $FCGR3A
## NULL
##
## $PTPRCAP
## NULL
##
## $S100A4
## NULL
##
## $CD3D
## $CD3D$pl
##
## $CD3D$numsig
## [1] 10
##
##
## $CD79A
## $CD79A$pl
##
## $CD79A$numsig
## [1] 10
##
##
## $CST3
## $CST3$pl
##
## $CST3$numsig
## [1] 3
##
##
## $CST7
## $CST7$pl
##
## $CST7$numsig
## [1] 10
##
##
## $FCGR3A
## $FCGR3A$pl
##
## $FCGR3A$numsig
## [1] 0
##
##
## $`HLA-DRB1`
## $`HLA-DRB1`$pl
##
## $`HLA-DRB1`$numsig
## [1] 10
##
##
## $LST1
## $LST1$pl
##
## $LST1$numsig
## [1] 2
##
##
## $S100A8
## $S100A8$pl
##
## $S100A8$numsig
## [1] 0
##
##
## $TYROBP
## $TYROBP$pl
##
## $TYROBP$numsig
## [1] 0
## [[1]]
## png
## 2
##
## [[2]]
## png
## 2
Reclustering the cells to find module-based populations
fc <- recluster(fc)
## Detecting clusters for the following modules:
## [1] "TYROBP"
## TYROBP
## [1] "CD3D"
## CD3D
## [1] "S100A8"
## S100A8
## [1] "HLA-DRB1"
## HLA-DRB1
## [1] "LST1"
## LST1
## [1] "CST3"
## CST3
## [1] "CD79A"
## CD79A
## [1] "CST7"
## CST7
## [1] "FCGR3A"
## FCGR3A
## [1] "PTPRCAP"
## PTPRCAP
## [1] "S100A4"
## S100A4
identities_based_on_the_HLA_DRB1_module <- idents(fc)$`HLA-DRB1`
colData(pbmc.sce) <- cbind(colData(pbmc.sce), `mod_HLA_DRB1` = identities_based_on_the_HLA_DRB1_module)
identities_based_on_the__CD79A_module <- idents(fc)$`HLA-DRB1`
colData(pbmc.sce) <- cbind(colData(pbmc.sce), mod_CD79A = idents(fc)$CD79A)
pbmc.sce <- make_hexbin(pbmc.sce, nbins = 40, dimension_reduction = "UMAP", use_dims=c(1,2))
plot_hexbin_meta(pbmc.sce, col="seurat_clusters", action="majority")
p1 <- plot_hexbin_feature_plus(pbmc.sce,
col="seurat_clusters", type="logcounts",
feature="CD79A", action="mean") +
ggtitle("original clusters (CD79A expression)") +
theme_void()
p2 <- plot_hexbin_feature_plus(pbmc.sce,
col="seurat_clusters", type="logcounts",
feature="HLA-DRB1", action="mean") +
ggtitle("original clusters (HLA-DRB1 expression)") +
theme_void()
plot_grid(p1, p2)
session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.0.2 (2020-06-22)
## os Ubuntu 20.04.4 LTS
## system x86_64, linux-gnu
## ui X11
## language (EN)
## collate en_AU.UTF-8
## ctype en_AU.UTF-8
## tz Australia/Melbourne
## date 2022-06-27
## pandoc 2.17.1.1 @ /usr/lib/rstudio-server/bin/quarto/bin/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] CRAN (R 4.0.2)
## AnnotationDbi 1.52.0 2020-10-27 [1] Bioconductor
## ape 5.6-1 2022-01-07 [1] CRAN (R 4.0.2)
## aplot 0.1.4 2022-05-05 [1] CRAN (R 4.0.2)
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
## Biobase * 2.50.0 2020-10-27 [1] Bioconductor
## BiocGenerics * 0.36.1 2021-04-16 [1] Bioconductor
## BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.0.2)
## BiocParallel 1.24.1 2020-11-06 [1] Bioconductor
## bit 4.0.4 2020-08-04 [1] CRAN (R 4.0.2)
## bit64 4.0.5 2020-08-30 [1] CRAN (R 4.0.2)
## bitops 1.0-7 2021-04-24 [1] CRAN (R 4.0.2)
## blob 1.2.2 2021-07-23 [1] CRAN (R 4.0.2)
## brio 1.1.3 2021-11-30 [1] CRAN (R 4.0.2)
## bslib 0.3.1 2021-10-06 [1] CRAN (R 4.0.2)
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.0.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.2)
