Todas las variables CALI Y PALMIRA

#factominer
library(bootstrap)
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(FactoMineR)
library(haven)
library(ade4)
## 
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
library(xtable)
library(readr)
library(data.table)
#library(ff)
#library(ffbase)
library(bigmemory)
library(foreach)
library(doParallel)
## Loading required package: iterators
## Loading required package: parallel
library(biglm)
## Loading required package: DBI
library(Factoshiny)
## Loading required package: shiny
## Loading required package: FactoInvestigate
library(readxl)
CaliyPalmira<-read_excel("C:/LAURA LUCIA/U/9/Tesis/MARZO/CaliyPalmira-TAINA.xlsx")

names(CaliyPalmira)
##  [1] "Total_act_sociales"     "Total_lug_act_sociales" "conoce_enf"            
##  [4] "p26"                    "S_sintomas"             "conoce_preven"         
##  [7] "S_prevención"           "creenvirus"             "contac_covid"          
## [10] "dx_covid"               "conf_presi"             "conf_alcaldia"         
## [13] "conf_gobern"            "conf_mensgobierno"      "p40"                   
## [16] "p42"                    "medios"                 "conf_mediocomu"        
## [19] "p46"                    "p47"                    "p48"                   
## [22] "p49"                    "p50_1"                  "p50_2"                 
## [25] "p50_3"                  "p51"                    "p52"                   
## [28] "p53"                    "p54"                    "p55"                   
## [31] "p56"                    "p57"                    "p58"                   
## [34] "p60"                    "cumple_lavamanos"       "cumple_tapaboca"       
## [37] "cumple_distancia"       "cumple_desinfecmano"    "Total_tapaboca"        
## [40] "Total_distancia"        "ID"                     "Municipio"
CaliyPalmira$creenvirus<-as.factor(CaliyPalmira$creenvirus)
CaliyPalmira$contac_covid<-as.factor(CaliyPalmira$contac_covid)
CaliyPalmira$dx_covid<-as.factor(CaliyPalmira$dx_covid)
names(CaliyPalmira)<-c(
  #1.voluntariedad
  "x11",
  "x12",
  #2.conocimiento
  "x21",
  "x22", #p26
  "x23",
  "x24",
  "x25", #p30
  #3.incertidumbre
  "x31", #p33
  "x32", #p35
  "x33", #p36
  #4.gubernamental
  "x41", 
  "x42", 
  "x43",
  "x44",#"recomen_efectiva",
  #5.salud
  "x51",
  #"p41", #factor
  "x52",
  #6.medios de comunicación
  "x61", #total_medios_comu
  "x62", #p43
  #"mensaje", #categórica p72
  #7.probabilidad de contagio
  "x71",
  "x72",
  "x73",
  "x74",
  "x75", 
  "x76",
  "x77",
  #8.severidad
  "x81",
  "x82",
  "x83",
  "x84",
  #9.susceptibilidad
  "x91", 
  "x92",
  "x93",
  "x94",
  #"p59_1", #factor
  #"p59_2", #factor
  #"p59_3", #factor
  #"p59_4", #factor
  "x95",
  #10.cumplimiento
  "x101", #p61
  "x102",
  "x103",
  "x104",
  "x105", #p76
  "x106",
  #otras
  "id",
  "Municipio"
)
#recodificar la voluntariedad
library(car)
## Loading required package: carData
summary(CaliyPalmira$x11) #de 0 a 5
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.000   1.265   2.000   5.000
CaliyPalmira$x11 <- recode(CaliyPalmira$x11,"5=0; 4=1; 3=2; 2=3; 1=4; 0=5")
summary(CaliyPalmira$x12) #de 0 a 8
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.633   2.000   8.000
CaliyPalmira$x12 <- recode(CaliyPalmira$x12,"8=0; 7=1; 6=2; 5=3; 4=4; 3=5; 2=6; 1=7; 0=8")
#x75 [23]
x75N<-as.factor(CaliyPalmira$x75)
summary(x75N)
##   1   2   3   4   5 
## 288  82 104 245 724
#x77 [25]
x77N<-as.factor(CaliyPalmira$x77)
summary(x77N)
##   1   2   3   4   5 
##  43  42 151 269 938

