Pengenalan R untuk Data Spasial
Packages
## Warning: package 'gstat' was built under R version 4.0.5
Data : Meuse Dataset
## [1] "meuse"
## 'data.frame': 155 obs. of 14 variables:
## $ x : num 181072 181025 181165 181298 181307 ...
## $ y : num 333611 333558 333537 333484 333330 ...
## $ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
## $ copper : num 85 81 68 81 48 61 31 29 37 24 ...
## $ lead : num 299 277 199 116 117 137 132 150 133 80 ...
## $ zinc : num 1022 1141 640 257 269 ...
## $ elev : num 7.91 6.98 7.8 7.66 7.48 ...
## $ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
## $ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
## $ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
## $ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
## $ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
## $ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...
## starting httpd help server ... done
# polygons
data(meuse.riv)
meuse.1st <- list(Polygons(list(Polygon(meuse.riv)),"meuse.riv"))
meuse.sr <- SpatialPolygons(meuse.1st)
plot(meuse.sr, col="grey")
title("polygons")# grid
data(meuse.grid)
coordinates(meuse.grid) <- c("x","y")
meuse.grid <- as(meuse.grid, "SpatialPixels")
image(meuse.grid, col="grey")# gabung grid(daerah) dengan points(titik) dan tepinya polygon
image(meuse.grid, col="lightgrey") #grid (daerahnya)
plot(meuse.sr, col="grey", add=TRUE) #polygon di tepinya
plot(meuse, add=TRUE)Menggunakan Data Eksternal
Data pertumbuhan penduduk
# import data
datapop <- read.csv('http://bit.ly/Popgrowth2000', header=T, sep=',')
# dimensi data
dim(datapop)## [1] 293 5
## 'data.frame': 293 obs. of 5 variables:
## $ City : chr "Abidjan" "Adana" "Addis Ababa" "Adelaide" ...
## $ Country : chr "Cote d'Ivoire" "Turkey" "Ethiopia" "Australia" ...
## $ Latitude : num 5.31 37 9.02 -34.93 23.04 ...
## $ Longitude : num -4.01 35.33 38.75 138.6 72.57 ...
## $ PopGrowth_2000: int 1929000 1041000 2424000 1092000 2954000 1582000 3339000 2562000 1135000 1147000 ...
# lihat data dalam tabel/dataframe
View(datapop)
# Plot the Data points
coordinates(datapop) <- c("Longitude", "Latitude")
plot(datapop)#memberi warna dan ketebalan titiknya
size <- datapop$PopGrowth_2000/sum(datapop$PopGrowth_2000)
plot(datapop, pch=20, col="steelblue", cex=size*100)## Warning: package 'rworldmap' was built under R version 4.0.3
## ### Welcome to rworldmap ###
## For a short introduction type : vignette('rworldmap')
data(package="rworldmap")
data(countriesCoarse, envir=environment(), package="rworldmap")
# Struktur data
#str(countriesCoarse)
# Peta dunia
plot(countriesCoarse)## Warning in wkt(obj): CRS object has no comment
## Warning: package 'raster' was built under R version 4.0.4
r <- raster(datapop)
nc <- rasterize(coordinates(datapop), r, fun=mean, background=NA)
plot(nc)
plot(countriesCoarse, add=TRUE)Peta Pulau Jawa
1. Load package
## Warning: package 'rgdal' was built under R version 4.0.4
## rgdal: version: 1.5-23, (SVN revision 1121)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.2.1, released 2020/12/29
## Path to GDAL shared files: C:/Users/ASUS/OneDrive/Dokumen/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ_VERSION: 721]
## Path to PROJ shared files: C:/Users/ASUS/OneDrive/Dokumen/R/win-library/4.0/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.4-5
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
## Overwritten PROJ_LIB was C:/Users/ASUS/OneDrive/Dokumen/R/win-library/4.0/rgdal/proj
2. Impor data dari direktori
Data tersedia di http://bit.ly/ShapeFile_Jawa)
## Warning in OGRSpatialRef(dsn, layer, morphFromESRI = morphFromESRI, dumpSRS
## = dumpSRS, : Discarded datum D_unknown in Proj4 definition: +proj=longlat
## +ellps=GRS80 +no_defs
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\ASUS\Downloads\Map of Jawa (original)", layer: "jawa"
## with 116 features
## It has 5 fields
## MISKIN KODE_KAB NAMA_KAB KODE_PROP NAMA_PROP
## 0 0 3501 Pacitan 35 Jawa Timur
## 1 0 3502 Ponorogo 35 Jawa Timur
## 2 0 3503 Trenggalek 35 Jawa Timur
## 3 0 3504 Tulungagung 35 Jawa Timur
## 4 0 3508 Lumajang 35 Jawa Timur
## 5 0 3511 Bondowoso 35 Jawa Timur
Referensi
Anisa, R. https://rpubs.com/r_anisa/intro-spatstat
Statistika dan Sains Data [IPB University], nadirabelinda@apps.ipb.ac.id↩︎