Cargamos la base de datos

library(readxl)
library(forecast)

IVAE_SLV<- read_excel("F:/practica pronostico de series temporales/IVAE_SLV.xlsx",
             col_types = c("skip", "numeric"),
             skip = 0)
#serie
serie.ivae.ts<- ts(data = IVAE_SLV, start = c(2009,1),
                frequency = 12)
Yt<-serie.ivae.ts

I. Pronóstico de series temporales, enfoque deterministico (clasico) (MULTIPLICATIVA)

1. Pronóstico Modelo de Holt Winters

1.1. Usando Stars y forecast

library(forecast)

#Estimar el modelo
ModeloHW<-HoltWinters(x = Yt,
                      seasonal = "multiplicative", #Tipo de componente estacional
                      optim.start = c(0.9,0.9,0.9))#permite establecer los valores inicales para la busqueda de parametros
ModeloHW
## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = Yt, seasonal = "multiplicative", optim.start = c(0.9,     0.9, 0.9))
## 
## Smoothing parameters:
##  alpha: 0.8472467
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##            [,1]
## a   118.3719784
## b     0.1600947
## s1    0.9529095
## s2    1.0192349
## s3    1.0440936
## s4    0.9962326
## s5    1.0009929
## s6    0.9838373
## s7    0.9554392
## s8    1.0145286
## s9    1.0872315
## s10   0.9748891
## s11   0.9626701
## s12   1.0059813
#Generar el pronóstico:
PronosticoHW<-forecast(ModeloHW,h= 12,level=c(.95,0.99))
PronosticoHW
##          Point Forecast     Lo 95    Hi 95     Lo 99    Hi 99
## Apr 2022       112.9503 107.46492 118.4358 105.74127 120.1594
## May 2022       120.9752 113.57246 128.3779 111.24635 130.7040
## Jun 2022       124.0929 115.22236 132.9634 112.43504 135.7507
## Jul 2022       118.5640 108.86876 128.2592 105.82229 131.3057
## Aug 2022       119.2908 108.50116 130.0804 105.11081 133.4708
## Sep 2022       117.4038 105.81297 128.9947 102.17086 132.6368
## Oct 2022       114.1680 101.97016 126.3657  98.13733 130.1986
## Nov 2022       121.3911 107.66977 135.1125 103.35822 139.4240
## Dec 2022       130.2643 114.88360 145.6450 110.05064 150.4779
## Jan 2023       116.9603 102.34981 131.5708  97.75887 136.1617
## Feb 2023       115.6485 100.48405 130.8129  95.71905 135.5779
## Mar 2023       121.0126  83.19827 158.8270  71.31613 170.7091
#Gráfico de la serie original y del pronóstico.
PronosticoHW %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", 
                           xlab = "Años/Meses", 
                           ylab = "Indice")

1.2. Usando Forecast (Aproximación por Espacios de los Estados ETS)

library(forecast)

#Generar el pronostico:
PronosticosMW_2<-hw(y = Yt,
                   h= 12, 
                   level = c(0.95,0.99),
                   seasonal = "multiplicative",
                   initial = "optimal")
PronosticosMW_2
##          Point Forecast     Lo 95    Hi 95     Lo 99    Hi 99
## Apr 2022       111.9184 105.09260 118.7442 102.94778 120.8891
## May 2022       119.3664 110.67455 128.0583 107.94336 130.7895
## Jun 2022       122.8422 112.63807 133.0464 109.43169 136.2528
## Jul 2022       118.4498 107.52066 129.3789 104.08648 132.8131
## Aug 2022       120.0189 107.93209 132.1056 104.13415 135.9036
## Sep 2022       118.4260 105.56932 131.2828 101.52944 135.3226
## Oct 2022       114.3087 101.05402 127.5633  96.88911 131.7282
## Nov 2022       120.2837 105.49291 135.0745 100.84531 139.7221
## Dec 2022       127.9776 111.38423 144.5709 106.17022 149.7849
## Jan 2023       114.4558  98.88074 130.0309  93.98669 134.9249
## Feb 2023       113.5923  97.43199 129.7527  92.35405 134.8306
## Mar 2023       119.3883 101.68918 137.0873  96.12773 142.6488
#Gráfico de la serie original y del pronóstico
PronosticosMW_2 %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", 
                             xlab = "Años/Meses", 
                             ylab = "Indice")

