library(Seurat)
## Attaching SeuratObject
library(slingshot)
## Loading required package: princurve
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(devtools)
## Loading required package: usethis
library(scater)
## Loading required package: SingleCellExperiment
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
## 
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
## 
##     count
## 
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:dplyr':
## 
##     combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:dplyr':
## 
##     first, rename
## The following object is masked from 'package:base':
## 
##     expand.grid
## Loading required package: IRanges
## 
## Attaching package: 'IRanges'
## The following objects are masked from 'package:dplyr':
## 
##     collapse, desc, slice
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## 
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
## 
##     rowMedians
## The following objects are masked from 'package:matrixStats':
## 
##     anyMissing, rowMedians
## 
## Attaching package: 'SummarizedExperiment'
## The following object is masked from 'package:SeuratObject':
## 
##     Assays
## The following object is masked from 'package:Seurat':
## 
##     Assays
## Loading required package: ggplot2
library(ggplot2)
library(dplyr)
library(SeuratWrappers)
pbmc <- readRDS("/mnt/nectar_volume/home/eraz0001/pbmc_human/pbmc_tutorial_final.rds")
current.cluster.ids <- c(0:8)
new.cluster.ids <- c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T", "B", "CD8 T", "FCGR3A+ Mono", "NK", "DC", "Platelet")
pbmc@meta.data$celltype <- plyr::mapvalues(x = pbmc@meta.data[,"seurat_clusters"], from = current.cluster.ids, to = new.cluster.ids)
DimPlot(pbmc)

epi <- pbmc
sub1 <- subset(epi, cells = rownames(epi@meta.data[epi@meta.data$celltype %in% c("Naive CD4 T", "CD14+ Mono", "Memory CD4 T"), ]))
sub1 <- FindVariableFeatures(sub1, nfeatures = 3000)
sub1 <- ScaleData(sub1)
## Centering and scaling data matrix
sub1 <- RunPCA(sub1)
## PC_ 1 
## Positive:  MALAT1, RPS27A, LTB, CD3D, RPS6, RPL13A, RPS3, RPL3, RPS3A, IL32 
##     CD3E, RPL13, IL7R, RPL10A, AES, TPT1, CD7, CXCR4, RPS5, B2M 
##     BTG1, CD2, RPL19, CD69, ACAP1, RARRES3, STK17A, GIMAP5, AQP3, TRAF3IP3 
## Negative:  TYROBP, CST3, S100A9, LYZ, FCN1, S100A8, LGALS2, FCER1G, FTL, LST1 
##     FTH1, TYMP, LGALS1, AIF1, HLA-DRA, CFD, HLA-DRB1, GSTP1, CTSS, GRN 
##     CD68, GPX1, CD14, HLA-DRB5, PSAP, SAT1, SPI1, MS4A6A, SERPINA1, NPC2 
## PC_ 2 
## Positive:  S100A8, S100A9, S100A12, FTL, JUND, TYROBP, G0S2, AIF1, IL8, LGALS2 
##     LYZ, FOLR3, C5AR1, MALAT1, LST1, FCER1G, MS4A6A, RETN, CST3, FCN1 
##     FTH1, SMCO4, RPL13, TMSB4X, ADM, CD8B, C19orf59, MARC1, IL1B, LINC00937 
## Negative:  B2M, ACTG1, ARHGDIB, MYL12B, UBB, HNRNPA2B1, ENO1, VIM, IL32, RAC2 
##     CLIC1, ANXA1, PSMB9, ACTB, FXYD5, HMGN1, ACTR3, LTB, RAN, PDIA3 
##     ANXA5, CD2, ARPC5, ARL6IP5, GDI2, RARRES3, HNRNPF, DOK2, CD47, SRSF3 
## PC_ 3 
## Positive:  RPL19, RPL13, RPS5, RPL10A, RPS6, NACA, RPL3, C6orf48, RPL7A, S100B 
##     CD8B, RGS10, TPT1, RPS3, RP11-291B21.2, RPL13A, RPS3A, EIF3H, RSL1D1, HLA-DQA2 
##     HLA-DQA1, C1QBP, HSP90AB1, NELL2, TMEM176B, HLA-DMB, REG4, CD7, LILRB2, ALKBH7 
## Negative:  TMSB4X, S100A4, B2M, ALOX5AP, S100A10, IL32, TNFRSF4, TIGIT, CST7, ANXA1 
##     GZMA, SH3BGRL3, KLF6, GZMK, OPTN, S100A11, C12orf75, CLIC1, CCL5, PPP2R5C 
##     S100A6, ACTB, PMAIP1, CCR10, LGALS1, PTTG1, GAPDH, CYBA, CCR6, GALM 
## PC_ 4 
## Positive:  JUNB, ANXA1, LTB, USP10, IL7R, JUN, ALOX5AP, VIM, TNFRSF4, S100A11 
##     MAL, FXYD5, CRIP2, TNFAIP8, CD37, AQP3, DNAJB9, TPT1, KLF6, BIRC3 
##     RP11-403A21.2, IFI44L, CCR6, CD69, SLC2A3, S100A4, TRADD, IL23A, PIM3, NFKBIA 
## Negative:  CCL5, CD8B, GZMK, GZMA, NKG7, CST7, STMN1, MT1E, KIAA0101, MKI67 
##     FXYD2, CTSW, PTTG1, MYBL2, RP11-291B21.2, FABP5, LYAR, RP5-1028K7.2, TK1, ZWINT 
##     TYMS, APOBEC3H, KIFC1, RRM2, CENPM, MAD2L1, CPNE2, SDPR, IFNG, BROX 
## PC_ 