1.How many game sales on global from 2013 to 2020?
2.Which area are the most sales volume?
3.Which kind of game is the most popular?Why it is the most popular genre?
4.In the global, is that having the lowest marketing place?
5.Which platform is the most popular?###Setting langguage and installing packages
Sys.setenv(LANG="en")
setwd("~/Project 03")
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(skimr)
## Warning: package 'skimr' was built under R version 4.1.3
library(janitor)
## Warning: package 'janitor' was built under R version 4.1.3
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(scales)
## Warning: package 'scales' was built under R version 4.1.3
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
library(dplyr)
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.1.3
library(ggplot2)
###Loading the data
salesps4<-read.csv("~/Project 03/PS4_GamesSales.csv")
salesxbox<-read.csv("~/Project 03/XboxOne_GameSales.csv")
videogamessales<-read.csv("~/Project 03/Video_Games_Sales_as_at_22_Dec_2016.csv")
###Checking the data structure
glimpse(salesps4)
## Rows: 1,034
## Columns: 9
## $ Game <chr> "Grand Theft Auto V", "Call of Duty: Black Ops 3", "Red ~
## $ Year <chr> "2014", "2015", "2018", "2017", "2017", "2016", "2016", ~
## $ Genre <chr> "Action", "Shooter", "Action-Adventure", "Shooter", "Spo~
## $ Publisher <chr> "Rockstar Games", "Activision", "Rockstar Games", "Activ~
## $ North.America <dbl> 6.06, 6.18, 5.26, 4.67, 1.27, 1.26, 4.49, 3.64, 3.11, 2.~
## $ Europe <dbl> 9.71, 6.05, 6.21, 6.21, 8.64, 7.95, 3.93, 3.39, 3.83, 3.~
## $ Japan <dbl> 0.60, 0.41, 0.21, 0.40, 0.15, 0.12, 0.21, 0.32, 0.19, 0.~
## $ Rest.of.World <dbl> 3.02, 2.44, 2.26, 2.12, 1.73, 1.61, 1.70, 1.41, 1.36, 1.~
## $ Global <dbl> 19.39, 15.09, 13.94, 13.40, 11.80, 10.94, 10.33, 8.76, 8~
glimpse(salesxbox)
## Rows: 613
## Columns: 10
## $ Pos <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1~
## $ Game <chr> "Grand Theft Auto V", "Call of Duty: Black Ops 3", "Call~
## $ Year <chr> "2014", "2015", "2017", "2018", "2014", "2014", "2016", ~
## $ Genre <chr> "Action", "Shooter", "Shooter", "Action-Adventure", "Mis~
## $ Publisher <chr> "Rockstar Games", "Activision", "Activision", "Rockstar ~
## $ North.America <dbl> 4.70, 4.63, 3.75, 3.76, 3.23, 3.25, 3.37, 2.94, 2.94, 2.~
## $ Europe <dbl> 3.25, 2.04, 1.91, 1.47, 1.71, 1.49, 1.26, 1.62, 1.49, 1.~
## $ Japan <dbl> 0.01, 0.02, 0.00, 0.00, 0.00, 0.01, 0.02, 0.02, 0.03, 0.~
## $ Rest.of.World <dbl> 0.76, 0.68, 0.57, 0.54, 0.49, 0.48, 0.48, 0.45, 0.45, 0.~
## $ Global <dbl> 8.72, 7.37, 6.23, 5.77, 5.43, 5.22, 5.13, 5.03, 4.92, 4.~
glimpse(videogamessales)
## Rows: 16,719
## Columns: 16
## $ Name <chr> "Wii Sports", "Super Mario Bros.", "Mario Kart Wii", "~
## $ Platform <chr> "Wii", "NES", "Wii", "Wii", "GB", "GB", "DS", "Wii", "~
## $ Year_of_Release <chr> "2006", "1985", "2008", "2009", "1996", "1989", "2006"~
## $ Genre <chr> "Sports", "Platform", "Racing", "Sports", "Role-Playin~
## $ Publisher <chr> "Nintendo", "Nintendo", "Nintendo", "Nintendo", "Ninte~
## $ NA_Sales <dbl> 41.36, 29.08, 15.68, 15.61, 11.27, 23.20, 11.28, 13.96~
## $ EU_Sales <dbl> 28.96, 3.58, 12.76, 10.93, 8.89, 2.26, 