library(faux)
## Warning: package 'faux' was built under R version 4.1.3
## 
## ************
## Welcome to faux. For support and examples visit:
## https://debruine.github.io/faux/
## - Get and set global package options with: faux_options()
## ************
set.seed(0374)

dfa <- rnorm_multi(n = 1000,
            mu = c(67, 30, 30, 320),
            sd = c(2, 3, 5, 10),
            varnames = c('Edad', 'dap', 'rto', 'clolA'),
            r = c(0.4, 0.6, 0.5, 0.6, 0.7, 0.8))

dfa$hibrido <- round(runif(n = 1000, min = 0,max = 1.2))

w <- 0.5 * dfa$clolA - 0.01 * dfa$dap - 0.6 * dfa$rto - 0.02 * dfa$Edad

dfa$abortos <- factor(ifelse(w > 140, '1', '0' ),
                       labels = c('No', 'Si')) #"Si" para 1 y "No" para 0

dfa
##          Edad      dap      rto    clolA hibrido abortos
## 1    71.54128 34.44222 37.96619 333.7880       1      Si
## 2    66.07308 34.62718 26.93766 318.3208       0      Si
## 3    66.15741 30.16967 29.32100 319.5784       0      Si
## 4    68.39663 23.70414 35.60376 319.7968       1      No
## 5    65.82920 28.74009 21.05399 309.7039       0      Si
## 6    68.54235 30.78879 31.10149 326.4118       1      Si
## 7    65.60846 27.55027 25.38762 320.2942       0      Si
## 8    66.51456 30.34411 28.42637 319.0012       1      Si
## 9    69.80460 28.79572 31.31242 326.6107       0      Si
## 10   69.54156 34.27971 34.16086 323.5461       1      No
## 11   65.81237 28.29244 29.01384 312.5279       1      No
## 12   70.46750 30.13767 33.64183 325.1211       0      Si
## 13   69.06079 32.39578 32.30499 323.5801       1      Si
## 14   68.91308 32.75361 36.75882 331.2354       1      Si
## 15   67.46599 28.04149 33.03414 316.1659       1      No
## 16   67.61577 31.44313 26.27395 315.7318       1      Si
## 17   66.50358 29.26811 31.00190 321.0358       1      Si
## 18   64.20801 28.00664 28.68606 314.0877       0      No
## 19   67.07901 30.15911 28.72171 312.9514       1      No
## 20   64.93714 30.16374 26.19983 304.2450       1      No
## 21   66.08605 27.66166 26.79018 326.6489       1      Si
## 22   62.01661 29.18309 27.40287 314.7946       0      No
## 23   68.20410 33.22791 30.57247 310.7975       0      No
## 24   69.34143 28.64872 30.48656 309.9376       0      No
## 25   71.89346 34.47614 34.29333 320.5141       0      No
## 26   69.60923 31.60909 35.41533 329.5294       1      Si
## 27   68.49996 30.46021 31.79415 320.0735       0      No
## 28   66.73113 31.17770 27.59886 310.2700       1      No
## 29   64.97169 33.73291 29.11639 326.0137       1      Si
## 30   69.39363 29.87451 30.65551 319.8304       1      No
## 31   71.12368 30.64036 30.77576 319.9243       0      No
## 32   65.22799 31.83110 28.44020 321.0410       1      Si
## 33   62.50587 29.17257 17.80814 311.7386       1      Si
## 34   65.64200 28.87648 29.78898 317.4535       0      No
## 35   65.22643 25.37555 22.10462 308.2426       1      No
## 36   68.21499 31.38258 33.03782 328.2542       1      Si
## 37   67.37934 36.84724 36.33874 333.4524       1      Si
## 38   65.38862 28.30701 23.43424 310.5335       0      No
## 39   65.82613 29.04143 24.43052 311.7545       1      No
## 40   64.68485 25.82266 21.68720 314.0191       0      Si
## 41   72.22708 35.33579 33.40906 324.5110       0      Si
## 42   63.13838 29.19808 24.20022 298.6144       0      No
## 43   63.63559 27.44568 28.54031 320.3750       0      Si
## 44   68.64598 32.56668 35.86984 330.7324       1      Si
## 45   64.53641 32.75905 32.91333 322.6482       0      No
## 46   68.64840 35.32103 39.91400 332.3247       1      Si
## 47   64.79532 25.26520 27.53543 308.6617       0      No
## 48   66.94512 33.76416 33.17152 325.1996       1      Si
## 49   67.48842 27.45325 30.75828 320.5571       1      Si
## 50   69.46859 33.76787 36.04585 331.7325       1      Si
## 51   64.97100 29.36723 21.53259 310.8876       0      Si
## 52   70.10018 35.46529 36.40969 332.2821       1      Si
## 53   65.11034 29.21042 29.21446 321.7316       1      Si
## 54   68.22373 27.51368 28.37586 321.2915       0      Si
## 55   67.10684 29.08635 31.07975 323.3635       1      Si
## 56   65.67612 29.52568 28.04291 316.4922       1      No
## 57   67.33387 32.86313 30.58263 325.5587       1      Si
## 58   67.33683 27.89820 27.55708 306.9192       0      No
## 59   66.62414 30.14963 30.75665 323.7068       1      Si
## 60   63.60940 29.32915 23.00045 298.4685       1      No
## 61   67.17320 31.97927 39.62021 337.7534       0      Si
## 62   66.55233 32.27759 30.32966 322.4596       1      Si
## 63   67.84747 32.18745 32.78118 329.4447       1      Si
## 64   69.88092 36.05226 33.77857 333.1827       0      Si
## 65   64.98052 28.22373 25.12646 311.4402       0      No
## 66   63.33917 28.56920 33.86916 327.1792       0      Si
## 67   65.63841 28.94783 29.14746 313.7369       0      No
## 68   68.40621 28.54538 25.63928 305.8709       1      No
## 69   69.09388 29.57002 35.70056 322.8428       1      No
## 70   67.90924 29.25682 32.80083 324.1483       0      Si
## 71   65.02948 22.56744 28.28074 315.0773       1      No
## 72   69.42565 31.29099 29.76491 314.7310       1      No
## 73   64.20069 28.57144 30.12430 318.8329       1      No
## 74   68.77339 29.29972 32.46673 326.5471       0      Si
## 75   68.72048 29.70789 30.64043 325.2904       0      Si
## 76   63.23471 23.12674 19.34359 289.2073       1      No
## 77   68.50878 32.16923 31.28023 324.2343       1      Si
## 78   62.86049 29.91434 23.59126 309.5636       1      No
## 79   68.16233 29.45746 30.45067 325.5808       1      Si
## 80   66.93122 31.86258 27.33891 324.3402       1      Si
## 81   67.45008 30.78561 30.82236 316.9132       1      No
## 82   64.48793 24.61024 22.69952 303.5850       1      No
## 83   65.79304 24.36561 27.82113 315.7995       0      No
## 84   61.70634 26.64751 16.99864 300.8035       0      No
## 85   67.19673 24.51398 29.88426 311.9830       1      No
## 86   66.20565 26.05601 28.50461 317.0313       1      No
## 87   66.23795 27.02943 31.99942 312.7854       1      No
## 88   66.19850 27.29830 25.40514 315.2574       1      Si
## 89   66.22342 32.27677 34.48007 324.2674       0      No
## 90   65.41854 24.17698 25.12565 313.5487       1      Si
## 91   67.68344 31.39580 35.45779 330.4139       1      Si
## 92   67.16692 35.73936 32.26434 332.3812       1      Si
## 93   69.51484 28.99919 36.15234 321.8369       1      No
## 94   66.21610 30.83181 33.66320 313.2871       1      No
## 95   69.53038 28.56183 31.31782 322.3364       0      Si
## 96   68.49399 35.02601 36.56882 330.4282       1      Si
## 97   62.67741 25.42855 19.48673 301.8810       1      No
## 98   64.69801 28.00146 31.77773 317.8248       0      No
## 99   68.04585 29.94968 30.08574 311.2546       0      No
## 100  67.51192 31.01061 39.54605 327.1562       0      No
## 101  64.90597 30.80302 23.95678 312.5645       0      Si
## 102  67.36349 34.99616 30.79670 328.3911       1      Si
## 103  67.24092 29.37187 35.35980 326.4247       1      Si
## 104  65.39386 27.23672 25.00090 309.0943       0      No
## 105  66.75690 35.04275 34.65372 333.8958       0      Si
## 106  66.21521 31.50874 28.93213 319.4508       1      Si
## 107  68.30028 35.45667 35.71522 332.9094       1      Si
## 108  70.68591 27.00119 34.63305 318.0383       1      No
## 109  64.98556 28.20250 28.62829 309.9912       0      No
## 110  69.33807 33.00286 34.05698 325.9808       1      Si
## 111  65.76988 32.06663 32.74918 326.3041       1      Si
## 112  67.71241 30.66233 29.41726 312.5830       1      No
## 113  66.33667 27.58148 32.19749 321.1544       0      No
## 114  67.90063 27.38701 30.22436 322.3314       0      Si
## 115  70.54666 35.53103 33.88839 323.8931       0      No
## 116  64.79230 28.41393 28.21083 314.6804       1      No
## 117  68.68266 34.39532 30.36738 333.2489       1      Si
## 118  67.51359 28.71184 32.14870 324.8160       1      Si
## 119  67.50595 29.14726 28.36695 334.2459       0      Si
## 120  69.87346 33.60145 28.14950 313.8024       1      No
## 121  70.00484 35.04217 33.72616 324.6157       0      Si
## 122  65.79571 31.78290 29.74783 311.1871       1      No
## 123  67.54890 31.50471 33.01582 326.3501       0      Si
## 124  68.23432 29.41926 32.00782 327.9283       1      Si
## 125  68.90791 35.48049 34.50889 338.8119       0      Si
## 126  69.48789 31.00027 29.89272 320.4859       0      Si
## 127  65.11470 28.76417 29.39345 320.2549       0      Si
## 128  65.72964 29.04623 28.88847 315.0685       1      No
## 129  67.80965 35.51009 36.49923 320.3128       1      No
## 130  65.57632 30.08054 23.61102 315.3046       1      Si
## 131  66.68738 29.13126 30.77408 325.4811       0      Si
## 132  63.03075 28.38881 22.71192 314.9244       0      Si
## 133  67.76200 31.64210 37.54013 330.3250       1      Si
## 134  62.45069 32.14340 21.57860 312.9787       1      Si
## 135  66.90603 27.22415 27.42735 305.4958       1      No
## 136  66.41155 30.91978 31.98110 324.9563       1      Si
## 137  66.38753 30.54886 27.64397 318.8025       0      Si
## 138  69.95648 29.82693 35.90185 327.1924       0      Si
## 139  68.29481 34.22039 34.69508 337.0437       0      Si
## 140  66.80723 27.67961 25.24673 317.3440       0      Si
## 141  67.27768 27.15705 24.51847 312.7976       1      Si
## 142  62.31184 22.63407 19.73386 301.9188       1      No
## 143  65.57698 27.37593 26.84496 317.0917       1      Si
## 144  68.95178 26.17672 30.19392 316.3260       0      No
## 145  66.97125 30.60406 29.82481 327.0370       0      Si
## 146  67.76345 30.54383 37.44252 330.0063       1      Si
## 147  67.70664 33.22303 37.16005 336.0389       0      Si
## 148  67.18665 25.47724 25.50923 302.9350       1      No
## 149  67.52439 27.27855 25.75095 314.8899       0      Si
## 150  69.26386 30.69306 37.01761 329.2008       0      Si
## 151  65.04025 26.38285 25.94383 306.3684       1      No
## 152  66.35969 30.02136 21.60263 299.8101       1      No
## 153  65.52293 27.15300 26.00163 321.6162       1      Si
## 154  66.25670 28.95746 32.05557 319.7970       1      No
## 155  68.73937 35.97005 38.97934 333.4331       1      Si
## 156  65.88632 29.23759 27.09809 