Diamonds_Data <- read.csv("D:/Downloads/Diamonds_Data.csv")
View(Diamonds_Data)
attach(Diamonds_Data)
names(Diamonds_Data)
## [1] "Carat" "Cut"
boxplot(Carat ~ Cut)

# Ho - Carat is same for all Cut
aov(Carat ~ Cut)
## Call:
##    aov(formula = Carat ~ Cut)
## 
## Terms:
##                      Cut Residuals
## Sum of Squares  1.282353  2.452907
## Deg. of Freedom        3        56
## 
## Residual standard error: 0.209289
## Estimated effects may be unbalanced
Anova1 <- aov(Carat ~ Cut)
summary(Anova1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Cut          3  1.282  0.4275   9.759 2.81e-05 ***
## Residuals   56  2.453  0.0438                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
attributes(Anova1)
## $names
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "contrasts"     "xlevels"       "call"          "terms"        
## [13] "model"        
## 
## $class
## [1] "aov" "lm"
Anova1$coefficients
## (Intercept)     CutGood    CutIdeal  CutPremium 
##   0.6866667  -0.2266667  -0.3233333  -0.3846667
summary(Anova1)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Cut          3  1.282  0.4275   9.759 2.81e-05 ***
## Residuals   56  2.453  0.0438                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(Anova1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Carat ~ Cut)
## 
## $Cut
##                      diff        lwr         upr     p adj
## Good-Fair     -0.22666667 -0.4290223 -0.02431100 0.0223331
## Ideal-Fair    -0.32333333 -0.5256890 -0.12097767 0.0004937
## Premium-Fair  -0.38466667 -0.5870223 -0.18231100 0.0000310
## Ideal-Good    -0.09666667 -0.2990223  0.10568900 0.5887892
## Premium-Good  -0.15800000 -0.3603557  0.04435567 0.1764082
## Premium-Ideal -0.06133333 -0.2636890  0.14102233 0.8529311
plot(TukeyHSD(Anova1))

plot(TukeyHSD(Anova1), las=1)

kruskal.test(Carat ~ Cut)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Carat by Cut
## Kruskal-Wallis chi-squared = 15.78, df = 3, p-value = 0.001258