## cli 3.2.0 2022-02-14 [1] CRAN (R 4.0.2)
## cluster 2.1.3 2022-03-28 [1] CRAN (R 4.0.2)
## clusterProfiler 3.18.1 2021-02-09 [1] Bioconductor
## coda 0.19-4 2020-09-30 [1] CRAN (R 4.0.2)
## codetools 0.2-16 2018-12-24 [2] CRAN (R 4.0.2)
## colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.0.2)
## concaveman 1.1.0 2020-05-11 [1] CRAN (R 4.0.2)
## cowplot * 1.1.1 2020-12-30 [1] CRAN (R 4.0.2)
## crayon 1.4.2 2021-10-29 [1] CRAN (R 4.0.2)
## curl 4.3.2 2021-06-23 [1] CRAN (R 4.0.2)
## data.table 1.14.2 2021-09-27 [1] CRAN (R 4.0.2)
## DBI 1.1.2 2021-12-20 [1] CRAN (R 4.0.2)
## DelayedArray 0.16.3 2021-03-24 [1] Bioconductor
## deldir 1.0-6 2021-10-23 [1] CRAN (R 4.0.2)
## desc 1.4.0 2021-09-28 [1] CRAN (R 4.0.2)
## devtools * 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## digest 0.6.29 2021-12-01 [1] CRAN (R 4.0.2)
## DO.db 2.9 2022-02-02 [1] Bioconductor
## DOSE 3.16.0 2020-10-27 [1] Bioconductor
## downloader 0.4 2015-07-09 [1] CRAN (R 4.0.2)
## dplyr * 1.0.8 2022-02-08 [1] CRAN (R 4.0.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.2)
## enrichplot 1.16.1 2022-05-15 [1] Bioconductor
## entropy 1.3.1 2021-10-02 [1] CRAN (R 4.0.2)
## evaluate 0.15 2022-02-18 [1] CRAN (R 4.0.2)
## fansi 1.0.2 2022-01-14 [1] CRAN (R 4.0.2)
## farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
## fastmatch 1.1-3 2021-07-23 [1] CRAN (R 4.0.2)
## FCBF 1.8.0 2020-10-27 [1] Bioconductor
## fcoex * 1.4.0 2020-10-27 [1] Bioconductor
## fgsea 1.16.0 2020-10-27 [1] Bioconductor
## fitdistrplus 1.1-6 2021-09-28 [1] CRAN (R 4.0.2)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.0.2)
## future 1.23.0 2021-10-31 [1] CRAN (R 4.0.2)
## future.apply 1.8.1 2021-08-10 [1] CRAN (R 4.0.2)
## generics 0.1.2 2022-01-31 [1] CRAN (R 4.0.2)
## GenomeInfoDb * 1.26.7 2021-04-08 [1] Bioconductor
## GenomeInfoDbData 1.2.4 2022-02-02 [1] Bioconductor
## GenomicRanges * 1.42.0 2020-10-27 [1] Bioconductor
## ggforce 0.3.3 2021-03-05 [1] CRAN (R 4.0.2)
## ggfun 0.0.6 2022-04-01 [1] CRAN (R 4.0.2)
## ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.0.2)
## ggplotify 0.1.0 2021-09-02 [1] CRAN (R 4.0.2)
## ggraph 2.0.5 2021-02-23 [1] CRAN (R 4.0.2)
## ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.0.2)
## ggridges 0.5.3 2021-01-08 [1] CRAN (R 4.0.2)
## ggtree 2.4.2 2021-04-26 [1] Bioconductor
## globals 0.14.0 2020-11-22 [1] CRAN (R 4.0.2)
## glue 1.6.1 2022-01-22 [1] CRAN (R 4.0.2)
## GO.db 3.12.1 2022-06-16 [1] Bioconductor
## goftest 1.2-3 2021-10-07 [1] CRAN (R 4.0.2)
## GOSemSim 2.16.1 2020-10-29 [1] Bioconductor
## graphlayouts 0.8.0 2022-01-03 [1] CRAN (R 4.0.2)
## gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
## gridGraphics 0.5-1 2020-12-13 [1] CRAN (R 4.0.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
## hexbin 1.28.2 2021-01-08 [1] CRAN (R 4.0.2)
## highr 0.9 2021-04-16 [1] CRAN (R 4.0.2)
## hms 1.1.1 2021-09-26 [1] CRAN (R 4.0.2)
## htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.0.2)
## htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.0.2)
## httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.0.2)
## httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
## ica 1.0-2 2018-05-24 [1] CRAN (R 4.0.2)
## igraph 1.2.11 2022-01-04 [1] CRAN (R 4.0.2)
## intergraph 2.0-2 2016-12-05 [1] CRAN (R 4.0.2)
## IRanges * 2.24.1 2020-12-12 [1] Bioconductor
## irlba 2.3.5 2021-12-06 [1] CRAN (R 4.0.