317.6061       1      Si
## 157  64.36197 31.59865 29.20525 318.3025       0      Si
## 158  67.15887 26.47435 30.15137 313.3011       1      No
## 159  66.83961 32.44822 26.80693 313.1711       1      No
## 160  66.44034 26.04870 29.55649 313.7985       1      No
## 161  66.79984 32.49101 36.91775 333.6390       1      Si
## 162  69.93959 32.81465 32.68472 330.7706       1      Si
## 163  70.10287 35.16953 34.14295 338.7983       1      Si
## 164  67.45601 36.46653 39.51268 342.8620       0      Si
## 165  65.45617 27.48571 26.88312 306.1193       0      No
## 166  66.80485 28.75885 28.25966 319.5780       1      Si
## 167  64.47893 28.41149 20.74300 300.5275       1      No
## 168  66.36451 28.98863 29.86185 321.1841       0      Si
## 169  69.41865 32.66135 31.76962 325.9044       1      Si
## 170  73.54523 35.27074 36.93465 347.4611       1      Si
## 171  71.22959 29.80751 37.00958 336.0921       1      Si
## 172  65.50391 30.66292 26.93542 328.5678       1      Si
## 173  67.14930 32.34402 34.66046 328.8081       0      Si
## 174  66.55999 29.22912 24.88795 319.3619       1      Si
## 175  64.35679 27.17979 24.97132 318.0260       1      Si
## 176  69.27533 30.65526 33.79598 329.6518       1      Si
## 177  70.77539 31.47362 36.33631 325.3606       0      No
## 178  68.72533 33.03940 32.82310 326.2772       1      Si
## 179  67.50257 24.94743 26.64423 307.2597       1      No
## 180  70.91636 29.57879 39.50417 324.9590       1      No
## 181  66.99999 25.46935 26.37363 302.2847       0      No
## 182  64.93996 30.05499 29.80090 320.0556       1      Si
## 183  69.98385 32.22656 37.01802 337.0626       0      Si
## 184  65.60944 25.53260 21.28074 307.5523       1      No
## 185  71.68065 27.70616 39.40619 316.1201       1      No
## 186  64.99963 27.15966 24.74277 307.9585       1      No
## 187  65.94970 27.17466 23.48588 306.1746       0      No
## 188  69.15035 31.68955 35.87535 318.9269       0      No
## 189  68.31625 33.53638 32.59687 335.2108       0      Si
## 190  69.34038 33.91384 31.74457 315.6984       1      No
## 191  66.91568 31.11684 36.54629 328.5572       1      Si
## 192  65.95550 29.65758 32.12178 327.0308       1      Si
## 193  67.63432 30.71609 30.25664 319.3631       0      No
## 194  65.77804 29.44676 23.95862 314.9151       0      Si
## 195  68.33431 30.74885 31.91659 315.3790       1      No
## 196  67.91340 28.04193 28.83571 318.4654       1      Si
## 197  66.00476 28.39027 24.56096 318.7288       1      Si
## 198  69.04428 27.63465 34.65717 326.4169       0      Si
## 199  68.84695 30.94301 30.66655 325.1676       1      Si
## 200  64.27864 30.24894 24.52315 321.3333       1      Si
## 201  68.73711 33.12543 38.96371 325.9967       0      No
## 202  67.44962 31.05130 35.28657 329.0949       0      Si
## 203  68.76803 31.12815 28.09758 317.8255       1      Si
## 204  68.09695 35.98201 37.08783 336.6128       1      Si
## 205  66.34566 28.27880 29.16019 319.4350       1      Si
## 206  67.52181 24.62407 32.06355 317.8396       1      No
## 207  65.36069 33.29645 31.59186 315.4179       0      No
## 208  64.24479 26.95199 28.01980 306.7454       1      No
## 209  62.20050 27.41634 27.37406 311.8839       1      No
## 210  67.88071 31.16150 33.65343 332.1194       1      Si
## 211  65.49276 28.96791 32.94846 314.7496       0      No
## 212  68.56872 30.24013 34.75313 327.9753       1      Si
## 213  65.54177 29.09708 29.26879 314.9662       0      No
## 214  68.82531 27.84566 35.11428 324.6248       1      No
## 215  66.01983 32.39630 34.44991 325.8446       0      Si
## 216  67.40138 26.69101 25.75671 309.6874       1      No
## 217  65.57712 28.88655 28.72283 316.4878       0      No
## 218  67.81085 26.97813 25.26858 312.2029       1      No
## 219  66.85105 31.07116 34.22999 319.1754       0      No
## 220  64.76094 29.03394 24.58686 311.6585       0      No
## 221  68.95770 28.12224 30.54342 318.3293       1      No
## 222  69.75547 28.84600 36.22407 323.6118       1      No
## 223  66.38918 35.27560 32.30910 336.8297       1      Si
## 224  67.23534 38.44486 39.64903 341.2809       1      Si
## 225  67.60058 29.25122 25.29615 316.9348       1      Si
## 226  65.09575 22.07174 20.60404 300.8612       0      No
## 227  66.68590 27.26630 26.44340 308.7667       1      No
## 228  64.30272 25.71865 21.14005 302.2527       0      No
## 229  63.43519 29.40821 31.65974 327.4832       1      Si
## 230  67.16265 36.17529 32.82061 329.5285       0      Si
## 231  67.83227 27.52816 27.96803 313.1415       1      No
## 232  65.78404 37.19154 32.93006 329.0691       0      Si
## 233  63.54815 28.04565 19.11371 299.4594       1      No
## 234  63.01690 28.58116 21.19373 311.0073       0      Si
## 235  63.33848 31.11767 26.55362 307.3493       1      No
## 236  65.82156 29.24179 29.11908 316.4593       1      No
## 237  67.34049 31.35844 34.66901 330.8461       0      Si
## 238  70.20002 35.05136 39.35817 339.8173       1      Si
## 239  67.59411 28.98129 37.32152 336.2650       0      Si
## 240  64.80798 26.40053 22.87971 298.3046       1      No
## 241  67.98217 32.21349 30.69910 319.5348       0      No
## 242  69.83273 32.99878 34.92564 333.3510       1      Si
## 243  62.29753 28.17113 22.59824 306.8095       1      No
## 244  69.65309 33.85140 37.07785 327.9033       0      No
## 245  65.74047 24.02429 27.86227 313.4362       0      No
## 246  70.07036 35.57894 46.72264 345.3589       1      Si
## 247  68.13433 30.42778 31.74492 320.4742       1      No
## 248  71.07789 29.89409 31.02659 327.2445       1      Si
## 249  70.03819 30.05672 31.92435 323.2096       1      Si
## 250  65.66115 28.01624 26.34592 321.8564       1      Si
## 251  68.75849 29.45187 32.92136 332.2115       1      Si
## 252  67.60868 26.39147 25.33125 301.7950       1      No
## 253  68.37544 28.24075 33.02692 321.2500       0      No
## 254  68.13470 33.38993 36.07237 334.0402       1      Si
## 255  63.18915 23.76528 23.57592 307.6337       1      No
## 256  66.87992 30.61114 30.86098 318.4727       1      No
## 257  67.86508 33.23495 34.22266 325.1002       1      Si
## 258  70.58021 32.29179 36.96811 333.4452       0      Si
## 259  68.46384 28.54739 27.71897 308.3485       1      No
## 260  65.69683 30.75338 32.83810 325.8774       0      Si
## 261  64.92027 29.65885 27.79164 321.2913       1      Si
## 262  68.18755 30.97352 26.62937 313.1811       1      No
## 263  67.41207 29.66029 26.78465 317.3367       0      Si
## 264  64.57174 26.45744 25.08695 312.6545       0      No
## 265  67.45905 31.87403 27.62401 309.5944       0      No
## 266  65.12906 28.52154 28.26224 314.2798       0      No
## 267  70.37808 34.14262 35.02771 330.0232       1      Si
## 268  65.50831 25.03618 32.28359 321.9086       1      Si
## 269  66.72618 31.05374 32.13424 328.8746       1      Si
## 270  65.17581 28.28531 25.03008 307.9207       0      No
## 271  68.53199 28.58353 30.38227 326.5353       1      Si
## 272  69.21156 29.20030 34.90906 333.1148       0      Si
## 273  68.94070 31.62837 32.88167 327.6616       1      Si
## 274  67.19719 31.71606 33.55768 320.3777       1      No
## 275  65.91776 36.22012 32.75627 331.3043       1      Si
## 276  67.12048 29.20447 27.62069 330.8051       0      Si
## 277  69.26849 30.94924 33.62748 320.7345       0      No
## 278  63.15917 26.04965 23.52423 302.4780       1      No
## 279  65.75784 29.60511 31.50566 322.2399       0      Si
## 280  66.61261 26.54392 28.95585 315.3219       1      No
## 281  65.02787 24.96585 24.82772 316.1616       1      Si
## 282  63.30967 30.97508 26.52720 322.1221       1      Si
## 283  68.02804 29.41656 32.88142 317.8502       1      No
## 284  65.26320 23.06945 25.15134 306.8104       1      No
## 285  68.81798 24.99346 26.39465 299.7773       0      No
## 286  70.64438 31.30508 33.64379 331.6168       1      Si
## 287  68.10981 35.01348 31.45151 322.4347       0      Si
## 288  67.59881 31.19245 28.14598 312.9502       1      No
## 289  67.47644 33.03903 30.50039 326.0674       1      Si
## 290  66.06239 36.70826 38.80353 340.1676       1      Si
## 291  65.37669 27.42711 30.26889 315.1816       1      No
## 292  62.57380 25.34300 19.71984 294.3471       0      No
## 293  66.31937 26.31606 27.58076 308.8933       0      No
## 294  68.25719 34.78475 29.55384 330.1075       0      Si
## 295  67.58090 29.10567 31.33034 319.5978       0      No
## 296  63.75361 26.00812 22.60296 299.8710       1      No
## 297  69.68151 33.54569 39.06159 338.4192       1      Si
## 298  67.31486 27.20637 26.74780 319.4008       0      Si
## 299  65.46706 28.16839 26.04137 312.9171       1      No
## 300  67.43449 28.79167 27.85577 302.9120       0      No
## 301  65.40507 29.25914 22.32926 306.9898       0      No
## 302  67.81345 31.87349 34.33978 330.6805       1      Si
## 303  66.59892 28.09293 19.26837 308.7875       1      Si
## 304  68.16798 32.29253 30.82607 316.2792       0      No
## 305  65.65922 30.13505 26.29294 318.5937       0      Si
## 306  67.73575 30.92471 33.84666 329.1189       1      Si
## 307  67.94975 28.28692 25.91269 308.5498       0      No
## 308  66.21738 29.03661 24.08480 308.1788       1      No
## 309  69.77003 28.89013 40.30601 332.3968       1      Si
## 310  65.53791 27.50513 22.16163 306.6213       0      No
## 311  69.42492 26.36183 29.48998 318.9007       1      Si
## 312  63.40162 28.14374 23.01994 309.5435       1      No
## 313  65.25226 32.53673 29.26392 330.1669       1      Si
## 314  70.92400 31.60763 37.96802 332.2186       1      Si
## 315  68.00222 33.32307 31.30513 320.2835       1      No
## 316  66.11207 25.31192 26.84180 304.5149       0      No
## 317  68.20025 31.57835 29.82258 324.3244       1      Si
## 318  67.42210 32.38637 30.61870 324.3135       1      Si
## 319  67.68449 29.95618 28.72148 312.7451       1      No
## 320  68.98964 34.20711 37.75267 334.9424       1      Si
## 321  66.50379 28.28126 29.18283 321.7715       0      Si
## 322  67.48831 30.79893 33.06417 325.6097       1      Si
## 323  68.97692 30.71814 34.21589 330.4322       1      Si
## 324  69.87555 30.29590 32.03139 313.6841       1      No
## 325  65.27800 30.32776 