9.14, 9.18, 6.9~
## $ JP_Sales <dbl> 3.77, 6.81, 3.79, 3.28, 10.22, 4.22, 6.50, 2.93, 4.70,~
## $ Other_Sales <dbl> 8.45, 0.77, 3.29, 2.95, 1.00, 0.58, 2.88, 2.84, 2.24, ~
## $ Global_Sales <dbl> 82.53, 40.24, 35.52, 32.77, 31.37, 30.26, 29.80, 28.92~
## $ Critic_Score <int> 76, NA, 82, 80, NA, NA, 89, 58, 87, NA, NA, 91, NA, 80~
## $ Critic_Count <int> 51, NA, 73, 73, NA, NA, 65, 41, 80, NA, NA, 64, NA, 63~
## $ User_Score <dbl> 8.0, NA, 8.3, 8.0, NA, NA, 8.5, 6.6, 8.4, NA, NA, 8.6,~
## $ User_Count <int> 322, NA, 709, 192, NA, NA, 431, 129, 594, NA, NA, 464,~
## $ Developer <chr> "Nintendo", "", "Nintendo", "Nintendo", "", "", "Ninte~
## $ Rating <chr> "E", "", "E", "E", "", "", "E", "E", "E", "", "", "E",~
salesxbox<-salesxbox[,-1]
glimpse(salesxbox)
## Rows: 613
## Columns: 9
## $ Game <chr> "Grand Theft Auto V", "Call of Duty: Black Ops 3", "Call~
## $ Year <chr> "2014", "2015", "2017", "2018", "2014", "2014", "2016", ~
## $ Genre <chr> "Action", "Shooter", "Shooter", "Action-Adventure", "Mis~
## $ Publisher <chr> "Rockstar Games", "Activision", "Activision", "Rockstar ~
## $ North.America <dbl> 4.70, 4.63, 3.75, 3.76, 3.23, 3.25, 3.37, 2.94, 2.94, 2.~
## $ Europe <dbl> 3.25, 2.04, 1.91, 1.47, 1.71, 1.49, 1.26, 1.62, 1.49, 1.~
## $ Japan <dbl> 0.01, 0.02, 0.00, 0.00, 0.00, 0.01, 0.02, 0.02, 0.03, 0.~
## $ Rest.of.World <dbl> 0.76, 0.68, 0.57, 0.54, 0.49, 0.48, 0.48, 0.45, 0.45, 0.~
## $ Global <dbl> 8.72, 7.37, 6.23, 5.77, 5.43, 5.22, 5.13, 5.03, 4.92, 4.~
###Checking the data in visualization
salesps4 %>% plot_intro()
salesps4 %>% plot_missing()
salesps4 %>% profile_missing()
## feature num_missing pct_missing
## 1 Game 0 0.0000000
## 2 Year 0 0.0000000
## 3 Genre 0 0.0000000
## 4 Publisher 0 0.0000000
## 5 North.America 0 0.0000000
## 6 Europe 0 0.0000000
## 7 Japan 0 0.0000000
## 8 Rest.of.World 0 0.0000000
## 9 Global 11 0.0106383
salesxbox %>% plot_intro()
salesxbox %>% plot_missing()
salesxbox %>% profile_missing()
## feature num_missing pct_missing
## 1 Game 0 0.00000000
## 2 Year 0 0.00000000
## 3 Genre 0 0.00000000
## 4 Publisher 0 0.00000000
## 5 North.America 0 0.00000000
## 6 Europe 0 0.00000000
## 7 Japan 0 0.00000000
## 8 Rest.of.World 0 0.00000000
## 9 Global 8 0.01305057
videogamessales %>% plot_intro()
videogamessales %>% plot_missing()
videogamessales %>% profile_missing()
## feature num_missing pct_missing
## 1 Name 0 0.0000000000
## 2 Platform 0 0.0000000000
## 3 Year_of_Release 0 0.0000000000
## 4 Genre 0 0.0000000000
## 5 Publisher 0 0.0000000000
## 6 NA_Sales 0 0.0000000000
## 7 EU_Sales 0 0.0000000000
## 8 JP_Sales 0 0.0000000000
## 9 Other_Sales 0 0.0000000000
## 10 Global_Sales 2 0.0001196244
## 11 Critic_Score 8582 0.5133082122
## 12 Critic_Count 8582 0.5133082122
## 13 User_Score 9129 0.5460254800
## 14 User_Count 9129 0.5460254800
## 15 Developer 0 0.0000000000
## 16 Rating 0 0.0000000000
###Cleaning the data
salesps4<-clean_names(salesps4)
salesxbox<-clean_names(salesxbox)
videogamessales<-clean_names(videogamessales)
###Ensure NA in your data
colSums(is.na(salesps4))
## game year genre publisher north_america
## 0 0 0 0 0
## europe japan rest_of_world global
## 0 0 0 11
colSums(is.na(salesxbox))