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.0.2)
## jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.0.2)
## KernSmooth 2.23-17 2020-04-26 [2] CRAN (R 4.0.2)
## knitr 1.39 2022-04-26 [1] CRAN (R 4.0.2)
## labeling 0.4.2 2020-10-20 [1] CRAN (R 4.0.2)
## lars 1.3 2022-04-13 [1] CRAN (R 4.0.2)
## later 1.3.0 2021-08-18 [1] CRAN (R 4.0.2)
## lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.2)
## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.0.2)
## leiden 0.3.9 2021-07-27 [1] CRAN (R 4.0.2)
## lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.0.2)
## listenv 0.8.0 2019-12-05 [1] CRAN (R 4.0.2)
## lmtest 0.9-39 2021-11-07 [1] CRAN (R 4.0.2)
## magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.0.2)
## MASS 7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
## Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.0.2)
## MatrixGenerics * 1.2.1 2021-01-30 [1] Bioconductor
## matrixStats * 0.61.0 2021-09-17 [1] CRAN (R 4.0.2)
## mclust 5.4.9 2021-12-17 [1] CRAN (R 4.0.2)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.0.2)
## mgcv 1.8-31 2019-11-09 [2] CRAN (R 4.0.2)
## mime 0.12 2021-09-28 [1] CRAN (R 4.0.2)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.0.2)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
## network 1.17.1 2021-06-14 [1] CRAN (R 4.0.2)
## nlme 3.1-148 2020-05-24 [2] CRAN (R 4.0.2)
## parallelly 1.30.0 2021-12-17 [1] CRAN (R 4.0.2)
## patchwork 1.1.1 2020-12-17 [1] CRAN (R 4.0.2)
## pathwayPCA 1.6.3 2020-12-14 [1] Bioconductor
## pbapply 1.5-0 2021-09-16 [1] CRAN (R 4.0.2)
## pillar 1.7.0 2022-02-01 [1] CRAN (R 4.0.2)
## pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.0.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
## pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.0.2)
## plotly 4.10.0 2021-10-09 [1] CRAN (R 4.0.2)
## plyr 1.8.6 2020-03-03 [1] CRAN (R 4.0.2)
## png 0.1-7 2013-12-03 [1] CRAN (R 4.0.2)
## polyclip 1.10-0 2019-03-14 [1] CRAN (R 4.0.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.0.2)
## progress 1.2.2 2019-05-16 [1] CRAN (R 4.0.2)
## promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
## purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
## qvalue 2.22.0 2020-10-27 [1] Bioconductor
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.0.2)
## RANN 2.6.1 2019-01-08 [1] CRAN (R 4.0.2)
## RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.2)
## Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.0.2)