24.77931 319.2355       0      Si
## 326  65.38241 32.72506 24.99928 317.1660       1      Si
## 327  65.67722 30.11057 34.56032 335.6170       0      Si
## 328  66.37206 30.84120 34.45327 326.5701       0      Si
## 329  65.43031 27.67761 24.13593 308.4435       1      No
## 330  70.25500 32.01586 39.08675 336.5122       1      Si
## 331  66.20157 29.42022 24.60056 312.6986       0      No
## 332  69.48619 34.44977 30.01306 326.1283       1      Si
## 333  69.20842 29.60928 36.99388 330.4798       0      Si
## 334  65.81427 31.12548 27.30784 321.3973       1      Si
## 335  69.06787 28.40649 31.48671 324.2537       0      Si
## 336  66.54101 25.88795 28.43742 327.3833       1      Si
## 337  62.98376 26.44288 23.62723 305.7044       0      No
## 338  68.16571 34.84686 33.04749 327.5888       0      Si
## 339  65.97212 32.11499 35.90706 326.9017       1      Si
## 340  65.76917 22.40984 23.41388 308.6439       0      No
## 341  66.39100 33.79131 27.98117 315.9856       0      No
## 342  65.86692 29.91639 29.56663 312.7955       1      No
## 343  69.11730 34.96359 37.60239 339.7601       1      Si
## 344  65.10253 26.85490 23.32584 311.6465       0      Si
## 345  68.74669 33.76395 29.61503 313.8445       0      No
## 346  67.85413 31.70527 30.21213 332.0675       0      Si
## 347  64.50095 28.47488 29.34682 318.3736       1      Si
## 348  68.15091 33.07887 36.14047 324.2900       1      No
## 349  66.88689 32.06766 41.73943 334.0501       0      Si
## 350  66.82999 27.58519 30.61707 322.6872       0      Si
## 351  66.73535 25.62934 30.93538 310.1461       0      No
## 352  65.48873 29.13448 29.44944 311.9266       0      No
## 353  69.28254 27.60468 30.09740 316.0702       0      No
## 354  68.73484 29.24505 31.29212 319.1797       0      No
## 355  69.42607 30.09013 28.52096 323.4371       1      Si
## 356  66.29262 33.56653 27.77942 314.4572       1      No
## 357  66.07936 31.07447 22.94252 319.0540       0      Si
## 358  66.27740 29.72928 27.81131 319.7047       1      Si
## 359  69.54801 29.41927 26.52709 312.7800       1      No
## 360  65.15605 24.27635 28.32927 325.0995       0      Si
## 361  67.39781 32.43455 35.22939 327.1442       0      Si
## 362  69.91904 32.20505 27.95329 315.0712       1      No
## 363  65.85306 26.54884 26.53424 304.4293       1      No
## 364  70.38729 40.80578 43.53297 353.9491       1      Si
## 365  64.13026 25.96561 25.50769 308.8434       1      No
## 366  66.11438 31.04447 21.54118 310.0167       0      Si
## 367  69.57530 30.91696 36.71267 341.0009       0      Si
## 368  65.40909 31.34206 26.72981 313.4856       0      No
## 369  65.82415 31.35581 27.72739 316.6033       0      Si
## 370  69.47460 27.77477 30.48400 318.9044       0      No
## 371  64.79414 23.33656 25.82414 304.9744       0      No
## 372  68.95310 28.02290 35.85017 324.8095       0      No
## 373  67.93691 31.04953 26.07497 311.7453       0      No
## 374  66.98113 30.19124 32.17793 326.4708       0      Si
## 375  67.30118 29.70864 31.83157 325.1534       0      Si
## 376  66.48097 35.24810 35.31354 336.8319       1      Si
## 377  66.23317 33.73846 33.26472 328.4840       1      Si
## 378  66.49428 30.60431 29.52872 310.3987       0      No
## 379  68.18722 32.82861 29.25482 323.7943       0      Si
## 380  66.02528 28.39625 31.31908 319.7314       0      No
## 381  67.81468 29.30892 30.70301 323.9040       1      Si
## 382  65.35733 21.49343 26.62116 303.5713       0      No
## 383  67.25129 29.54643 29.56491 324.0108       1      Si
## 384  65.69473 30.89084 32.46265 321.7837       1      No
## 385  66.53564 29.48428 28.15185 311.6304       0      No
## 386  63.17086 28.90609 21.64578 304.7720       0      No
## 387  66.03764 29.28991 28.71604 315.4703       1      No
## 388  68.62979 29.30852 27.69658 320.9672       1      Si
## 389  65.45405 29.14997 21.91907 314.5057       1      Si
## 390  67.56683 31.29487 23.73723 314.9014       1      Si
## 391  68.39707 33.71916 28.82030 329.9708       0      Si
## 392  65.50685 29.91357 27.66495 322.8538       1      Si
## 393  65.45859 31.24216 30.66891 324.5328       0      Si
## 394  69.43351 33.23055 33.17497 323.1329       0      No
## 395  65.18389 30.77234 27.77975 312.0016       0      No
## 396  64.13583 25.56295 32.14580 320.8579       0      No
## 397  67.43420 28.59397 27.48836 311.2537       1      No
## 398  66.01138 27.46737 31.44799 327.1469       0      Si
## 399  67.33194 37.79067 32.16727 339.2167       1      Si
## 400  69.44424 27.75897 32.88062 325.2454       1      Si
## 401  66.40328 32.73075 34.20935 322.9230       1      No
## 402  67.78039 26.44943 29.74926 319.8812       0      Si
## 403  66.11330 30.18743 23.28984 312.4628       0      Si
## 404  63.76442 26.17886 24.93735 310.5896       1      No
## 405  65.27798 28.95256 25.59105 318.7517       0      Si
## 406  70.50239 30.67284 33.02852 323.0978       1      Si
## 407  66.46543 30.42381 28.41058 315.8252       0      No
## 408  70.95853 33.74658 45.61875 347.6133       1      Si
## 409  66.95677 27.86644 34.34289 323.5137       0      No
## 410  67.91163 30.73249 35.21965 323.6623       1      No
## 411  65.81542 28.78217 28.44662 325.8136       0      Si
## 412  64.39975 27.35603 30.03160 326.3388       1      Si
## 413  67.01770 34.16009 36.51459 331.1608       1      Si
## 414  70.82637 30.32732 33.05428 334.8114       1      Si
## 415  69.66628 32.78489 37.42481 341.7736       1      Si
## 416  66.12617 27.46973 23.44573 312.4063       1      Si
## 417  69.78992 33.34512 38.21023 333.1738       1      Si
## 418  65.76476 29.58757 28.61123 311.8320       1      No
## 419  63.89539 29.15553 25.12664 317.0987       0      Si
## 420  66.09681 27.47282 24.57563 306.4417       0      No
## 421  66.51691 29.55804 36.98920 336.8754       1      Si
## 422  70.11508 29.23059 32.19231 320.5372       1      No
## 423  72.55858 30.75986 34.06183 327.9791       0      Si
## 424  68.66343 32.92779 33.87163 332.0920       1      Si
## 425  67.84455 25.26338 32.20148 326.2829       1      Si
## 426  67.72826 30.21499 32.02920 323.1622       0      Si
## 427  66.49572 24.85123 26.71216 310.1076       0      No
## 428  64.54199 30.49364 29.11400 313.8883       0      No
## 429  64.63642 32.48595 28.80279 334.4725       1      Si
## 430  70.66630 31.53001 35.70423 328.3100       0      Si
## 431  69.97215 27.30205 32.53043 317.0810       1      No
## 432  67.19773 28.22874 27.96275 320.3673       0      Si
## 433  64.11855 26.03792 22.19327 307.0040       0      No
## 434  68.70996 30.07941 30.90294 323.6728       1      Si
## 435  66.67029 27.58309 29.06251 307.4765       1      No
## 436  66.25022 30.83019 26.41568 316.8947       0      Si
## 437  65.65406 27.12027 28.15916 322.0986       1      Si
## 438  66.22496 25.92496 23.66577 300.5305       1      No
## 439  64.16059 25.00523 20.77680 303.6908       1      No
## 440  62.00905 29.56874 24.08008 310.3519       0      No
## 441  68.85687 29.44111 28.23306 315.4042       1      No
## 442  66.13797 22.32421 20.00195 297.7006       1      No
## 443  62.71654 25.34817 25.29011 311.9600       0      No
## 444  66.42435 25.81720 30.91623 319.5630       1      No
## 445  66.89481 26.05688 18.66025 310.7599       1      Si
## 446  66.55192 30.38309 29.14155 310.4599       1      No
## 447  67.18330 29.84698 28.07915 314.7016       1      No
## 448  70.38030 33.83905 33.87453 327.9364       0      Si
## 449  64.13871 27.76602 25.46435 301.4484       0      No
## 450  68.62499 32.89461 41.42269 334.0346       1      Si
## 451  67.01129 30.18252 31.28367 314.5645       1      No
## 452  67.35414 26.23311 28.86630 312.6091       1      No
## 453  69.42811 35.76588 32.05269 331.1787       0      Si
## 454  65.87392 29.16910 32.48712 326.6108       1      Si
## 455  66.57620 28.38834 26.76754 313.1956       1      No
## 456  67.86381 28.81657 32.63439 323.0550       0      Si
## 457  69.48795 31.87146 30.78924 332.1234       1      Si
## 458  67.12499 30.83648 37.23001 331.7960       0      Si
## 459  65.15264 30.07212 23.87023 316.3287       0      Si
## 460  65.84055 30.24819 32.78782 312.9886       1      No
## 461  68.09069 35.45674 38.61500 340.8559       1      Si
## 462  71.91526 33.18470 33.73788 327.3973       1      Si
## 463  66.03327 32.65676 25.28490 315.5066       1      Si
## 464  68.50522 26.52931 26.53669 306.9712       0      No
## 465  64.10826 26.08243 21.03585 300.2427       1      No
## 466  65.60643 28.83425 29.38246 314.2840       1      No
## 467  68.65284 34.51297 27.85779 324.3246       0      Si
## 468  68.64987 28.84541 33.01058 320.0368       1      No
## 469  68.66836 30.35854 33.66134 312.9909       1      No
## 470  67.50801 31.18096 34.31250 323.2730       0      No
## 471  68.48807 32.38432 33.09322 330.0171       0      Si
## 472  65.16954 28.40288 24.09552 312.3612       0      Si
## 473  69.74754 32.52692 34.59184 326.3295       1      Si
## 474  67.51010 29.93514 38.90934 322.6903       0      No
## 475  65.49813 32.97716 31.72681 315.2141       0      No
## 476  70.19361 34.39399 33.46533 333.3450       0      Si
## 477  66.97279 27.94414 34.01626 307.0109       0      No
## 478  67.85284 31.80259 36.49730 334.6524       0      Si
## 479  66.33493 31.43167 34.74890 322.7718       1      No
## 480  64.39520 32.45172 27.69487 327.6873       1      Si
## 481  64.99531 28.87219 27.98876 321.6764       1      Si
## 482  70.53619 32.47441 36.57797 327.4681       0      Si
## 483  64.03936 28.66621 21.57471 315.1203       1      Si
## 484  70.04910 39.49299 39.41341 346.4758       1      Si
## 485  64.55957 27.73225 27.37933 320.5771       0      Si
## 486  65.55075 28.53126 28.02980 311.9099       1      No
## 487  68.04762 28.07185 30.77361 318.0522       0      No
## 488  63.76261 25.26371 20.87311 304.0255       1      No
## 489  63.63459 29.01131 29.97383 324.3494       1      Si
## 490  69.61731 30.34161 30.20600 322.4434       1      Si
## 491  63.42933 33.11109 25.63230 317.8678       0      Si
## 492  68.02188 32.45959 32.58248 328.4442       0      Si
## 493  65.69962 27.32765 27.77164 316.8588       1      Si
## 494  62.12251 