## game year genre publisher north_america
## 0 0 0 0 0
## europe japan rest_of_world global
## 0 0 0 8
colSums(is.na(videogamessales))
## name platform year_of_release genre publisher
## 0 0 0 0 0
## na_sales eu_sales jp_sales other_sales global_sales
## 0 0 0 0 2
## critic_score critic_count user_score user_count developer
## 8582 8582 9129 9129 0
## rating
## 0
###Filtering NA in data
salesps4<-filter(salesps4,!is.na(global))
salesxbox<-filter(salesxbox,!is.na(global))
videogamessales<-filter(videogamessales,!is.na(global_sales) & !is.na(critic_score) & !is.na(critic_count) & !is.na(user_score) & !is.na(user_count))
###Checking again data structure
salesps4 %>% plot_intro()
salesps4 %>% plot_missing()
salesps4 %>% profile_missing()
## feature num_missing pct_missing
## 1 game 0 0
## 2 year 0 0
## 3 genre 0 0
## 4 publisher 0 0
## 5 north_america 0 0
## 6 europe 0 0
## 7 japan 0 0
## 8 rest_of_world 0 0
## 9 global 0 0
salesxbox %>% plot_intro()
salesxbox %>% plot_missing()
salesxbox %>% profile_missing()
## feature num_missing pct_missing
## 1 game 0 0
## 2 year 0 0
## 3 genre 0 0
## 4 publisher 0 0
## 5 north_america 0 0
## 6 europe 0 0
## 7 japan 0 0
## 8 rest_of_world 0 0
## 9 global 0 0
videogamessales %>% plot_intro()
videogamessales %>% plot_missing()
videogamessales %>% profile_missing()
## feature num_missing pct_missing
## 1 name 0 0
## 2 platform 0 0
## 3 year_of_release 0 0
## 4 genre 0 0
## 5 publisher 0 0
## 6 na_sales 0 0
## 7 eu_sales 0 0
## 8 jp_sales 0 0
## 9 other_sales 0 0
## 10 global_sales 0 0
## 11 critic_score 0 0
## 12 critic_count 0 0
## 13 user_score 0 0
## 14 user_count 0 0
## 15 developer 0 0
## 16 rating 0 0
###Check NA again
colSums(is.na(salesps4))
## game year genre publisher north_america
## 0 0 0 0 0
## europe japan rest_of_world global
## 0 0 0 0
colSums(is.na(salesxbox))
## game year genre publisher north_america
## 0 0 0 0 0
## europe japan rest_of_world global
## 0 0 0 0
colSums(is.na(videogamessales))
## name platform year_of_release genre publisher
## 0 0 0 0 0
## na_sales eu_sales jp_sales other_sales global_sales
## 0 0 0 0 0
## critic_score critic_count user_score user_count developer
## 0 0 0 0 0
## rating
## 0
###Processing data in period from 2013 to 2020
salesps4<-subset(salesps4,year<="2020")
salesxbox<-subset(salesxbox,year<="2020")
videogamessales<-subset(videogamessales, year_of_release<="2020" & year_of_release>="2013")
ggplot(salesps4,aes(x=year,y=north_america))+geom_bar(stat='identity',color='lightblue')+labs(x='Year',y='North America Sales',title="North America Sales Volume from 2013 to 2020",tag="PS4")+geom_text(aes(x=1,y=50),label=sum(salesps4$north_america))
ggplot(salesps4,aes(x=year,y=europe))+geom_bar(stat='identity',color='lightblue')+labs(x='Year',y='Europe Sales',title="Europe Sales Volume from 2013 to 2020",tag="PS4")+geom_text(aes(x=1,y=50),label=sum(salesps4$europe))
ggplot(salesps4,aes(x=year,y=japan))+geom_bar(stat='identity',color='lightblue')+labs(x='Year',y='Japan Sales',title="Japan Sales Volume from 2013 to 2020",tag="PS4")+geom_text(aes(x=1,y=20),label=sum(salesps4$japan))