5 
## Positive:  S100A12, VIM, FOLR3, GAPDH, IL8, S100A8, RETN, NFE2, TSPO, TALDO1 
##     ID1, S100A9, LAPTM4B, GPX1, RPL19, RPL10A, ALDH1A1, ACTG1, C19orf59, TNNT1 
##     TMEM91, ANG, CD14, PLBD1, MARC1, CEBPD, IER3, HMGB2, SAT2, SMARCD3 
## Negative:  APOBEC3B, APOBEC3A, HLA-DQA2, HLA-DQA1, IFIT1, IFITM3, ABI3, HLA-DPA1, IFIT3, HLA-DPB1 
##     B2M, LY6E, OASL, ISG15, TMSB4X, HES4, MGLL, SPATS2L, GBP1, FCGR3A 
##     WARS, RNF213, MT2A, OAS1, TNFSF10, MALAT1, IFITM2, UBE2L6, TPPP3, IFI6
sub1 <- RunUMAP(sub1, dims = 1:10)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 11:25:32 UMAP embedding parameters a = 0.9922 b = 1.112
## 11:25:32 Read 1663 rows and found 10 numeric columns
## 11:25:32 Using Annoy for neighbor search, n_neighbors = 30
## 11:25:32 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 11:25:32 Writing NN index file to temp file /tmp/RtmpN5YCtD/filea0650584ad9de
## 11:25:32 Searching Annoy index using 1 thread, search_k = 3000
## 11:25:33 Annoy recall = 100%
## 11:25:34 Commencing smooth kNN distance calibration using 1 thread
## 11:25:35 Initializing from normalized Laplacian + noise
## 11:25:35 Commencing optimization for 500 epochs, with 65128 positive edges
## 11:25:38 Optimization finished

Conver seurat to sce

sub_sce1 <- as.SingleCellExperiment(sub1)

Determine cell fate by your own

sub_slingshot1 <- slingshot(sub_sce1, clusterLabels = "celltype", reducedDim = 'UMAP', start.clus="Naive CD4 T", end.clus="Memory CD4 T")
## Using full covariance matrix
t1 <- sub_slingshot1$slingPseudotime_1
t1
##    [1]  6.286284464 10.062236240           NA 10.134710991           NA
##    [6]  2.349435807  0.000000000           NA           NA           NA
##   [11]           NA  8.518430072  4.347636025           NA  3.821501751
##   [16]  2.146858756  1.578136647 10.493762709           NA           NA
##   [21]  9.915373817           NA  4.832079340           NA  1.837395486
##   [26]  7.466313466  5.429324267  1.188507918  1.720021053  9.597668926
##   [31]  5.373385805           NA  2.438091031           NA  0.477805145
##   [36]  7.412518622           NA  8.846064308           NA           NA
##   [41]  2.264842903  2.027697665  2.639144139 10.268591238  7.444462381
##   [46]  2.235091217  9.176919047  8.459727499 10.346054023  0.597424319
##   [51]  4.994513473  9.772304880  1.399303091           NA           NA
##   [56]           NA  9.704230468           NA  3.274219172           NA
##   [61]  2.746157606           NA           NA           NA  2.881555582
##   [66]           NA           NA           NA  6.304330053           NA
##   [71]  2.568274843           NA  1.060642581           NA 10.419783536
##   [76]           NA  1.997054531  4.819373113           NA  0.000000000
##   [81]  4.012087868           NA  6.282910137  4.158600175  1.435955637
##   [86]  1.419539180  6.380969349  8.549610341  3.220641190  1.453069282
##   [91]  4.629914669           NA  0.490296961  8.429061273  1.656188365
##   [96]           NA  6.400868725  1.632353387           NA           NA
##  [101]           NA  7.706132203  1.081556025  0.802041793  7.283253093
##  [106]  8.778442708           NA 10.493762709  1.841983008  8.691184248
##  [111]  3.033065548           NA  7.788152514           NA  4.981592299
##  [116] 10.493762709  4.117517872           NA  6.318942104 10.493762709
##  [121]           NA  1.665525270           NA  4.090644229           NA
##  [126]           NA  1.709026169  0.045150164  0.000000000           NA
##  [131]  4.227699896  4.685798079  0.325061762  3.900922277  1.743269188
##  [136]  6.823867779  6.143129263  9.169182396  2.398806968           NA
##  [141]  8.616496581 10.493762709  3.668653984  8.545568979           NA
##  [146]           NA           NA  7.978921448           NA  0.000000000
##  [151]  1.638344038 10.493762709           NA  9.079640670  8.437930083
##  [156]  7.907488933  5.439294300           NA           NA           NA
##  [161]  3.723524114  