27.76422 22.83982 308.5518       1      No
## 495  65.15240 27.18248 27.35217 309.1350       1      No
## 496  68.03899 31.36541 34.13046 331.4195       1      Si
## 497  65.18814 29.62366 20.83881 314.8713       1      Si
## 498  67.51834 31.77844 32.53089 323.3783       0      Si
## 499  68.93372 32.04011 37.63910 332.8172       1      Si
## 500  67.68392 32.07817 32.62918 321.6353       0      No
## 501  65.51407 25.97315 26.50100 309.9433       0      No
## 502  69.30492 31.34006 25.33306 318.4599       0      Si
## 503  64.23440 29.02335 25.79688 311.0386       0      No
## 504  66.94796 27.12211 23.28035 314.8118       1      Si
## 505  64.32846 30.34931 29.01691 319.7979       1      Si
## 506  65.68742 29.84704 26.57612 314.9990       0      No
## 507  68.20118 31.95739 34.91266 329.0943       1      Si
## 508  68.39618 27.30009 29.52871 312.1763       0      No
## 509  66.82279 32.81598 29.83599 321.3016       0      Si
## 510  66.77904 32.21118 30.92790 334.6223       1      Si
## 511  66.40402 25.39292 24.14452 308.0638       1      No
## 512  66.14554 31.25214 25.93142 317.3388       1      Si
## 513  68.63682 33.04777 34.45678 333.5523       0      Si
## 514  65.75575 27.41827 28.02900 313.8245       1      No
## 515  66.44829 26.49301 17.84038 298.1151       1      No
## 516  67.80259 30.71812 38.30935 329.8731       0      Si
## 517  61.87350 30.57216 29.83134 331.7514       1      Si
## 518  68.35314 33.23125 33.89463 325.7949       1      Si
## 519  66.91543 28.45994 21.54576 306.9141       0      No
## 520  68.56772 29.34593 37.97542 328.3699       1      No
## 521  63.93609 30.06678 25.35234 309.5234       1      No
## 522  66.10439 27.56689 27.97353 310.2567       0      No
## 523  65.52149 33.28575 25.45313 319.9598       0      Si
## 524  61.97944 22.82240 15.03649 291.6788       1      No
## 525  66.88737 33.38099 43.74508 336.7173       1      Si
## 526  68.54390 30.50267 29.17172 316.5363       1      No
## 527  64.51542 29.25465 30.52951 316.9084       1      No
## 528  65.98189 29.82920 23.84225 313.7286       0      Si
## 529  69.20557 28.81775 32.25579 317.5470       0      No
## 530  66.35441 32.87215 31.96291 322.2218       0      Si
## 531  69.39227 34.50151 36.95069 337.0068       1      Si
## 532  66.93476 30.81219 29.74172 313.5534       1      No
## 533  66.23277 28.12068 27.54526 312.2036       1      No
## 534  67.32164 26.70882 23.75449 308.9702       1      No
## 535  69.49170 31.65541 28.21811 318.5950       1      Si
## 536  66.68577 27.36054 32.15398 311.9572       1      No
## 537  66.97224 27.49903 31.52956 325.0926       1      Si
## 538  65.79672 30.51424 34.34945 327.2857       1      Si
## 539  69.44869 33.31930 34.97302 325.9348       0      Si
## 540  69.19184 31.06595 36.23726 327.0091       1      Si
## 541  63.12883 31.22747 20.77483 307.5462       1      No
## 542  66.42323 26.38288 30.02292 312.5956       0      No
## 543  69.22254 34.78634 35.11037 329.8591       1      Si
## 544  66.01600 29.39622 23.64147 311.5171       1      No
## 545  66.86412 30.01902 41.01159 330.1233       1      No
## 546  64.32765 29.17566 25.80159 321.4832       1      Si
## 547  66.99444 26.10810 23.89917 312.1486       0      Si
## 548  65.77219 29.73139 27.18170 305.4290       1      No
## 549  65.95829 29.10160 26.05139 310.2497       1      No
## 550  67.54278 31.65615 31.78936 328.0474       1      Si
## 551  69.68205 26.46152 36.60233 324.1934       1      No
## 552  70.15497 37.39540 35.89374 343.0231       0      Si
## 553  69.06708 29.58146 31.83376 319.5035       1      No
## 554  64.13675 27.79042 26.05491 319.8333       1      Si
## 555  70.54930 33.80404 41.77709 347.2833       1      Si
## 556  70.38151 30.68575 37.82676 324.2741       1      No
## 557  64.07766 34.16489 29.11761 328.2308       0      Si
## 558  68.05570 26.26395 28.49519 308.5624       1      No
## 559  69.25371 34.40222 36.76729 331.9363       0      Si
## 560  64.44552 22.18003 17.93130 293.7687       1      No
## 561  67.36076 27.94441 29.63249 322.0304       1      Si
## 562  67.02608 29.70616 26.68604 315.6108       1      Si
## 563  67.94382 36.30208 29.77153 335.4776       1      Si
## 564  67.71082 28.93622 25.81449 312.5060       1      No
## 565  64.21226 27.23220 23.56985 311.7129       0      Si
## 566  67.33559 30.91698 22.83577 312.2232       1      Si
## 567  67.26031 31.40697 35.46232 327.9126       0      Si
## 568  65.37225 24.99690 23.88324 309.8119       0      No
## 569  68.56769 34.17417 36.36979 330.1182       1      Si
## 570  67.32825 35.53194 35.01561 334.4122       0      Si
## 571  64.83686 30.26915 30.93030 329.4699       1      Si
## 572  69.13223 26.51104 32.52172 313.5508       1      No
## 573  66.42731 24.07671 26.16218 313.5603       1      No
## 574  66.66593 31.47148 27.57052 311.9046       1      No
## 575  64.84465 24.42718 25.75127 307.9222       0      No
## 576  63.42287 29.05805 23.81298 322.3020       0      Si
## 577  65.23744 31.61927 33.71052 329.1855       0      Si
## 578  66.86661 29.10941 31.85595 316.4996       1      No
## 579  66.58096 27.66650 32.38892 325.5532       1      Si
## 580  63.51303 34.09929 26.76232 331.0771       1      Si
## 581  66.50639 26.03076 29.61533 310.5241       0      No
## 582  67.29563 27.56507 36.74206 328.8624       1      Si
## 583  66.05993 27.41584 29.20993 320.6071       1      Si
## 584  64.43544 31.45106 31.39429 311.6861       1      No
## 585  68.58241 34.24978 35.13386 330.4062       1      Si
## 586  66.51981 28.46606 31.32682 328.4489       1      Si
## 587  66.98664 28.34687 30.28297 320.9998       1      Si
## 588  64.42373 25.92550 28.53968 308.7999       0      No
## 589  66.92164 34.64459 31.96780 331.9726       0      Si
## 590  70.85322 32.96383 35.31669 322.4832       1      No
## 591  68.59352 29.34075 29.64273 330.7478       1      Si
## 592  68.91508 27.67295 33.58501 328.2776       1      Si
## 593  67.88974 31.41938 37.93727 322.2734       1      No
## 594  64.66927 30.78378 23.77505 316.9595       1      Si
## 595  70.57069 31.20681 25.75509 312.3107       0      No
## 596  68.03959 35.00796 33.40897 333.1150       0      Si
## 597  67.91548 31.36760 35.82635 330.9748       1      Si
## 598  66.82311 24.68332 29.03917 309.1137       1      No
## 599  65.42522 27.40618 25.57449 311.0392       1      No
## 600  64.49616 29.09145 21.91470 304.9343       1      No
## 601  64.40048 26.98674 21.89457 300.5967       0      No
## 602  68.43453 29.78288 32.12457 325.8697       1      Si
## 603  67.17103 30.81486 29.51105 320.7129       0      Si
## 604  64.93253 29.79518 26.02533 315.8074       0      Si
## 605  64.60640 27.14553 26.34816 311.3421       1      No
## 606  67.29449 26.93955 34.87341 320.1175       0      No
## 607  66.46342 29.80708 30.32613 319.2147       0      No
## 608  66.23866 30.48344 30.06075 318.7166       1      No
## 609  66.51626 24.68992 20.06335 300.3099       1      No
## 610  66.18399 28.57596 24.79913 316.8759       1      Si
## 611  71.79794 29.79619 33.79986 315.4508       0      No
## 612  68.12430 30.84571 34.79038 325.6356       1      Si
## 613  63.57009 28.47309 25.09440 307.8012       0      No
## 614  68.25608 25.11541 24.06810 302.0263       0      No
## 615  69.33778 31.32173 32.50078 326.1699       0      Si
## 616  67.41728 31.21002 29.13099 318.4154       1      Si
## 617  69.09560 28.84485 34.35842 321.5045       1      No
## 618  67.25738 28.71971 26.61773 324.1556       0      Si
## 619  66.87659 29.03405 24.44719 309.9389       1      No
## 620  68.24752 30.46554 34.57710 320.5921       1      No
## 621  65.71353 28.07919 25.84142 312.8599       1      No
## 622  70.39338 31.29195 33.40904 326.0514       0      Si
## 623  70.54842 28.08578 35.43081 327.1475       0      Si
## 624  66.80342 31.47317 29.07022 318.9920       1      Si
## 625  68.24428 31.50877 31.62933 323.9951       1      Si
## 626  66.29774 31.89115 25.58843 317.1448       0      Si
## 627  69.32424 35.24125 35.95667 331.5396       1      Si
## 628  64.87715 30.48719 27.15305 310.1959       0      No
## 629  66.98611 28.85275 25.33120 317.0952       0      Si
## 630  65.14085 25.58680 28.52848 305.4430       1      No
## 631  66.95297 25.22230 29.64643 323.2671       1      Si
## 632  69.36832 35.49943 40.59567 340.1236       1      Si
## 633  67.17923 28.12982 31.06418 314.2329       0      No
## 634  67.90226 26.94935 32.57875 322.4254       0      Si
## 635  65.97838 28.32390 31.26239 315.4431       1      No
## 636  65.83879 27.79585 22.79679 311.6862       1      Si
## 637  64.96171 32.33191 30.38690 322.7211       0      Si
## 638  68.44785 28.82544 36.60112 328.0170       0      Si
## 639  68.03972 27.73026 30.63545 316.4378       1      No
## 640  67.19670 34.65860 36.18994 326.1230       0      No
## 641  70.48687 33.28012 36.36436 332.0708       0      Si
## 642  69.09921 32.95183 34.64057 332.1349       0      Si
## 643  64.54450 31.38244 28.26097 314.7421       1      No
## 644  66.97755 34.89369 32.60784 326.0003       0      Si
## 645  63.25928 24.89819 18.62149 304.0119       1      No
## 646  70.38446 39.11634 34.35843 343.2707       1      Si
## 647  67.73657 31.39926 31.53602 332.8785       1      Si
## 648  70.46231 32.90051 41.41096 341.0968       1      Si
## 649  68.21442 35.47751 32.88859 333.0998       1      Si
## 650  71.41176 33.33699 39.43010 325.9834       0      No
## 651  65.74479 26.77831 28.29542 314.1983       1      No
## 652  66.33870 31.65906 34.90160 335.3252       1      Si
## 653  66.05578 30.87118 25.93890 321.0643       0      Si
## 654  63.95818 25.59017 15.78516 301.7126       1      No
## 655  67.29880 32.23737 33.86479 332.1403       1      Si
## 656  64.48509 25.50521 17.28157 288.7985       1      No
## 657  70.88089 36.20063 39.26693 333.6409       0      Si
## 658  65.38531 31.21012 29.02352 326.2389       0      Si
## 659  66.47912 32.45349 28.79905 322.3735       1      Si
## 660  65.99851 31.48573 33.76305 317.8537       0      No
## 661  67.78629 33.18010 33.24383 329.9470       0      Si
## 662  65.29783 28.79073 30.95316 318.5531       0      No
## 663  67.35003 