Si la serie resulta tener un patrón estacional, está técnica permite realizar predicciones extrapolando los componentes de la serie temporal observada.
library(forecast)
library(readxl)
serie.ivae <- read_excel("C:/Users/geole/OneDrive/Documentos/Econometria/IVAE_SLV_EMA.xlsx", col_types = c("skip","numeric"), skip=5)
serie.ivae.ts <- ts(data = serie.ivae,
start = c(2009, 1),
frequency = 12)
Yt <-serie.ivae.ts
print(serie.ivae)
## # A tibble: 147 x 1
## IMAE
## <dbl>
## 1 86.7
## 2 80.8
## 3 87.2
## 4 83.9
## 5 91.4
## 6 93.5
## 7 86.4
## 8 86.7
## 9 87.6
## 10 85.3
## # ... with 137 more rows
library(forecast)
#Estimar el modelo
ModeloHW<-HoltWinters(x = Yt,
seasonal = "multiplicative",
optim.start = c(0.9,0.9,0.9))
print(ModeloHW)
## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
##
## Call:
## HoltWinters(x = Yt, seasonal = "multiplicative", optim.start = c(0.9, 0.9, 0.9))
##
## Smoothing parameters:
## alpha: 0.8408163
## beta : 0
## gamma: 1
##
## Coefficients:
## [,1]
## a 117.0799442
## b 0.1600306
## s1 0.9502255
## s2 1.0233274
## s3 1.0518154
## s4 0.9900276
## s5 1.0007537
## s6 0.9807088
## s7 0.9600206
## s8 1.0149628
## s9 1.0915423
## s10 0.9796752
## s11 0.9584676
## s12 0.9994880
#Generar el pronóstico:
library(forecast)
PronosticosHW<-forecast(object = ModeloHW,h = 12,level = c(0.95))
print(PronosticosHW)
## Point Forecast Lo 95 Hi 95
## Apr 2021 111.4044 105.94952 116.8593
## May 2021 120.1386 112.77972 127.4976
## Jun 2021 123.6515 114.83356 132.4694
## Jul 2021 116.5461 107.01096 126.0813
## Aug 2021 117.9689 107.30373 128.6341
## Sep 2021 115.7630 104.33417 127.1918
## Oct 2021 113.4746 101.36814 125.5810
## Nov 2021 120.1312 106.57272 133.6897
## Dec 2021 129.3698 114.12877 144.6109
## Jan 2022 116.2681 101.78191 130.7543
## Feb 2022 113.9046 98.99575 128.8134
## Mar 2022 118.9394 81.61739 156.2614
PronosticosHW %>% autoplot()
library(forecast)
#Generar el pronóstico:
PronosticosHW2<-hw(y = Yt,
h = 12,
level = c(0.95),
seasonal = "multiplicative",
initial = "optimal")
print(PronosticosHW2)
## Point Forecast Lo 95 Hi 95
## Apr 2021 107.4928 99.59377 115.3918
## May 2021 115.3370 106.85846 123.8155
## Jun 2021 115.6946 107.18632 124.2029
## Jul 2021 109.6301 101.56399 117.6962
## Aug 2021 112.2047 103.94477 120.4646
## Sep 2021 110.2284 102.10923 118.3476
## Oct 2021 107.9393 99.98348 115.8951
## Nov 2021 114.4306 105.99022 122.8710
## Dec 2021 122.6459 113.59234 131.6994
## Jan 2022 108.5830 100.56060 116.6054
## Feb 2022 107.1239 99.20182 115.0460
## Mar 2022 113.1678 104.79016 121.5455
#Gráfico de la serie original y del pronóstico.
library(forecast)
PronosticosHW2 %>% autoplot()