5.741522590  2.155277709  0.000000000  9.376001225
##  [166]           NA  7.426657582 10.493762709           NA           NA
##  [171]           NA  3.836443340  6.875035765  7.016355919  1.582665372
##  [176]  2.145944393           NA  8.619925802  9.442650834  1.949104181
##  [181]           NA           NA  9.251498326  6.738221861  8.373884529
##  [186]  8.406797521           NA  7.386971057           NA           NA
##  [191]           NA  2.995309082  9.516055765 10.493762709  2.774828114
##  [196]           NA           NA  2.016648589           NA           NA
##  [201] 10.434416747  0.549042408  0.000000000  1.984701367  8.900710490
##  [206]  2.204813011  1.611889297           NA 10.224899195           NA
##  [211]           NA           NA           NA  1.013654132           NA
##  [216]  2.849189797  2.188141604 10.487994592  9.747750325  2.037381365
##  [221]           NA  6.754642048           NA  3.560995098  1.463129769
##  [226]           NA  6.279399167           NA  9.711503559  2.922652713
##  [231]  9.468722752  0.000000000  3.649812781  1.806274125           NA
##  [236]           NA  8.513238324 10.493762709           NA  1.764173532
##  [241]  2.838895053           NA  8.164353767           NA           NA
##  [246]  0.765922537  6.671815012  7.798824220           NA           NA
##  [251] 10.493762709           NA           NA  0.000000000  4.531078066
##  [256]  0.719064645  9.519252862  1.428347987  8.150123546           NA
##  [261]  9.400145282           NA  0.000000000  9.318993845  0.000000000
##  [266]  2.295851256  7.504392293  1.743511008  1.816561758  8.283333514
##  [271]  2.977432870  5.257482227  9.907136627  0.301411688  2.361946038
##  [276]  0.617025866  7.801425568  9.530639430           NA  0.710104378
##  [281]  1.957923223  0.046476467           NA  9.757241169  6.077960490
##  [286]  5.501687309  4.176352895  9.980734676  6.273152590  7.902965405
##  [291]  2.320111719  2.053228973  8.652451774  7.679446050  2.060847614
##  [296]  0.000000000  4.221938432  2.623347613  0.199233111  6.356593044
##  [301]  0.000000000           NA  7.306274535           NA           NA
##  [306]  5.513551768  1.796860911           NA           NA  3.751711236
##  [311]  7.645827227  7.857823914  9.864244303  1.014920351  0.000000000
##  [316]  8.445803083  6.880700767  3.074367582  9.648633026  5.120335672
##  [321]  8.511855115  3.268713621  8.248060361  3.435659320 10.493762709
##  [326]           NA  2.188392142  8.158523090           NA           NA
##  [331]  7.731343257           NA  9.820913259  8.242623340           NA
##  [336]  0.881550726  1.936700326  3.480836339  1.878768270  1.684318535
##  [341]           NA  6.526448654  0.508786821  9.016101674           NA
##  [346]  8.909362279  6.517787994  0.772798638  0.000000000           NA
##  [351]  8.092862628           NA           NA  8.769913890           NA
##  [356]  5.959629842  7.939455054  1.748913061           NA           NA
##  [361]           NA           NA           NA  7.734023787  2.360876059
##  [366]  2.443882597  0.000000000           NA           NA  8.796582784
##  [371]  3.263820423  2.166811241           NA  1.469861942           NA
##  [376]  2.161432430  0.112271564  4.661170081  3.449941722  1.139782258
##  [381]  8.861682842           NA           NA  1.652594861  4.854752369
##  [386]  2.098453368           NA  8.553335672  0.407574373  8.697387010
##  [391] 10.131571217           NA           NA  1.730639179  8.261083196
##  [396]           NA  7.647601288  5.439294300  2.279024469  6.765057636
##  [401]           NA           NA           NA           NA  7.558544255
##  [406]  4.202035052           NA           NA           NA  8.535447555
##  [411]  8.675594651  7.926292963  7.966624712           NA           NA
##  [416]  6.216231223  2.967486236  7.805915981  6.385419070  1.486832514
##  [421]  0.893663699  8.505790982  2.029582134  1.998567687  1.964088241
##  [426]           