28.87788 33.41060 317.7379       0      No
## 664  69.46956 29.21461 37.52152 324.8539       0      No
## 665  64.82328 26.75996 30.14612 315.5103       0      No
## 666  65.61217 28.06752 20.53959 316.2628       0      Si
## 667  66.43976 31.47551 28.28070 319.9952       1      Si
## 668  64.69149 29.90381 30.82334 322.4147       1      Si
## 669  68.93581 34.14112 31.22764 332.4869       1      Si
## 670  71.08954 33.02296 36.83492 336.4776       1      Si
## 671  65.51430 28.38463 30.40840 307.9759       1      No
## 672  66.29610 29.97808 29.06387 319.1710       1      Si
## 673  64.92135 27.97880 32.41698 316.4045       0      No
## 674  65.02270 28.92880 31.60134 326.9486       0      Si
## 675  68.41850 27.77158 27.76123 325.7766       1      Si
## 676  68.05844 34.31700 36.36483 328.4584       0      Si
## 677  65.67036 29.64557 19.80853 301.5231       1      No
## 678  67.75021 29.91170 38.51388 323.5238       0      No
## 679  68.21533 30.40572 33.32052 327.0615       1      Si
## 680  67.98244 31.18542 22.67465 307.1620       1      No
## 681  63.56664 25.57259 18.43077 303.2064       1      No
## 682  63.69293 28.83013 23.08961 307.3858       1      No
## 683  68.32480 32.68395 32.39407 319.7640       1      No
## 684  69.60261 29.12910 28.88672 310.8668       1      No
## 685  66.45016 30.47705 33.75671 325.9100       1      Si
## 686  67.13936 28.53709 27.87555 312.6465       0      No
## 687  65.45500 26.53574 29.67022 319.3121       1      Si
## 688  69.02912 24.66896 30.43010 310.9386       1      No
## 689  66.92460 28.86949 29.14692 311.9765       1      No
## 690  66.23402 26.01455 28.75609 308.2076       1      No
## 691  66.93577 28.46286 25.80195 311.7107       0      No
## 692  68.09016 32.60342 34.08066 326.5285       0      Si
## 693  69.99533 30.94010 36.71229 342.3975       1      Si
## 694  64.29315 28.58236 26.22755 316.9251       0      Si
## 695  69.76715 30.91114 33.29071 318.5931       1      No
## 696  62.64885 26.72119 27.20097 321.8108       1      Si
## 697  67.97118 32.13175 27.42151 322.4176       1      Si
## 698  69.80034 32.16704 33.79457 329.8872       1      Si
## 699  63.24443 26.78852 30.53630 324.2814       1      Si
## 700  66.71068 31.98095 33.95590 324.4397       0      Si
## 701  69.52510 31.75522 40.23397 340.1064       0      Si
## 702  69.45215 27.69954 31.88922 322.2462       1      Si
## 703  65.49522 28.73001 25.71128 312.0448       1      No
## 704  65.04924 23.09568 24.03795 303.5991       1      No
## 705  65.57671 29.83720 22.88238 319.6501       1      Si
## 706  67.62962 32.26440 31.61017 328.7486       1      Si
## 707  65.53854 26.88637 21.47132 310.4601       1      Si
## 708  64.48055 29.80768 32.10303 326.0211       1      Si
## 709  66.90356 32.74935 28.89468 325.0438       0      Si
## 710  66.79422 29.33207 28.49406 317.1343       0      No
## 711  67.65979 32.78052 33.31821 327.7492       0      Si
## 712  63.19021 31.59902 28.19361 312.1195       0      No
## 713  70.89663 32.60133 36.43743 335.2307       1      Si
## 714  66.61324 25.37633 23.29044 303.7789       0      No
## 715  64.26567 28.51876 23.94065 307.3036       0      No
## 716  69.09660 30.54374 31.61564 324.6196       0      Si
## 717  66.55094 28.73974 24.80363 316.3370       1      Si
## 718  69.00602 27.07916 32.12113 323.4782       1      Si
## 719  71.76807 32.15487 34.66212 334.5740       1      Si
## 720  68.92210 30.85461 32.76996 320.3755       0      No
## 721  68.27461 33.90278 38.03431 327.5892       1      No
## 722  67.04167 30.68917 30.61447 320.4218       0      Si
## 723  69.92752 25.41911 31.17461 315.2718       1      No
## 724  67.90304 30.32579 27.42987 316.4883       1      Si
## 725  67.51306 29.56511 36.49604 334.1788       1      Si
## 726  70.49769 27.13544 26.04479 321.1075       0      Si
## 727  67.83942 34.45080 34.47116 334.8058       1      Si
## 728  67.04791 27.82613 25.05478 320.0825       1      Si
## 729  62.44850 22.20367 14.18187 290.7947       0      No
## 730  65.22906 28.16335 28.69320 316.5671       0      No
## 731  68.29827 25.96263 26.40611 316.2636       1      Si
## 732  64.58601 27.90243 26.38144 302.2963       0      No
## 733  65.71569 22.57257 26.04062 312.0558       0      No
## 734  66.80450 29.70048 35.22541 320.9102       1      No
## 735  68.02429 33.00789 31.19902 321.7717       0      Si
## 736  72.25919 33.18829 34.12459 325.4672       1      Si
## 737  64.12748 31.09591 34.77513 324.9322       1      Si
## 738  70.68663 28.20255 37.21868 327.7644       1      No
## 739  66.51677 26.44769 26.04182 309.3987       1      No
## 740  66.89669 30.96053 33.05509 324.1516       0      Si
## 741  70.14865 26.56876 29.01918 313.5476       1      No
## 742  69.15357 30.73919 33.02892 325.1493       0      Si
## 743  66.62655 30.60813 30.99323 322.5989       1      Si
## 744  66.98041 29.90898 25.54694 309.2369       1      No
## 745  68.02964 29.99491 29.31038 321.6099       0      Si
## 746  68.86517 30.40313 33.57823 331.0980       1      Si
## 747  67.68689 34.52733 36.48749 329.4536       1      Si
## 748  68.09565 28.54629 27.18476 319.6845       0      Si
## 749  68.45080 33.17307 39.29871 332.4580       1      Si
## 750  68.92577 34.78793 34.70356 327.1824       0      Si
## 751  66.82865 28.45661 30.03904 318.1878       0      No
## 752  65.95150 33.37765 27.17691 319.3121       1      Si
## 753  65.88621 29.91939 33.55361 326.2824       1      Si
## 754  66.03121 20.92882 27.67806 302.1254       0      No
## 755  68.71071 31.50939 32.45617 325.4492       0      Si
## 756  67.98654 30.66666 35.33900 323.6551       1      No
## 757  71.63474 29.38480 33.09221 310.0574       1      No
## 758  66.92667 31.52801 31.27688 324.2329       1      Si
## 759  68.36998 25.27306 31.00372 307.9839       0      No
## 760  66.14778 27.74967 38.29337 324.4409       1      No
## 761  65.00395 33.63784 27.66791 325.7848       1      Si
## 762  68.76955 40.35149 41.79419 349.8699       1      Si
## 763  65.08986 31.72547 26.54652 324.1781       1      Si
## 764  62.80328 27.72530 25.98258 315.2428       0      Si
## 765  64.51642 28.45630 25.63621 315.6949       1      Si
## 766  67.76339 29.62252 25.46553 306.9367       0      No
## 767  70.24220 30.87650 32.95938 327.4531       0      Si
## 768  67.24824 33.02097 36.34155 325.7536       0      No
## 769  64.17126 24.87888 18.79091 295.0811       1      No
## 770  66.76494 29.92908 29.45106 319.9097       1      Si
## 771  68.30040 30.09799 32.17605 326.1134       0      Si
## 772  67.58902 28.97670 25.14548 309.2789       0      No
## 773  66.06010 29.79064 24.17129 315.1610       1      Si
## 774  68.83792 30.53063 37.08017 316.4013       1      No
## 775  67.32540 30.98407 27.97873 318.2834       0      Si
## 776  64.21860 26.84226 26.81371 321.4019       1      Si
## 777  66.59580 29.27479 33.44460 318.1071       0      No
## 778  66.83340 25.35809 28.03467 305.5876       0      No
## 779  70.53720 33.74601 32.51980 328.7572       0      Si
## 780  66.58885 35.39537 33.56074 338.6062       0      Si
## 781  66.92960 27.13193 25.96257 315.1917       0      Si
## 782  62.66587 29.31085 21.73038 312.5183       1      Si
## 783  67.77708 25.45570 32.71209 320.5629       0      No
## 784  66.25921 32.30773 27.50045 321.3447       0      Si
## 785  66.44858 28.48142 26.11209 318.9553       0      Si
## 786  63.73955 25.58481 25.40056 310.7526       0      No
## 787  67.96931 25.41097 31.02112 319.6352       1      No
## 788  69.08667 33.83578 25.09425 314.7426       1      Si
## 789  65.57422 30.45516 33.36145 324.8144       1      Si
## 790  66.97754 26.27275 26.84929 318.8153       0      Si
## 791  67.86460 29.32587 32.96949 313.0157       0      No
## 792  63.85396 25.91275 20.38384 302.2925       1      No
## 793  64.05068 27.39238 26.85676 309.9410       1      No
## 794  63.38793 27.14416 23.76218 312.3178       1      Si
## 795  68.09577 31.37712 35.72721 326.3301       1      Si
## 796  64.58673 28.82359 24.39263 307.8878       1      No
## 797  67.63102 25.74283 31.43776 319.3347       0      No
## 798  64.68334 28.66389 23.25744 306.8553       1      No
## 799  65.43882 29.97720 24.98915 308.1299       1      No
## 800  64.99659 30.36704 25.43017 310.4568       1      No
## 801  69.07953 30.71920 34.60555 328.9052       0      Si
## 802  65.20663 30.34776 26.18499 319.7860       1      Si
## 803  69.61596 35.23328 42.74108 343.5063       0      Si
## 804  68.31563 32.42243 29.23919 314.9225       1      No
## 805  65.13603 30.84220 33.66371 331.2475       1      Si
## 806  65.66324 26.51670 31.11964 319.9342       0      No
## 807  66.17626 29.97668 29.65821 318.1257       1      No
## 808  68.79197 31.13246 26.71494 320.3894       1      Si
## 809  67.29248 36.82193 36.76394 342.5891       1      Si
## 810  67.01405 34.93571 38.51554 337.2436       1      Si
## 811  64.88541 31.27468 34.27814 325.8999       1      Si
## 812  68.35307 32.18720 34.37553 336.3833       0      Si
## 813  66.56547 26.39380 26.30963 313.9345       1      No
## 814  68.55698 28.76876 27.70086 311.0612       0      No
## 815  65.59426 29.49915 24.55076 308.5157       0      No
## 816  66.89857 29.34892 26.61910 319.2615       0      Si
## 817  66.36748 31.97631 34.35059 324.7629       1      Si
## 818  66.67219 33.69596 24.44821 315.6769       1      Si
## 819  64.78786 29.69434 23.84475 316.3134       1      Si
## 820  67.46219 32.37500 34.44255 335.0983       1      Si
## 821  68.83058 32.02596 27.59951 318.7496       1      Si
## 822  68.23742 25.38771 28.41453 330.6628       0      Si
## 823  68.20988 28.85318 26.81282 305.8001       1      No
## 824  66.92053 30.29711 25.61656 318.3664       1      Si
## 825  67.38448 29.72828 26.46379 324.5899       0      Si
## 826  66.31245 28.39884 29.99952 320.1659       1      Si
## 827  70.23434 35.21161 32.28176 328.4007       1      Si
## 828  66.77461 29.16927 20.58275 310.8411       1      Si
## 829  66.86471 28.38088 32.36684 319.3957       1      No
## 830  67.76690 28.80364 34.54348 328.1666       1      Si
## 831  64.60334 23.43379 30.70471 318.5242       0      No
## 832  