ggplot(salesps4,aes(x=year,y=rest_of_world))+geom_bar(stat='identity',color='lightblue')+labs(x='Year',y='Rest of World Sales',title="Rest of World Sales Volume from 2013 to 2020",tag="PS4")+geom_text(aes(x=1,y=30),label=sum(salesps4$rest_of_world))
ggplot(salesps4,aes(x=year,y=global))+geom_bar(stat='identity',color='lightblue')+labs(x='Year',y='Global Sales',title="Global Sales Volume from 2013 to 2020",tag="PS4")+geom_text(aes(x=1,y=150),label=sum(salesps4$global))
ggplot(salesxbox,aes(x=year,y=north_america))+geom_bar(stat='identity',color='lightgreen')+labs(x='Year',y='North America Sales',title="North America Sales Volume from 2013 to 2020",tag="XBox")+geom_text(aes(x=1,y=50),label=sum(salesxbox$north_america))
ggplot(salesxbox,aes(x=year,y=europe))+geom_bar(stat='identity',color='lightgreen')+labs(x='Year',y='Europe Sales',title="Europe Sales Volume from 2013 to 2020",tag="XBox")+geom_text(aes(x=1,y=30),label=sum(salesxbox$europe))
ggplot(salesxbox,aes(x=year,y=japan))+geom_bar(stat='identity',color='lightgreen')+labs(x='Year',y='Japan Sales',title="Japan Sales Volume from 2013 to 2020",tag="XBox")+geom_text(aes(x=1,y=1.5),label=sum(salesxbox$japan))
ggplot(salesxbox,aes(x=year,y=rest_of_world))+geom_bar(stat='identity',color='lightgreen')+labs(x='Year',y='Rest of World Sales',title="Rest of World Sales Volume from 2013 to 2020",tag="XBox")+geom_text(aes(x=1,y=8),label=sum(salesxbox$rest_of_world))
ggplot(salesxbox,aes(x=year,y=global))+geom_bar(stat='identity',color='lightgreen')+labs(x='Year',y='Global Sales',title="Global Sales Volume from 2013 to 2020",tag="XBox")+geom_text(aes(x=1,y=70),label=sum(salesxbox$global))
salesps4genre<-salesps4 %>% group_by(genre) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
salesps4genre
## # A tibble: 17 x 3
## genre Count Perc
## <chr> <int> <dbl>
## 1 Action 204 25
## 2 Role-Playing 105 12.9
## 3 Shooter 74 9.07
## 4 Adventure 70 8.58
## 5 Sports 69 8.46
## 6 Misc 53 6.5
## 7 Racing 47 5.76
## 8 Action-Adventure 38 4.66
## 9 Platform 33 4.04
## 10 Fighting 32 3.92
## 11 Strategy 25 3.06
## 12 Simulation 21 2.57
## 13 Music 18 2.21
## 14 Puzzle 9 1.1
## 15 MMO 8 0.98
## 16 Visual Novel 8 0.98
## 17 Party 2 0.25
salesxboxgenre<-salesxbox %>% group_by(genre) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
salesxboxgenre
## # A tibble: 16 x 3
## genre Count Perc
## <chr> <int> <dbl>
## 1 Action 116 23.2
## 2 Shooter 65 13
## 3 Sports 58 11.6
## 4 Racing 45 9
## 5 Adventure 36 7.2
## 6 Role-Playing 35 7
## 7 Misc 29 5.8
## 8 Action-Adventure 28 5.6
## 9 Simulation 19 3.8
## 10 Platform 18 3.6
## 11 Fighting 16 3.2
## 12 Strategy 14 2.8
## 13 Music 13 2.6
## 14 Puzzle 4 0.8
## 15 MMO 2 0.4
## 16 Visual Novel 2 0.4
ggplot(salesps4, aes(x =genre,y = north_america))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "North.America Sales",title="North.America Sales Volume Of Games Genre",tag="PS4")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=75),label=sum(salesps4$north_america))
ggplot(salesps4, aes(x =genre,y =europe ))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Europe Sales",title="Europe Sales Volume Of Games Genre",tag="PS4")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=75),label=sum(salesps4$europe))