NA  7.287504678  2.235994731           NA  7.398820906
##  [431]  0.000000000           NA           NA           NA  6.135595021
##  [436]  2.460720380  8.561204884  9.207020890  9.836304426  7.322270730
##  [441]  0.000000000  0.000000000  7.666581744           NA  5.612957523
##  [446]  9.244129772           NA           NA           NA  9.500067309
##  [451]           NA  9.393476726  6.561830657  9.149055693           NA
##  [456]  3.698609568  8.736281523  1.878109217  7.863350391           NA
##  [461]           NA           NA 10.493762709  6.154537902  2.013819930
##  [466]  8.530833974  8.759200501  5.728989159  1.905296886           NA
##  [471]  7.650561334  5.984781489  8.909362279  9.312860164  0.000000000
##  [476]  7.958853485 10.092226128  4.065063136           NA  8.377856450
##  [481]  5.501687309           NA  2.937816524  5.569947992           NA
##  [486]  1.926810898  8.830662102           NA           NA  2.227289243
##  [491]  6.990474827           NA           NA           NA           NA
##  [496]  2.251734509  1.898637142 10.332070364           NA           NA
##  [501]           NA  0.000000000  3.436326471  7.052126696  7.731999158
##  [506]  0.000000000  3.905250624           NA  2.197159834  6.523806330
##  [511]  0.335789082  3.029770257  9.702465575  7.147348656           NA
##  [516]  7.457258712           NA  0.866633246  2.997241231  3.310306580
##  [521]           NA  9.302209149  1.462779315  9.625674006  0.388082480
##  [526]  7.190695353  0.814624699           NA  0.001610670  1.697656366
##  [531]  7.930681505  4.388405915  0.442966845           NA  6.900794868
##  [536]  8.631376598  9.822509962           NA  2.224270688  2.010517366
##  [541]  8.498368453  0.000000000  1.618848960  2.355466963  0.000000000
##  [546]  0.000000000  0.000000000           NA  7.189170210           NA
##  [551]  6.831818086  2.208472039           NA           NA  7.639421663
##  [556]           NA  8.789417340  2.505288260 10.493762709  8.236352069
##  [561]           NA  8.244385108           NA           NA  0.051448924
##  [566]  8.552793269  7.049797896  2.285082371  8.530289862           NA
##  [571]  6.742479667 10.085482036  8.436564235  3.504148962  0.000000000
##  [576]           NA  1.335306885  2.394819821           NA  2.581041245
##  [581]  8.491660752  3.287125560  2.221035529           NA  5.288838736
##  [586]  8.460971126  8.684723563  0.000000000           NA           NA
##  [591]           NA  1.963132219  9.187416036  7.391053500  5.905850276
##  [596]           NA  5.470107119  5.608178448  9.267518004           NA
##  [601]           NA  1.791427613  5.834832717           NA  0.000000000
##  [606]  4.956979682           NA           NA  7.296933371  1.959243565
##  [611]  6.021570133  2.516204212  1.101656376  1.871981329           NA
##  [616]           NA           NA           NA  6.457979003  8.236858468
##  [621]  6.330401878  0.453263920  8.073910497  2.099823234  0.000000000
##  [626]           NA  3.149286971  1.462779315  1.408769044           NA
##  [631]           NA  5.028673029           NA  8.145817286  1.281091956
##  [636]           NA  5.803014405           NA           NA  8.847128588
##  [641]  3.091097000           NA  0.000000000           NA  0.017995730
##  [646]  8.945121251  7.869874716  5.727900006           NA           NA
##  [651]  9.418312949  0.000000000           NA           NA           NA
##  [656]           NA  6.396530380           NA           NA  9.855957841
##  [661]  0.088606592  1.283622769  7.173834216           NA  5.484243053
##  [666]  9.779336999           NA  3.833603355  6.489927614  2.704024552
##  [671]           NA           NA           NA           NA  1.843610953
##  [676]  6.506240608           NA  0.839817154  3.447799723           NA
##  [681]           NA  7.718485041  1.033052429  2.940666281  1.974267629
##  [686]  2.621240706  7.959371303  7.443504185           NA  2.997803277
##  [691]  