1. Presentacion de la serie temporal
#carga del archivo fuente
library(dplyr)
library(tidyr)
library(forecast)
library(readxl)
IVAE_03_22 <- read_excel("C:/Users/Familia/Downloads/IVAE_03_22.xlsx",
col_names = FALSE, skip = 6, n_max = 10)
data.ivae<-pivot_longer(data = IVAE_03_22[1,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts<- data.ivae %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts %>%
autoplot(main ="IVAE ENE 2009- MAR 2022",
xlab="Años/Meses",
ylab="Indice")

2. Pronóstico Modelo de Holt Winters (usando Stats y
forecast)
library(forecast)
Yt <-data.ivae.ts
#Estimar el modelo
ModeloHW<-HoltWinters(x=Yt,
seasonal = "multiplicative",
optim.start = c(0.9,0.9,0.9))
ModeloHW
## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
##
## Call:
## HoltWinters(x = Yt, seasonal = "multiplicative", optim.start = c(0.9, 0.9, 0.9))
##
## Smoothing parameters:
## alpha: 0.8472467
## beta : 0
## gamma: 1
##
## Coefficients:
## [,1]
## a 118.3719784
## b 0.1600947
## s1 0.9529095
## s2 1.0192349
## s3 1.0440936
## s4 0.9962326
## s5 1.0009929
## s6 0.9838373
## s7 0.9554392
## s8 1.0145286
## s9 1.0872315
## s10 0.9748891
## s11 0.9626701
## s12 1.0059813
#Generar el pronóstico:
PronosticosHW<-forecast(object = ModeloHW,h = 12,level = c(0.99))
PronosticosHW
## Point Forecast Lo 99 Hi 99
## Apr 2022 112.9503 105.74127 120.1594
## May 2022 120.9752 111.24635 130.7040
## Jun 2022 124.0929 112.43504 135.7507
## Jul 2022 118.5640 105.82229 131.3057
## Aug 2022 119.2908 105.11081 133.4708
## Sep 2022 117.4038 102.17086 132.6368
## Oct 2022 114.1680 98.13733 130.1986
## Nov 2022 121.3911 103.35822 139.4240
## Dec 2022 130.2643 110.05064 150.4779
## Jan 2023 116.9603 97.75887 136.1617
## Feb 2023 115.6485 95.71905 135.5779
## Mar 2023 121.0126 71.31613 170.7091
#Gráfico de la serie original y del pronóstico.
PronosticosHW %>% autoplot(main ="Modelo Holt Winters",
xlab="Años/Meses",
ylab="Indice")

3. Usando Forecast (Aproximación por Espacios de los Estados
ETS )
library(forecast)
#Generar el pronóstico:
PronosticosHW2<-hw(y = Yt,
h = 12,
level = c(0.99),
seasonal = "multiplicative",
initial = "optimal")
PronosticosHW2
## Point Forecast Lo 99 Hi 99
## Apr 2022 111.9184 102.94778 120.8891
## May 2022 119.3664 107.94336 130.7895
## Jun 2022 122.8422 109.43169 136.2528
## Jul 2022 118.4498 104.08648 132.8131
## Aug 2022 120.0189 104.13415 135.9036
## Sep 2022 118.4260 101.52944 135.3226
## Oct 2022 114.3087 96.88911 131.7282
## Nov 2022 120.2837 100.84531 139.7221
## Dec 2022 127.9776 106.17022 149.7849
## Jan 2023 114.4558 93.98669 134.9249
## Feb 2023 113.5923 92.35405 134.8306
## Mar 2023 119.3883 96.12773 142.6488
#Gráfico de la serie original y del pronóstico.
PronosticosHW2 %>% autoplot(main ="Modelo Holt Winters",
xlab="Años/Meses",
ylab="Indice")