ggplot(salesps4, aes(x =genre,y =japan))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Japan Sales",title="Japan Sales Volume Of Games Genre",tag="PS4")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=13),label=sum(salesps4$japan))
ggplot(salesps4, aes(x =genre,y =rest_of_world))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Rest.of.World Sales",title="Rest.of.World Sales Volume Of Games Genre",tag="PS4")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=30),label=sum(salesps4$rest_of_world))
ggplot(salesps4, aes(x =genre,y =global))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Global Sales",title="Global Sales Volume Of Games Genre",tag="PS4")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=160),label=sum(salesps4$global))
ggplot(salesxbox, aes(x =genre,y = north_america))+geom_bar(stat="identity", color='green')+labs(x = "Genre", y = "North.America Sales",title="North.America Sales Volume Of Games Genre",tag="XBox")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=60),label=sum(salesxbox$north_america))
ggplot(salesxbox, aes(x =genre,y =europe ))+geom_bar(stat="identity", color='green')+labs(x = "Genre", y = "Europe Sales",title="Europe Sales Volume Of Games Genre",tag="XBox")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=30),label=sum(salesxbox$europe))
ggplot(salesxbox, aes(x =genre,y =japan))+geom_bar(stat="identity", color='green')+labs(x = "Genre", y = "Japan Sales",title="Japan Sales Volume Of Games Genre",tag="XBox")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=5),label=sum(salesxbox$japan))
ggplot(salesxbox, aes(x =genre,y =rest_of_world))+geom_bar(stat="identity", color='green')+labs(x = "Genre", y = "Rest.of.World Sales",title="Rest.of.World Sales Volume Of Games Genre",tag="XBox")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=10),label=sum(salesxbox$rest_of_world))
ggplot(salesxbox, aes(x =genre,y =global))+geom_bar(stat="identity", color='green')+labs(x = "Genre", y = "Global Sales",title="Global Sales Volume Of Games Genre",tag="XBox")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=100),label=sum(salesxbox$global))
salesps4 %>% group_by(publisher) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
## # A tibble: 147 x 3
## publisher Count Perc
## <chr> <int> <dbl>
## 1 Namco Bandai Games 56 6.86
## 2 Sony Interactive Entertainment 47 5.76
## 3 Ubisoft 44 5.39
## 4 Square Enix 40 4.9
## 5 Tecmo Koei 37 4.53
## 6 Activision 30 3.68
## 7 Capcom 30 3.68
## 8 Warner Bros. Interactive Entertainment 27 3.31
## 9 Sony Computer Entertainment 25 3.06
## 10 Electronic Arts 21 2.57
## # ... with 137 more rows
salesxbox %>% group_by(publisher) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
## # A tibble: 96 x 3
## publisher Count Perc
## <chr> <int> <dbl>
## 1 Ubisoft 44 8.8
## 2 Microsoft Studios 31 6.2
## 3 Activision 29 5.8
## 4 Warner Bros. Interactive Entertainment 26 5.2
## 5 Electronic Arts 22 4.4
## 6 Capcom 19 3.8
## 7 EA Sports 19 3.8
## 8 Namco Bandai Games 19 3.8
## 9 505 Games 16 3.2
## 10 THQ Nordic 16 3.2
## # ... with 86 more rows
ggplot(videogamessales, aes(x =genre,y =na_sales))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "North.America Sales",title="North.America Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=100),label=sum(videogamessales$na_sales))