2.372660912           NA  7.919336397  1.471230362           NA
##  [696]           NA           NA  7.940094049  7.530528613           NA
##  [701]  0.000000000  6.903408215  2.285494904  9.157035580  8.024392494
##  [706]  6.860806939           NA  0.000000000           NA  8.474913333
##  [711]           NA  2.768701226           NA           NA  6.236969575
##  [716]  6.193265447  6.432283185  8.253008505           NA  4.162357894
##  [721]           NA           NA           NA           NA  9.947297524
##  [726]           NA 10.167486540           NA  6.530763963  7.069076054
##  [731]  8.775983424           NA  0.000000000  0.325172301  3.111402759
##  [736]  5.493942347  8.694163207  5.174517692           NA  3.939349011
##  [741]  6.571328519  9.489660409           NA  0.000000000  1.735548584
##  [746]  6.569458818  8.395296711           NA  8.533456921  6.154950885
##  [751]  6.567503794           NA           NA  9.047332317 10.240862686
##  [756]  5.512780380  8.135508424           NA  6.375747279  5.390721988
##  [761]           NA  6.162740117 10.493762709  3.462687656  7.380260790
##  [766]           NA  2.462270687           NA  9.113047182           NA
##  [771]  1.614973959           NA  5.052996892           NA  8.246316797
##  [776]  1.295968214           NA  2.018919574  6.600896489  8.510776682
##  [781]  8.902893472  8.520249912  6.841003665  2.077968970  2.081739005
##  [786]  0.154837156           NA  9.031798331           NA           NA
##  [791]  0.204396593  7.967826970  7.689985283  2.757311361           NA
##  [796]  6.744213105           NA  0.428114108           NA  8.092862628
##  [801]  8.010041607           NA  4.686900768           NA  0.996101571
##  [806]  1.308619607           NA  7.788152514           NA  3.817139226
##  [811]           NA 10.136150285 10.493762709           NA           NA
##  [816]           NA  6.304330053           NA  0.000000000  8.871316749
##  [821]  9.465544712  7.687629722  0.928591890  0.738165368           NA
##  [826]  1.220399326           NA           NA  4.157887474           NA
##  [831]           NA  0.000000000  8.187076767  2.340907074           NA
##  [836]  0.000000000  5.481546566  8.523986214  4.620177695  8.938085468
##  [841]           NA           NA           NA  5.368444880  7.896820652
##  [846]           NA  1.115821885  8.594482672           NA  2.435278178
##  [851]           NA  5.984781489  5.525914938  9.363724832  4.663931009
##  [856]  8.436564235           NA  2.069400796           NA  4.005655647
##  [861]  1.980921517  8.185387339  0.199406705  2.625450915           NA
##  [866]  7.575071525  8.683291630  7.036551002  2.505613693  6.972312884
##  [871]  9.517867709  0.000000000  8.401926757  4.713182062           NA
##  [876]  1.915562502  4.329887980  6.380098275  7.076080071           NA
##  [881]  2.249289201           NA  0.000000000  6.248282430           NA
##  [886]  8.185387339  5.493205189           NA           NA  6.729735696
##  [891]           NA           NA  3.631715863  8.677958939  2.154832897
##  [896]  4.302693394  2.406266349  7.826089727           NA  3.175316032
##  [901]  9.465650147  9.359955743  4.023603563  7.386810105           NA
##  [906]           NA  5.155798934           NA  9.319027700  7.107986219
##  [911]  3.293005545  3.632250181  5.872801503  2.367972073  3.660889955
##  [916]  0.077835548  7.039132900  0.652340160  0.530608358  5.921408593
##  [921]  0.000000000  0.856492194  2.068918269  8.123044663  7.889769637
##  [926]  7.791574554  8.783651628           NA           NA           NA
##  [931]  8.328680384           NA  9.874797711           NA  3.332459421
##  [936]           NA  7.755648650 10.493762709  9.691650046  1.573962346
##  [941]           NA  2.633128291           NA           NA 10.493762709
##  [946] 10.004916900           NA  9.214264026  1.984701367           NA
##  [951]  3.250481199           NA  7.367601897  8.730816367  2.757564852
##  [956]  1.144833724  