## RcppAnnoy 0.0.19 2021-07-30 [1] CRAN (R 4.0.2)
## RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.0.2)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.0.2)
## reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.0.2)
## reticulate 1.24 2022-01-26 [1] CRAN (R 4.0.2)
## rlang 1.0.2 2022-03-04 [1] CRAN (R 4.0.2)
## rmarkdown 2.14 2022-04-25 [1] CRAN (R 4.0.2)
## ROCR 1.0-11 2020-05-02 [1] CRAN (R 4.0.2)
## rpart 4.1-15 2019-04-12 [2] CRAN (R 4.0.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
## RSQLite 2.2.9 2021-12-06 [1] CRAN (R 4.0.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
## Rtsne 0.15 2018-11-10 [1] CRAN (R 4.0.2)
## rvcheck 0.1.8 2020-03-01 [1] CRAN (R 4.0.2)
## S4Vectors * 0.28.1 2020-12-09 [1] Bioconductor
## sass 0.4.0 2021-05-12 [1] CRAN (R 4.0.2)
## scales 1.2.0 2022-04-13 [1] CRAN (R 4.0.2)
## scattermore 0.7 2020-11-24 [1] CRAN (R 4.0.2)
## scatterpie 0.1.7 2021-08-20 [1] CRAN (R 4.0.2)
## schex * 1.4.0 2020-10-27 [1] Bioconductor
## sctransform 0.3.3 2022-01-13 [1] CRAN (R 4.0.2)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.0.2)
## Seurat * 4.1.0 2022-01-14 [1] CRAN (R 4.0.2)
## SeuratObject * 4.0.4 2021-11-23 [1] CRAN (R 4.0.2)
## shadowtext 0.1.1 2022-01-10 [1] CRAN (R 4.0.2)
## shiny * 1.7.1 2021-10-02 [1] CRAN (R 4.0.2)
## SingleCellExperiment * 1.12.0 2020-10-27 [1] Bioconductor
## sna 2.6 2020-10-06 [1] CRAN (R 4.0.2)
## spatstat.core 2.3-2 2021-11-26 [1] CRAN (R 4.0.2)
## spatstat.data 2.1-2 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.geom 2.3-1 2021-12-10 [1] CRAN (R 4.0.2)
## spatstat.sparse 2.1-0 2021-12-17 [1] CRAN (R 4.0.2)
## spatstat.utils 2.3-0 2021-12-12 [1] CRAN (R 4.0.2)
## statnet.common 4.5.0 2021-06-05 [1] CRAN (R 4.0.2)
## stringi 1.7.6 2021-11-29 [1] CRAN (R 4.0.2)
## stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
## SummarizedExperiment * 1.20.0 2020-10-27 [1] Bioconductor
## survival 3.1-12 2020-04-10 [2] CRAN (R 4.0.2)
## tensor 1.5 2012-05-05 [1] CRAN (R 4.0.2)
## testthat 3.1.2 2022-01-20 [1] CRAN (R 4.0.2)
## tibble 3.1.6 2021-11-07 [1] CRAN (R 4.0.2)
## tidygraph 1.2.0 2020-05-12 [1] CRAN (R 4.0.2)
## tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.0.2)
## tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.0.2)
## tidytree 0.3.9 2022-03-04 [1] CRAN (R 4.0.2)
## treeio 1.14.4 2021-04-26 [1] Bioconductor
## tweenr 1.0.2 2021-03-23 [1] CRAN (R 4.0.2)
## usethis * 2.1.5 2021-12-09 [1] CRAN (R 4.0.2)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.0.2)
## uwot 0.1.11 2021-12-02 [1] CRAN (R 4.0.2)
## V8 4.2.0 2022-05-14 [1] CRAN (R 4.0.2)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.0.2)
## viridis 0.6.2 2021-10-13 [1] CRAN (R 4.0.2)
## viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.2)
## withr 2.4.3 2021-11-30 [1] CRAN (R 4.0.2)
## xfun 0.30 2022-03-02 [1] CRAN (R 4.0.2)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.0.2)
## XVector 0.30.0 2020-10-27 [1] Bioconductor
## yaml 2.2.2 2022-01-25 [1] CRAN (R 4.0.2)
## yulab.utils 0.0.4 2021-10-09 [1] CRAN (R 4.0.2)
## zlibbioc 1.36.0 2020-10-27 [1] Bioconductor
## zoo 1.8-9 2021-03-09 [1] CRAN (R 4.0.2)
##
## [1] /mnt/nectar_volume/home/eraz0001/R/x86_64-pc-linux-gnu-library/4.0
## [2] /mnt/nectar_volume/software/apps/R/4.0.2/lib/R/library
##
## ──────────────────────────────────────────────────────────────────────────────