ggplot(videogamessales, aes(x =genre,y =eu_sales ))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Europe Sales",title="Europe Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=100),label=sum(videogamessales$eu_sales))
ggplot(videogamessales, aes(x =genre,y =jp_sales))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Japan Sales",title="Japan Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=25),label=sum(videogamessales$jp_sales))
ggplot(videogamessales, aes(x =genre,y =other_sales ))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Rest.of.World Sales",title="Rest.of.World Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=30),label=sum(videogamessales$other_sales ))
ggplot(videogamessales, aes(x =genre,y =global_sales))+geom_bar(stat="identity", color='blue')+labs(x = "Genre", y = "Global Sales",title="Global Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=250),label=sum(videogamessales$global_sales))
ggplot(videogamessales, aes(x =platform,y =na_sales))+geom_bar(stat="identity", color='yellow')+labs(x = "Platform", y = "North.America Sales",title="North.America Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=80),label=sum(videogamessales$na_sales))
ggplot(videogamessales, aes(x =platform,y =eu_sales ))+geom_bar(stat="identity", color='yellow')+labs(x = "Platform", y = "Europe Sales",title="Europe Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=110),label=sum(videogamessales$eu_sales))
ggplot(videogamessales, aes(x =platform,y =jp_sales))+geom_bar(stat="identity", color='yellow')+labs(x = "Platform", y = "Japan Sales",title="Japan Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=25),label=sum(videogamessales$jp_sales))
ggplot(videogamessales, aes(x =platform,y =other_sales ))+geom_bar(stat="identity", color='yellow')+labs(x = "Platform", y = "Rest.of.World Sales",title="Rest.of.World Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=50),label=sum(videogamessales$other_sales ))
ggplot(videogamessales, aes(x =platform,y =global_sales))+geom_bar(stat="identity", color='yellow')+labs(x = "Platform", y = "Global Sales",title="Global Sales Volume Of Games Genre")+theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1, size = 12),axis.text.y = element_text(vjust = 1, hjust = 1, size = 12))+geom_text(aes(x=1,y=250),label=sum(videogamessales$global_sales))
videogamessales %>% group_by(platform) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
## # A tibble: 9 x 3
## platform Count Perc
## <chr> <int> <dbl>
## 1 PS4 249 25.5
## 2 XOne 165 16.9
## 3 PC 148 15.2
## 4 PS3 120 12.3
## 5 X360 81 8.3
## 6 PSV 76 7.79
## 7 WiiU 69 7.07
## 8 3DS 67 6.86
## 9 PSP 1 0.1
videogamessales %>% group_by(genre) %>% summarise(Count = n(),Perc=round(n()/nrow(.)*100,2)) %>% arrange(desc(Count))
## # A tibble: 12 x 3
## genre Count Perc
## <chr> <int> <dbl>
## 1 Action 309 31.7
## 2 Shooter 132 13.5
## 3 Role-Playing 127 13.0
## 4 Sports 110 11.3
## 5 Racing 59 6.05
## 6 Platform 50 5.12
## 7 Adventure 46 4.71
## 8 Fighting 42 4.3
## 9 Misc 42 4.3
## 10 Simulation 26 2.66
## 11 Strategy 26 2.66
## 12 Puzzle 7 0.72