7.736340384  3.314711974  0.266128916  4.844093434
##  [961]  6.548556078  7.048994290           NA           NA  5.891000442
##  [966]  9.099841825  2.744577330           NA  1.423807271  2.933069283
##  [971] 10.493762709           NA  0.445176352  9.128771232  9.493897075
##  [976]  1.479520402  1.939440045  8.309400084           NA  2.136725997
##  [981]  1.894859856  9.110416369           NA           NA  2.036041192
##  [986]  1.859647822           NA  9.329896774           NA           NA
##  [991]           NA  9.210069449  9.856798555  7.291257598  9.268836266
##  [996]  7.834463209  2.222742111           NA  4.840001774           NA
## [1001]  4.677173390           NA           NA           NA  3.305602018
## [1006]  5.833255188 10.493762709  0.319122110  2.837083882  8.957219715
## [1011]  0.841222467           NA           NA           NA           NA
## [1016]  0.463271754  1.419297131           NA  0.000000000           NA
## [1021]  8.167509384           NA  1.583041333  9.091174740  2.979208789
## [1026]  2.541775724           NA  0.000000000           NA  0.890784692
## [1031]           NA  7.331942216           NA  0.194866786  9.450374984
## [1036]  5.974066638  8.168963413           NA           NA  7.661357197
## [1041]  7.043080379  0.903458388           NA  5.472488481  1.762017978
## [1046]  2.451562016           NA           NA  1.088377961  8.971773113
## [1051]           NA  1.234637815           NA           NA  1.726654267
## [1056]  9.539873082  9.164168410  0.625452964  6.202611068           NA
## [1061]           NA  8.271385088  7.985966941           NA  8.502610848
## [1066]           NA           NA           NA           NA  9.259892013
## [1071]  5.218142455           NA  7.948943451  0.222636344           NA
## [1076]  9.673494798  7.947313801  4.772742013  5.557925604  1.942295464
## [1081]  0.416204661  2.557997681  9.407161371  4.189059598  0.253801677
## [1086]  6.779306923  0.820322020  1.200571812  9.279187127  6.464191143
## [1091]  2.791869761  4.912944426           NA  2.647225326  0.339617849
## [1096]  1.186878165           NA  8.410044932  7.476806646  3.107201792
## [1101]           NA  0.306369412  0.000000000  4.577969594  2.240020949
## [1106] 10.047946410           NA           NA  2.061281591  6.932024007
## [1111]  1.773716040           NA  8.553335672  5.473215526  2.617904814
## [1116]           NA  3.403907757  2.263427552  1.204097989  1.345587459
## [1121]  0.000000000  6.544079091           NA  6.541541795           NA
## [1126]  7.739422002           NA  9.729600337  1.339955346  6.518607692
## [1131]  9.986442585  9.068245603  4.816210769           NA  0.437181641
## [1136]  2.391144018 10.493762709           NA  3.244804341  0.660572706
## [1141]           NA           NA           NA  1.210712513           NA
## [1146]  0.000000000           NA 10.358286614           NA  5.887909168
## [1151]           NA           NA  9.739877427  7.788152514  6.646210369
## [1156]  6.825215581 10.034961692           NA  0.000000000  0.985793931
## [1161]  7.657507339           NA           NA  8.856707593           NA
## [1166]           NA  1.424616593           NA  8.606462696  3.652621906
## [1171]           NA           NA  0.903716060  7.977507864  9.823595240
## [1176]  7.004435186  8.550442493  8.213445916  4.161541422           NA
## [1181]  7.847082976           NA  0.000000000           NA  0.000000000
## [1186]  9.028666959  9.816717984           NA  8.595772257           NA
## [1191]  3.273554847           NA  1.788159209  8.638751055  9.565558411
## [1196] 10.223167341  0.000000000  5.532267334 10.006686288  3.328463779
## [1201]  2.045407061  7.338855562  7.267920224  2.237832683           NA
## [1206]           NA           NA  1.602825891  8.003668403  2.056734191
## [1211]           NA  2.368227860  2.890383173           NA  1.562598014
## [1216]  8.865102365           NA  0.955951323           NA  8.600159969
## [1221]  