II. Pronóstico de series temporales, enfoque deterministico (clasico)(ADITIVA)

1. Pronóstico Modelo de Holt Winters

1.1. Usando Stars y forecast

library(forecast)

#Estimar el modelo
ModeloHW<-HoltWinters(x = Yt,
                      seasonal = "additive",
                      optim.start = c(0.9,0.9,0.9))
ModeloHW
## Holt-Winters exponential smoothing with trend and additive seasonal component.
## 
## Call:
## HoltWinters(x = Yt, seasonal = "additive", optim.start = c(0.9,     0.9, 0.9))
## 
## Smoothing parameters:
##  alpha: 0.9142733
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##            [,1]
## a   118.0938359
## b     0.1600947
## s1   -3.9032233
## s2    3.0467916
## s3    3.9273013
## s4   -1.6040517
## s5   -0.5787492
## s6   -1.8288955
## s7   -4.0808499
## s8    2.2490593
## s9    9.6275698
## s10  -2.7962367
## s11  -4.4557494
## s12   0.9861641
#Generar el pronóstico:
PronosticosMWa<-forecast(object = ModeloHW,h=12, level=c(0.95,0.99))
PronosticosMWa
##          Point Forecast     Lo 95    Hi 95     Lo 99    Hi 99
## Apr 2022       114.3507 109.10096 119.6005 107.45137 121.2500
## May 2022       121.4608 114.34766 128.5740 112.11255 130.8091
## Jun 2022       122.5014 113.92039 131.0825 111.22404 133.7788
## Jul 2022       117.1302 107.29801 126.9623 104.20853 130.0518
## Aug 2022       118.3156 107.37443 129.2567 103.93648 132.6946
## Sep 2022       117.2255 105.27790 129.1731 101.52368 132.9273
## Oct 2022       115.1336 102.25799 128.0093  98.21216 132.0551
## Nov 2022       121.6237 107.88248 135.3648 103.56470 139.6826
## Dec 2022       129.1623 114.60695 143.7176 110.03335 148.2912
## Jan 2023       116.8985 101.57229 132.2248  96.75644 137.0407
## Feb 2023       115.3991  99.33889 131.4594  94.29240 136.5059
## Mar 2023       121.0011 104.23903 137.7632  98.97199 143.0303
#Gráfico de la serie original y del pronóstico.
PronosticosMWa %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", 
                             xlab = "Años/Meses", 
                             ylab = "Indice")

1.2. Usando Forecast (Aproximacion por Espacios de los Estados ETS)

library(forecast)

#Generar el pronóstico:
PronosticosMWa_2<-hw(y = Yt,
                   h= 12, 
                   level = c(0.95,0.99),
                   seasonal = "additive",
                   initial = "optimal")
PronosticosMWa_2
##          Point Forecast    Lo 95    Hi 95     Lo 99    Hi 99
## Apr 2022       114.4467 109.5770 119.3163 108.04686 120.8465
## May 2022       120.9088 114.0222 127.7955 111.85827 129.9594
## Jun 2022       121.6963 113.2617 130.1309 110.61138 132.7813
## Jul 2022       116.4405 106.7007 126.1803 103.64021 129.2408
## Aug 2022       119.0528 108.1629 129.9428 104.74100 133.3646
## Sep 2022       118.3286 106.3987 130.2585 102.65006 134.0071
## Oct 2022       116.5899 103.7035 129.4763  99.65435 133.5255
## Nov 2022       122.4772 108.7004 136.2539 104.37143 140.5829
## Dec 2022       129.5220 114.9088 144.1352 110.31701 148.7270
## Jan 2023       117.7994 102.3950 133.2038  97.55460 138.0443
## Feb 2023       115.4411  99.2840 131.5982  94.20707 136.6751
## Mar 2023       121.4513 104.5750 138.3277  99.27204 143.6306
#Gráfico de la serie original y del pronóstico
PronosticosMWa_2 %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", 
                              xlab = "Años/Meses", 
                              ylab = "Indice")


h1,h2,h3,h4{
    font-size:14px;
    font-weight: bold;
    font-family: 'Times New Roman', Times, serif;
    line-height:2;
}
h1 {
    text-align: center;
}
h4{
    text-align:center;
    font-weight: bold
}
p, li{
  text-indent: 40px;
    font-size:12 px;
    font-family: 'Times New Roman', Times, serif;
      line-height: 2;
}