65.24598 30.15533 23.98741 322.1673       0      Si
## 833  69.29600 29.69010 28.22747 312.4425       0      No
## 834  63.99242 23.70040 23.32919 295.2995       0      No
## 835  63.52001 26.81948 23.89061 311.9402       1      Si
## 836  67.72088 32.69924 31.16332 330.3560       0      Si
## 837  64.69312 32.97698 30.69271 332.9003       1      Si
## 838  66.86508 26.60271 28.45328 300.0818       1      No
## 839  66.94463 30.63126 28.83763 329.1163       0      Si
## 840  64.21782 30.18378 27.49621 318.4762       0      Si
## 841  67.01524 29.01855 28.34203 317.3620       1      Si
## 842  65.42853 31.72867 33.89007 332.3599       1      Si
## 843  67.82779 27.21617 29.71018 316.7530       1      No
## 844  67.17567 29.47369 28.90339 308.0648       1      No
## 845  67.82371 31.96399 34.06345 323.4593       1      No
## 846  66.95343 32.71244 29.18393 312.3278       1      No
## 847  67.19695 31.36426 30.60764 319.7523       0      No
## 848  67.69704 35.66547 32.45171 324.0093       0      Si
## 849  67.99035 28.66199 31.47213 321.4738       1      Si
## 850  66.17552 28.68328 26.63418 316.1891       0      Si
## 851  66.55659 27.23888 29.96966 316.9349       0      No
## 852  67.62947 30.68614 38.08379 325.2903       0      No
## 853  67.86330 27.95280 26.90554 324.5864       1      Si
## 854  64.99382 31.32996 28.45344 319.1745       0      Si
## 855  63.94589 26.69399 29.51392 314.9593       1      No
## 856  68.55973 32.60749 34.11964 329.4075       1      Si
## 857  69.25666 32.40150 29.81313 324.8324       1      Si
## 858  70.52823 34.64184 33.43142 323.3846       0      No
## 859  64.18280 29.41585 23.58689 315.6945       1      Si
## 860  69.21625 27.01798 37.53696 325.4019       1      No
## 861  68.87298 32.16586 34.02753 323.6319       1      No
## 862  70.00454 34.99422 38.62682 327.9668       1      No
## 863  66.76968 24.46159 22.04311 306.6793       1      No
## 864  69.35583 32.33835 34.58256 322.2822       0      No
## 865  65.99320 27.74400 30.86685 318.5682       0      No
## 866  69.33364 30.99610 30.40332 309.0045       1      No
## 867  66.46282 28.79535 30.69750 325.9761       1      Si
## 868  64.75933 29.28097 33.34359 326.8174       1      Si
## 869  66.80823 30.92871 27.93285 316.6327       1      No
## 870  72.02332 38.09104 45.66409 355.2446       0      Si
## 871  66.70459 23.99755 29.46432 311.6499       0      No
## 872  64.87769 33.65860 35.77185 339.0901       0      Si
## 873  69.91994 36.00212 37.99623 342.1012       0      Si
## 874  67.44054 25.10183 26.26069 308.3562       1      No
## 875  64.48268 23.88567 20.05566 301.3325       0      No
## 876  66.40128 31.01194 31.88066 329.3348       1      Si
## 877  61.63049 23.01840 20.80514 295.2961       0      No
## 878  67.56650 36.50962 33.20764 329.8917       1      Si
## 879  67.86742 29.36302 21.74958 307.7596       1      No
## 880  67.08827 31.08298 35.03637 341.3543       1      Si
## 881  68.60899 35.19771 39.84897 345.4144       1      Si
## 882  68.23295 30.99289 30.99769 318.2740       0      No
## 883  65.73283 33.48234 23.30479 315.8159       0      Si
## 884  65.06839 26.39378 34.35129 319.8066       1      No
## 885  69.32327 26.43684 35.06031 322.5861       0      No
## 886  70.00057 29.25001 31.32607 332.9415       0      Si
## 887  69.90974 33.89974 34.62632 326.0983       0      Si
## 888  65.99597 31.67713 33.07086 324.6375       0      Si
## 889  68.08904 33.02046 35.98226 321.1942       1      No
## 890  67.28373 28.27554 31.89463 312.0939       1      No
## 891  65.27543 30.55934 30.76559 317.7810       0      No
## 892  65.01885 32.30763 26.88504 326.4014       1      Si
## 893  70.59857 37.51895 34.65054 335.2537       0      Si
## 894  67.35742 31.51786 29.83801 319.2253       1      Si
## 895  70.25070 28.83035 34.59190 320.1826       1      No
## 896  64.61432 32.38639 32.07063 320.2415       0      No
## 897  69.19193 35.54672 36.14887 325.7231       1      No
## 898  67.22536 27.20127 31.90400 323.9962       1      Si
## 899  64.37241 30.05774 21.04340 305.0418       0      No
## 900  65.39098 27.37193 32.13956 317.0771       1      No
## 901  67.91034 32.14941 31.63830 323.3818       0      Si
## 902  68.96110 34.78938 37.39996 341.7936       0      Si
## 903  63.80610 26.56797 22.89280 300.5569       1      No
## 904  67.93660 29.75799 31.65067 325.9965       1      Si
## 905  67.18866 23.57206 17.26964 289.9509       1      No
## 906  66.17264 33.08480 34.89649 339.3988       0      Si
## 907  68.98528 33.27509 30.54228 327.0215       1      Si
## 908  68.98585 33.03334 36.03975 337.4474       0      Si
## 909  67.26311 29.37995 31.59493 321.3476       0      Si
## 910  67.01477 31.80148 34.25213 321.2630       1      No
## 911  65.09200 25.07509 27.34519 309.9670       1      No
## 912  67.40285 28.33194 24.87250 309.2099       1      No
## 913  67.90724 24.83604 25.38782 311.1553       1      No
## 914  65.48867 30.43626 28.69705 312.8998       0      No
## 915  66.18483 31.05764 30.40023 321.9270       1      Si
## 916  64.77537 28.17410 34.22242 320.6012       0      No
## 917  71.27545 32.50275 33.81286 325.8476       1      Si
## 918  65.60872 31.96440 32.54926 322.2724       0      No
## 919  70.51272 34.13732 33.03618 336.1752       0      Si
## 920  67.44530 25.19172 27.88852 315.3779       1      No
## 921  62.08767 24.94625 13.87302 294.3731       1      No
## 922  64.84530 27.10931 26.15522 308.7935       0      No
## 923  63.03220 27.23163 18.62329 305.5705       1      Si
## 924  65.49648 29.94278 25.24348 305.3712       1      No
## 925  65.34068 30.26449 28.01758 320.5537       0      Si
## 926  67.50644 31.78847 29.51350 322.3378       1      Si
## 927  66.28479 28.80740 24.67300 315.2433       0      Si
## 928  63.52921 28.02038 22.32539 302.6941       1      No
## 929  66.07824 26.24358 23.72577 320.4409       1      Si
## 930  66.83675 31.44220 30.93991 318.4017       1      No
## 931  65.84909 29.51376 29.23746 314.5360       1      No
## 932  65.50177 30.77227 30.43056 315.9611       1      No
## 933  66.97372 32.34275 32.04850 325.2276       1      Si
## 934  66.05190 26.19506 26.38798 312.8922       1      No
## 935  67.51284 31.25854 32.40284 331.2993       1      Si
## 936  67.91875 24.63364 20.69560 311.4080       0      Si
## 937  66.23344 32.51766 35.41240 325.6215       1      No
## 938  68.24273 29.30366 26.91209 314.1706       1      No
## 939  66.47464 32.24307 38.01085 329.3725       0      Si
## 940  69.41556 26.93640 37.32914 332.6427       1      Si
## 941  66.92447 29.87046 27.53343 312.2952       0      No
## 942  66.34048 25.41921 19.18070 302.2491       1      No
## 943  69.20368 32.00423 33.87725 330.0055       1      Si
## 944  70.99411 30.33221 39.50636 324.6214       1      No
## 945  68.83363 30.63392 32.20964 327.0998       0      Si
## 946  68.07239 31.08340 30.94417 319.1490       0      No
## 947  67.01824 29.36737 25.49002 325.1917       1      Si
## 948  60.50098 27.36806 24.88923 313.7437       0      Si
## 949  68.29237 29.28472 24.32949 310.9174       0      No
## 950  64.77565 27.01239 26.69635 319.9422       0      Si
## 951  67.58033 28.63544 23.63843 313.3200       0      Si
## 952  64.06250 30.76751 20.28310 315.6814       1      Si
## 953  66.97107 29.63214 27.49768 313.5252       1      No
## 954  69.04145 29.91449 33.75260 317.6133       1      No
## 955  66.08458 27.81921 23.76446 307.0486       0      No
## 956  66.17363 28.11481 31.02966 318.0846       1      No
## 957  66.88312 31.06345 31.00311 334.3977       1      Si
## 958  68.91482 29.97498 32.00012 316.0488       1      No
## 959  63.93697 25.82978 19.30145 307.5768       0      Si
## 960  65.90328 29.57407 29.45064 315.5669       0      No
## 961  67.87731 35.49506 34.94025 332.5668       1      Si
## 962  66.06898 32.55603 39.49376 335.6202       1      Si
## 963  66.24130 28.96906 23.69585 318.4073       1      Si
## 964  66.10752 31.26102 32.27258 330.6542       1      Si
## 965  64.13228 23.82619 25.34491 306.8523       1      No
## 966  71.64538 30.44579 31.88180 318.4829       0      No
## 967  70.38017 28.92481 37.41983 323.5349       1      No
## 968  69.03119 31.36312 34.55906 340.0912       1      Si
## 969  67.98763 25.80102 29.27414 306.3897       1      No
## 970  64.98137 29.68729 24.84705 309.9782       1      No
## 971  66.66892 31.77032 27.92315 325.1639       1      Si
## 972  68.24058 28.43640 27.71633 307.0929       1      No
## 973  62.59370 26.92535 20.95109 300.0420       0      No
## 974  71.06447 30.62458 30.71697 323.5693       1      Si
## 975  67.53903 30.50723 29.01645 312.8906       1      No
## 976  65.25751 29.73409 25.34779 304.0084       1      No
## 977  66.32329 25.24861 26.35082 308.8190       1      No
## 978  65.62469 22.07819 26.33425 300.1748       1      No
## 979  67.00622 29.73061 31.62134 320.9386       1      No
## 980  68.50776 30.66185 33.24112 318.0760       0      No
## 981  65.86744 29.65058 26.36817 313.1361       1      No
## 982  67.45617 27.69443 22.06630 311.8560       0      Si
## 983  64.93045 28.25571 26.70554 312.8933       1      No
## 984  70.34029 32.98208 38.53282 336.1952       1      Si
## 985  65.83997 29.96401 27.56316 324.9924       0      Si
## 986  68.60847 28.78709 36.07035 329.3432       1      Si
## 987  66.29969 30.15208 30.60669 320.0077       0      Si
## 988  66.34954 29.48276 29.94939 308.8707       1      No
## 989  70.35683 28.75118 29.18935 312.6318       1      No
## 990  68.24502 34.91533 26.86669 318.2787       1      Si
## 991  66.50946 28.49194 28.76360 310.3747       1      No
## 992  66.47263 27.42581 21.29415 306.7382       1      No
## 993  65.58825 29.86701 28.14137 315.7103       1      No
## 994  65.15189 24.07161 21.96297 303.2308       1      No
## 995  68.53905 34.57773 35.70771 331.2938       1      Si
## 996  70.02903 28.35341 37.22945 327.4614       0      No
## 997  69.62932 31.98886 29.98818 318.4965       0      No
## 998  65.14514 29.35476 29.10309 317.7610       1      No
## 999  69.11046 32.66572 29.81070 328.1133       0      Si
## 1000 67.87817 32.82945 32.19648 336.1679       1      Si