1.901577077           NA  9.852239221  1.361857616  0.000000000
## [1226]  0.000000000  7.167841176  4.423422774  5.845608437  8.875982765
## [1231]           NA           NA  1.733688511           NA  6.382264563
## [1236]           NA  0.000000000           NA           NA           NA
## [1241]  1.497273155  9.844994315 10.009136456           NA           NA
## [1246]  6.014201892           NA           NA  3.429913083  0.943177824
## [1251]  0.037169169           NA  4.985927731           NA           NA
## [1256]           NA  2.222742111  7.941966535           NA  4.513488567
## [1261]           NA  2.754095895           NA  9.101618603 10.248495795
## [1266]  5.280506269  2.069400796  8.748609491           NA  2.722579655
## [1271]  0.738237472  7.812217480  0.648855120  2.134237102  1.957923223
## [1276]  0.709180083           NA           NA  5.061114645           NA
## [1281]  2.964208172  6.422170059  5.610124026  9.835717783  7.717852762
## [1286]           NA  3.360451679  2.526801424  8.530833974  1.428295909
## [1291]  0.314561729  7.975555126  5.733947393  8.097657916  5.194891627
## [1296]           NA  5.581114879  0.901325838  2.217636123           NA
## [1301]  8.930180754  4.329336437           NA  1.848893745           NA
## [1306]  8.423226334  7.581719193  0.000000000           NA           NA
## [1311]  3.413247661           NA  0.000000000  9.065778797  8.445803083
## [1316]  0.982236542           NA           NA           NA           NA
## [1321]  0.579256191  7.351629564           NA           NA  1.492858765
## [1326]  6.298646584  1.784520341           NA  9.873371962  0.000000000
## [1331]  9.216841648  5.973767989  0.879298569  8.799369266  3.800523025
## [1336]           NA  6.280622826  8.230512196           NA  7.128205210
## [1341]  1.488055780  5.855234349  2.845389861  1.952160794           NA
## [1346]           NA           NA  1.446397542  2.468112016           NA
## [1351]  8.990194774  7.712338018  2.700348777           NA 10.493762709
## [1356]  7.107742592  9.154291658  8.227036242           NA  4.535000471
## [1361]           NA  0.381063676  7.498985690           NA  1.421453120
## [1366]  1.257713098           NA  5.030499421  8.224247266  8.530833974
## [1371]  2.178635906  2.999233255           NA  4.393877750  0.734170803
## [1376]  4.936225135  0.376833608           NA  5.477340082  2.415564731
## [1381]  3.731308728  8.206796822  3.746836809  6.031548480 10.331569221
## [1386]           NA  0.000000000  6.962673738  7.489202183           NA
## [1391]  1.904914120  8.218636204  9.933279420  9.568095149           NA
## [1396]  2.591763519  1.806274125  3.765813764           NA  8.884393663
## [1401]  3.831806225  5.227563857  5.965142310           NA           NA
## [1406]  3.176934906  0.000000000  6.726202452 10.065083409           NA
## [1411]           NA  3.993259255  5.897707277  1.540426235  9.881839385
## [1416]  5.399103974           NA           NA  3.204993507           NA
## [1421]  2.735812577           NA           NA  1.813007374  5.134722974
## [1426]           NA  5.224392298           NA  6.448470076  3.739684552
## [1431]           NA  8.563259390  3.438899901  7.171390817  1.907334043
## [1436]           NA  8.037654069  2.365547230           NA  0.000000000
## [1441]  7.556232784  1.170467297  9.527254511           NA  1.466218094
## [1446]  7.139321561  0.397609257  0.000000000           NA 10.493762709
## [1451]           NA           NA  7.770534948  9.229332085           NA
## [1456]  8.508470389  7.079061824           NA  7.892382277  5.735622273
## [1461] 10.417086205  4.262610125  7.629989789           NA  0.797579654
## [1466]           NA  2.748751237  6.626338633  8.463652206  2.283733051
## [1471]  9.449512552  7.192718170  8.493345981  6.973388725           NA
## [1476]           NA           NA           NA           NA           NA
## [1481]  8.215812773  0.333970400  3.346750995           NA           NA
## [1486]           NA  5.984781489  1.356511083  0.000000000  1.674755109
## [1491]  5.663599795  2.027717666  9.117785910  2.786995213           NA
## [1496] 10.049362340 10.012706134           NA  7.456959782  3.643763518
## [1501]  8.988166341  7.726488871           NA  2.473532317  8.298903405
## [1506]  9.400283516           NA           NA           NA  8.447692184
## [1511]  0.124579448  8.356803212  2.943264976           NA  7.885957477
## [1516]  5.826830063  7.555576495  1.563033220  4.465128237  9.056243200
## [1521]  3.015227954  3.604547290  0.000000000  8.546617535  8.436564235
## [1526]           NA  7.662870696  7.608901943  5.800438527  7.231536246
## [1531]  6.842118008  1.572729791           NA           NA           NA
## [1536]  0.944374020           NA  2.384208004  9.352020503  5.028654257
## [1541]  2.185667773           NA           NA  9.784663042           NA
## [1546]  2.686274713           NA           NA  0.727578091           NA
## [1551]           NA  7.385523635  9.415364186           NA  7.588050561
## [1556]  9.725209929           NA  4.684879493  1.262467687  0.000000000
## [1561]           NA  1.517421411  6.738669926           NA  8.558918876
## [1566]  0.662876108  0.000000000  9.682285703  5.882961760  5.090140691
## [1571]  1.841376404  2.845120110  7.399527898  3.117997609           NA
## [1576]           NA           NA  6.378764953  7.102585665  2.178597671
## [1581]           NA  0.000000000  9.421625958           NA           NA
## [1586]  5.792628346  1.155387496           NA  2.350308222           NA
## [1591]  2.473532317           NA  9.017065566           NA           NA
## [1596]  9.756660658  6.237882468           NA  4.434770674           NA
## [1601]  8.989155521  0.000000000           NA           NA  8.510081620
## [1606]  7.182100370  0.462669117  1.791427613           NA           NA
## [1611]  5.024881275  8.577309674  8.335498492           NA  7.896797216
## [1616]           NA           NA  0.003606092           NA  3.429913083
## [1621]           NA           NA           NA           NA  3.580113150
## [1626]  7.610716764  9.577638376  5.036022991           NA  1.381531846
## [1631]  0.551233010           NA  0.672769380  8.811928425  9.300657832
## [1636]           NA           NA  0.000000000  9.649836568  2.592839418
## [1641]  7.518453159           NA  1.639225944           NA  6.636758788
## [1646]  2.125953692           NA  9.008071282           NA  1.879368858
## [1651]           NA  4.011719080  9.853883294  7.041398836  1.616168812
## [1656]           NA           NA           NA  3.586421491           NA
## [1661]  9.412019992           NA  2.404561849

Which genes are you interested in?

gene.list <- c("CCR7","LDHB", "S100A9", "LTB", "CD79A")
plot.val1 <- c(3, 0.8, 3, 4.25, 2)
plot.val2 <- c(7, 0.8, 2.75, 2, 2)
loess_data1 <- as.data.frame(sub1@assays$RNA@data[gene.list, ])
loess_data1 <- loess_data1[,order(t1)]
temp1 <- loess_data1
temp1 <- t(temp1)
temp1 <- as.data.frame(temp1)
temp1$index <- 1:nrow(temp1)
temp1$ct <- sub1@meta.data$celltype[order(t1)]
plot.val1 <- c(3, 0.8, 3, 4.25, 2)
test <- c(sort(temp1[, 1])[.80*length(temp1[, 1])],
            +           quantile(temp1[,2], 0.80),
            +           quantile(temp1[,3], 0.80), 
            +           quantile(temp1[,4], 0.80), 
            +           quantile(temp1[,5], 0.80))
 max(temp1[,1])
## [1] 3.371166
plot_list <- list()
j = 1
k=6
for (i in 1:length(gene.list)) {
print(paste(i, gene.list[i], sep = "_"))
 p1 <- ggplot(temp1, aes_string(y = gene.list[i] , x = temp1[, (ncol(temp1) -1)])) + geom_smooth(method = loess) + coord_cartesian(ylim = c(0, plot.val1[i]))
plot_list[[j]] <- p1
j = j + 1
}
## [1] "1_CCR7"
## [1] "2_LDHB"
## [1] "3_S100A9"
## [1] "4_LTB"
## [1] "5_CD79A"
multiplot(plotlist = plot_list, cols = 2)
## Warning: 'multiplot' is deprecated.
## Use 'gridExtra::grid.arrange' instead.
## See help("Deprecated")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'