\["Si~ aborto" = 1, "NO~ aborto" = 0\]

Asignación

Paso 1

## Análisis univariado

univariable_edad <- glm(abortos ~ Edad, family = binomial, data = dfa)
summary(univariable_edad)
## 
## Call:
## glm(formula = abortos ~ Edad, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6631  -1.1963   0.8754   1.0875   1.6301  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -12.25316    2.19569  -5.581 2.40e-08 ***
## Edad          0.18565    0.03279   5.663 1.49e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.2  on 999  degrees of freedom
## Residual deviance: 1344.6  on 998  degrees of freedom
## AIC: 1348.6
## 
## Number of Fisher Scoring iterations: 4
univariable_dap <- glm(abortos ~ dap, family = binomial, data = dfa)
summary(univariable_dap)
## 
## Call:
## glm(formula = abortos ~ dap, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1759  -1.0355   0.4722   0.9586   1.9955  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -10.59004    0.86737  -12.21   <2e-16 ***
## dap           0.36175    0.02913   12.42   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.2  on 999  degrees of freedom
## Residual deviance: 1168.6  on 998  degrees of freedom
## AIC: 1172.6
## 
## Number of Fisher Scoring iterations: 4
univariable_rto <- glm(abortos ~ rto, family = binomial, data = dfa)
summary(univariable_rto)
## 
## Call:
## glm(formula = abortos ~ rto, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7848  -1.1724   0.8005   1.0574   1.6658  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.99243    0.41843  -7.152 8.58e-13 ***
## rto          0.10626    0.01388   7.655 1.93e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.2  on 999  degrees of freedom
## Residual deviance: 1314.0  on 998  degrees of freedom
## AIC: 1318
## 
## Number of Fisher Scoring iterations: 4
univariable_clolA <- glm(abortos ~ clolA, family = binomial, data = dfa)
summary(univariable_clolA)
## 
## Call:
## glm(formula = abortos ~ clolA, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4107  -0.6139   0.1504   0.5980   2.5297  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -77.92453    4.87198  -15.99   <2e-16 ***
## clolA         0.24468    0.01528   16.02   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.18  on 999  degrees of freedom
## Residual deviance:  812.64  on 998  degrees of freedom
## AIC: 816.64
## 
## Number of Fisher Scoring iterations: 5
univariable_hib <- glm(abortos ~ hibrido, family = binomial, data = dfa)
summary(univariable_hib)
## 
## Call:
## glm(formula = abortos ~ hibrido, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.262  -1.262   1.095   1.095   1.112  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.15492    0.10017   1.547    0.122
## hibrido      0.04271    0.12953   0.330    0.742
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.2  on 999  degrees of freedom
## Residual deviance: 1378.1  on 998  degrees of freedom
## AIC: 1382.1
## 
## Number of Fisher Scoring iterations: 3

Paso 2

Modelo multivariado

model1 <- glm(abortos ~ Edad + dap + hibrido + rto + clolA, family = binomial, data = dfa)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model1)
## 
## Call:
## glm(formula = abortos ~ Edad + dap + hibrido + rto + clolA, family = binomial, 
##     data = dfa)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -1.712e-03  -2.000e-08   2.000e-08   2.000e-08   1.456e-03  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.884e+04  1.711e+06  -0.046    0.963
## Edad        -1.361e+01  5.725e+02  -0.024    0.981
## dap         -1.260e+01  8.870e+02  -0.014    0.989
## hibrido      7.409e+00  1.436e+03   0.005    0.996
## rto         -3.373e+02  7.310e+03  -0.046    0.963
## clolA        2.827e+02  6.146e+03   0.046    0.963
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1.3782e+03  on 999  degrees of freedom
## Residual deviance: 7.9035e-06  on 994  degrees of freedom
## AIC: 12
## 
## Number of Fisher Scoring iterations: 25
model2 <- glm(abortos ~ Edad + dap + rto + clolA, family = binomial, data = dfa) # Elimiando la variable con el pvalue más alto
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model2)
## 
## Call:
## glm(formula = abortos ~ Edad + dap + rto + clolA, family = binomial, 
##     data = dfa)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -1.793e-03  -2.000e-08   2.000e-08   2.000e-08   1.769e-03  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -81753.15 1773349.09  -0.046    0.963
## Edad            -12.75     541.67  -0.024    0.981
## dap             -12.59    1222.95  -0.010    0.992
## rto            -349.43    7555.00  -0.046    0.963
## clolA           292.77    6392.67   0.046    0.963
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1.3782e+03  on 999  degrees of freedom
## Residual deviance: 8.7141e-06  on 995  degrees of freedom
## AIC: 10
## 
## Number of Fisher Scoring iterations: 25
model3 <- glm(abortos ~ Edad + rto + clolA, family = binomial, data = dfa) # Elimiando la variable con el pvalue más alto
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model3)
## 
## Call:
## glm(formula = abortos ~ Edad + rto + clolA, family = binomial, 
##     data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.341   0.000   0.000   0.000   2.096  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -17601.265   9708.152  -1.813   0.0698 .
## Edad            -2.968      1.670  -1.777   0.0756 .
## rto            -75.747     41.843  -1.810   0.0703 .
## clolA           62.872     34.680   1.813   0.0698 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.183  on 999  degrees of freedom
## Residual deviance:   10.638  on 996  degrees of freedom
## AIC: 18.638
## 
## Number of Fisher Scoring iterations: 18
modelfinal <- glm(abortos ~  rto + clolA, family = binomial, data = dfa) # Elimiando la variable con el pvalue más alto
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelfinal)
## 
## Call:
## glm(formula = abortos ~ rto + clolA, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.761   0.000   0.000   0.000   1.896  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -4675.199   1311.436  -3.565 0.000364 ***
## rto           -20.058      5.611  -3.575 0.000350 ***
## clolA          16.530      4.635   3.566 0.000362 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.18  on 999  degrees of freedom
## Residual deviance:   26.54  on 997  degrees of freedom
## AIC: 32.54
## 
## Number of Fisher Scoring iterations: 14

\[Variables~ del~ modelo~ final: rto~ y~ CloA\]

pred<-modelfinal$fitted.values
hist(pred)

delta.coef <- abs((coef(model2)-coef(model1)[-c(4)])/coef(model1)[-c(4)])
round(delta.coef, 3)
## (Intercept)        Edad         dap         rto       clolA 
##       0.037       0.063       0.001       0.036       0.036
delta.coef1 <- abs((coef(model3)-coef(model2)[-c(3)])/coef(model2)[-c(3)])
round(delta.coef1, 3)
## (Intercept)        Edad         rto       clolA 
##       0.785       0.767       0.783       0.785
delta.coef2 <- abs((coef(modelfinal)-coef(model3)[-c(2)])/coef(model3)[-c(2)])
round(delta.coef2, 3)
## (Intercept)         rto       clolA 
##       0.734       0.735       0.737

\[\small Ninguna\ eliminación\ desestabiliza\ el\ modelo.\]

library(lmtest)
## Warning: package 'lmtest' was built under R version 4.1.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.1.2
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
test1 <- lrtest(model1, model2)
test2 <- lrtest(model2, model3)
test1
## Likelihood ratio test
## 
## Model 1: abortos ~ Edad + dap + hibrido + rto + clolA
## Model 2: abortos ~ Edad + dap + rto + clolA
##   #Df      LogLik Df Chisq Pr(>Chisq)
## 1   6 -3.9518e-06                    
## 2   5 -4.3570e-06 -1     0     0.9993
test2
## Likelihood ratio test
## 
## Model 1: abortos ~ Edad + dap + rto + clolA
## Model 2: abortos ~ Edad + rto + clolA
##   #Df  LogLik Df  Chisq Pr(>Chisq)   
## 1   5  0.0000                        
## 2   4 -5.3192 -1 10.638   0.001108 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\[\small Se\ puede\ pasar\ del\ modelo\ con\ 5\ variables\ al\ de\ 4,\ pero\ no\ del\ de\ 4\ al\ de\ 3.\]

anova(model3, model2, test = 'Chisq')
## Analysis of Deviance Table
## 
## Model 1: abortos ~ Edad + rto + clolA
## Model 2: abortos ~ Edad + dap + rto + clolA
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       996     10.638                        
## 2       995      0.000  1   10.638 0.001108 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\[ \small Teniendo\ en\ cuenta\ los\ resultados,\ la\ variable\ hibrido\ se\ puede\ eliminar.\] ## Paso 3

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#dfa %>% 
  #group_by(abortos) %>%
  #summarise(no_rows = length(abortos))


Edad<-dfa$Edad
dap <-dfa$dap
rto <-dfa$rto
cloA<-dfa$clolA



par(mfrow = c(2,2))
scatter.smooth(Edad, pred, cex = 0.5) 
scatter.smooth(dap, pred, cex = 0.5)
scatter.smooth(rto, pred, cex = 0.5)
scatter.smooth(cloA, pred, cex = 0.5)

\[No~ hay~ linearidad~ en~ las~ variables,ya~ que~ los~ valores~ predichos~ son~ de~ 0~ o~ 1.\] ## Analizando las variables del modelo final

Cloa <- cut(dfa$clolA, breaks = 5)
tabla <- table(Cloa, dfa$abortos)
prop.table(tabla)
##            
## Cloa           No    Si
##   (289,302] 0.039 0.000
##   (302,315] 0.248 0.047
##   (315,329] 0.167 0.312
##   (329,342] 0.001 0.170
##   (342,355] 0.000 0.016
rtO <- cut(dfa$rto, breaks = 5)
tabla1 <- table(rtO, dfa$abortos)
prop.table(tabla1)
##              
## rtO              No    Si
##   (13.8,20.4] 0.023 0.006
##   (20.4,27]   0.144 0.115
##   (27,33.6]   0.217 0.248
##   (33.6,40.2] 0.070 0.162
##   (40.2,46.8] 0.001 0.014

\[La\ mayoría\ de\ abortos\ se\ da\ para~ contenidos~ de~ clorofila~ A~ medios~, mientras~ que~ los~ No~ abortos~ son~ mayores~ en~ rangos~ dónde~ el~ contenido~ de~ clorofila~ es~ bajo~ \\ Por~ otro~ lado,~ los~ abortos~ y~ no~ abortos~ alcanzan~ su~ máximo~ número~ cuándo~ los~ valores~ de~ rto~ son~ medios.\]

length(dfa$clolA)
## [1] 1000
probabilidades <- modelfinal$fitted.values
prob <- ifelse(probabilidades < 0.5, 0, 1)
table(prob, dfa$abortos)
##     
## prob  No  Si
##    0 452   3
##    1   3 542
media_c <- mean(dfa$clolA)
colores_c <- ifelse(dfa$clolA < media_c, 'blue', 'green')
plot(modelfinal$fitted.values, cex = (dfa$clolA * 0.003), pch = 19, col = colores_c)
title("Valores ajustados para cloA")
abline(h = 0.5, cex = 1.2, col = 'red')

media_d <- mean(dfa$rto)
colores_d <- ifelse(dfa$rto < media_d, 'blue', 'green')
plot(modelfinal$fitted.values, cex = (dfa$rto * 0.03), pch = 19, col = colores_c)
title("Valores ajustados para rto")
abline(h = 0.5, cex = 1.2, col = 'red')

\[De~ acuerdo~ a~ las~ variables~ que~ llegaron~ al~ modelo~ final~ (CloA~ y~ rto~),~ se~ observa~ una~ tendencia~ en~ dónde~ los~ valores~ por~ debajo~ de~ la~ media~ se~ encuentran~ relacionados~ en~ mayor~ cantidad~ a~ el~ evento~ de~ "NO aborto",\\ es~ decir~ que~ cuándo~ el~ valor~ de~ CloA~ y~ rto~ sea~ mayor~ a~ la~ media~ probablemente~ haya~ aborto,~ sin~ embargo,~ hay~ valores~ que~ se~ salen~ de~ esa~ presunción~ por~ lo~ que~ se~ puede~ concluir~ que~ no~ son~ variables~ totalmente~ discrimiantorias\] ## Paso 4- Estudiando las interacciones del modelo

model_inter1 <- glm(abortos ~ rto + clolA + rto:clolA, family = binomial, data = dfa)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model_inter1)
## 
## Call:
## glm(formula = abortos ~ rto + clolA + rto:clolA, family = binomial, 
##     data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.569   0.000   0.000   0.000   2.143  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -5.486e+03  1.709e+03  -3.210  0.00133 **
## rto         -1.595e+01  6.439e+00  -2.477  0.01326 * 
## clolA        1.932e+01  6.007e+00   3.217  0.00130 **
## rto:clolA   -2.126e-02  1.798e-02  -1.182  0.23710   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.18  on 999  degrees of freedom
## Residual deviance:   25.15  on 996  degrees of freedom
## AIC: 33.15
## 
## Number of Fisher Scoring iterations: 15

\[No~ existe~ interacción~ entre~ rto~ y~ cloA,~ así~ que~ no~ es~ necesario~ analizarlas~ de~ manera~ conjunta\]

dfa<- dfa|>
  mutate(rto_c = ifelse(rto > mean(rto), 'mayor', 'menor'), 
         cloA_c = ifelse(clolA < mean(clolA), 'baja', 'alta'))
print('rto abortos')
## [1] "rto abortos"
rto_abortos <- table(dfa$rto_c, dfa$abortos); rto_abortos
##        
##          No  Si
##   mayor 176 330
##   menor 279 215
print('cloA abortos')
## [1] "cloA abortos"
cloa_abortos <- table(dfa$cloA_c, dfa$abortos);cloa_abortos
##       
##         No  Si
##   alta  79 418
##   baja 376 127
print("rto aciertos:")
## [1] "rto aciertos:"
((330+279)/1000)*100
## [1] 60.9
print("cloA aciertos:")
## [1] "cloA aciertos:"
((418+376)/1000)*100
## [1] 79.4

\[cloA~ es~ una~ mejor~ variable~ para~ describir~ los~ abortos~ respecto~ a~ rto~ según~ los~ datos~ observados~,\\ para~ las~ gráficas~ del~ modelo~ ese~ comportamiento~ fue~ menos~ evidente\]

model_inter2=glm(abortos ~rto + clolA + rto:clolA, family = 'binomial', data = dfa)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model_inter2)
## 
## Call:
## glm(formula = abortos ~ rto + clolA + rto:clolA, family = "binomial", 
##     data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.569   0.000   0.000   0.000   2.143  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -5.486e+03  1.709e+03  -3.210  0.00133 **
## rto         -1.595e+01  6.439e+00  -2.477  0.01326 * 
## clolA        1.932e+01  6.007e+00   3.217  0.00130 **
## rto:clolA   -2.126e-02  1.798e-02  -1.182  0.23710   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.18  on 999  degrees of freedom
## Residual deviance:   25.15  on 996  degrees of freedom
## AIC: 33.15
## 
## Number of Fisher Scoring iterations: 15

\[El~ modelo~ con~ todas~ las~ interacciones~ no~ muestra~ valores~ estadísticamente~ significativos~ \]

model_inter <- glm(abortos ~ rto + cloA , family = binomial, data = dfa)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(model_inter)
## 
## Call:
## glm(formula = abortos ~ rto + cloA, family = binomial, data = dfa)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.761   0.000   0.000   0.000   1.896  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -4675.199   1311.436  -3.565 0.000364 ***
## rto           -20.058      5.611  -3.575 0.000350 ***
## cloA           16.530      4.635   3.566 0.000362 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1378.18  on 999  degrees of freedom
## Residual deviance:   26.54  on 997  degrees of freedom
## AIC: 32.54
## 
## Number of Fisher Scoring iterations: 14
lrtest(model_inter,model_inter2)
## Likelihood ratio test
## 
## Model 1: abortos ~ rto + cloA
## Model 2: abortos ~ rto + clolA + rto:clolA
##   #Df  LogLik Df Chisq Pr(>Chisq)
## 1   3 -13.270                    
## 2   4 -12.575  1 1.389     0.2386

\[Observando~ que~ no~ hay~ diferencias,~ se~ toma~ el~ modelo~ más~ simple\\ siguiendo~ el~ proceso~ de~ eliminación~ del~ paso~ 2\]

#Extrayendo la s predicciones de abortos
rta= model_inter2$fitted.values
prop_ab <- rta*100
cat_rto <- cut(dfa$rto,breaks = 4)
cat_cloA <- cut(dfa$clolA,breaks=4)
data_2 <- data.frame(cat_rto, cat_cloA, prop_ab)

tips2 <- data_2 %>% 
  group_by(cat_cloA, cat_rto) %>% 
  summarise(media_prop_abortos = mean(prop_ab))
## `summarise()` has grouped output by 'cat_cloA'. You can override using the
## `.groups` argument.
# Graficando las dos variables
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
tips2$tip_groups
## Warning: Unknown or uninitialised column: `tip_groups`.
## NULL
ggplot(data = tips2) +
  aes(x = cat_rto, y = media_prop_abortos, color = cat_cloA) +
  geom_line(aes(group = cat_cloA))

\[Las~ líneas~ no~ llegan~ a~ coincidir,~ indicando~ la~ ausencia~ de~ interacción\\ La~ clorofila~ más~ alta~ tiene~ mayor~ probabilidad~ de~ aborto,~ manteniendo~ una~ relación~ proporcional~ con~ la~ probabilidad~ de~ aborto.\\ Entre~ mayor~ sea~ la~ cantidad~ de~ clorofila~ y~ el~ valor~ de~ rto~ mayor~ es~ la~ posibilidad~ de~ que~ la~ planta~ aborte\]

Matriz de confusión valores observados de abortos con valores predichos de aborto

library(ResourceSelection)
## Warning: package 'ResourceSelection' was built under R version 4.1.3
## ResourceSelection 0.3-5   2019-07-22
cut_prob <- ifelse(fitted(model_inter) > 0.5, 1, 0)
table(model_inter$y, cut_prob)
##    cut_prob
##       0   1
##   0 452   3
##   1   3 542
hoslem.test(model_inter$y, fitted(model_inter))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  model_inter$y, fitted(model_inter)
## X-squared = 6.0315e-05, df = 8, p-value = 1

\[El~ modelo~ se~ desvía~ en~ tan~ sólo~ 6~ datos~ de~ 1000~ (0,6\%).\\Como~ el~ p.value~ es~ mayor~ a~ 0.05~ no~ hay~ diferencias~ significativas~ entre~ valores~ observados~ y~ predichos\]

Predprob<-predict(model_inter,type="response")
plot(Predprob,jitter(as.numeric(dfa$abortos),0.5), cex=0.5, ylab="Abortos")
abline(v = 0.5, col = 'red')
text(x = 0.8, y = 1.8, 'alta probabilidad de abortos, \n predicha y observada')
text(x = 0.2, y = 1.2, 'alta probabilidad de no abortos, \n predicha y observada')

#library(Deducer)
#rocplot(model2)
#library(lattice)

\[Conclusión:~ El~ modelo~ es~ bueno~ para~ predecir~ abortos~ y~ no~ abortos,~ las~ variables~ que~ más~ peso~ parecen~ tener~ según~ los~ modelos~ y~ datos~ generados~ son~ rto~ y~ clorofila~\\ en~ dónde~ contrario~ a~ lo~ que~ es~ normalmente~ en~ la~ realidad~, el~ aumento~ en~ la~ clorofila~ y~ el~ rto~ representa~ una~ mayor~ probabilidad~ de~ aborto\]