AFM CON TODAS LAS VARIABLES

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(CaliyPalmira[,c(19:34)],
                      group=c(#2,
                              #5,
                              #3,
                              #4,
                              #2,
                              #2, #3
                              7,
                              4,
                              5
                              #6
                              ),
                      type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.95371969              37.354849                          37.35485
## comp 2  0.76278418              14.584328                          51.93918
## comp 3  0.46061251               8.806847                          60.74602
## comp 4  0.31307706               5.985990                          66.73201
## comp 5  0.27980231               5.349781                          72.08179
## comp 6  0.24472973               4.679198                          76.76099
## comp 7  0.21919631               4.191003                          80.95200
## comp 8  0.19355882               3.700818                          84.65281
## comp 9  0.16004627               3.060062                          87.71288
## comp 10 0.14217163               2.718302                          90.43118
## comp 11 0.11679648               2.233132                          92.66431
## comp 12 0.10867422               2.077836                          94.74215
## comp 13 0.08312730               1.589382                          96.33153
## comp 14 0.07144414               1.366002                          97.69753
## comp 15 0.06704119               1.281818                          98.97935
## comp 16 0.05338169               1.020651                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2    Dim.3     Dim.4     Dim.5
## Probabilidad de contagio 22.07821 77.726865 15.65889 91.047532 84.042533
## Severidad                38.70329 13.287416 45.28145  6.939909  9.329046
## Susceptibilidad          39.21850  8.985719 39.05966  2.012559  6.628421
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.6636843 0.7801080 0.4438594
## Severidad                0.8746823 0.3278311 0.5848514
## Susceptibilidad          0.8775728 0.2757276 0.4690437
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.534  0.705 -0.037
## x72 0.529  0.644 -0.040
## x73 0.531  0.659 -0.043
## x74 0.451  0.444  0.230
## x75 0.178  0.067  0.180
## x76 0.396  0.570  0.063
## x77 0.354 -0.037  0.365
## x81 0.608 -0.274  0.570
## x82 0.792 -0.295 -0.026
## x83 0.641 -0.310  0.494
## x84 0.810 -0.135  0.003
## x91 0.342 -0.197 -0.528
## x92 0.795 -0.165 -0.369
## x93 0.793 -0.182 -0.252
## x94 0.818 -0.177 -0.297
## x95 0.652 -0.300 -0.117
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.620 20.610  0.094
## x72  4.527 17.215  0.109
## x73  4.562 18.004  0.128
## x74  3.287  8.178  3.647
## x75  0.516  0.187  2.237
## x76  2.533 13.476  0.271
## x77  2.034  0.057  9.172
## x81  6.924  3.594 25.829
## x82 11.764  4.187  0.055
## x83  7.713  4.627 19.396
## x84 12.301  0.880  0.001
## x91  1.851  1.583 18.745
## x92 10.029  1.113  9.175
## x93  9.969  1.351  4.290
## x94 10.615  1.276  5.929
## x95  6.755  3.664  0.920
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.534  0.705 -0.037  4.620 20.610  0.094
## x72 0.529  0.644 -0.040  4.527 17.215  0.109
## x73 0.531  0.659 -0.043  4.562 18.004  0.128
## x74 0.451  0.444  0.230  3.287  8.178  3.647
## x75 0.178  0.067  0.180  0.516  0.187  2.237
## x76 0.396  0.570  0.063  2.533 13.476  0.271
## x77 0.354 -0.037  0.365  2.034  0.057  9.172
## x81 0.608 -0.274  0.570  6.924  3.594 25.829
## x82 0.792 -0.295 -0.026 11.764  4.187  0.055
## x83 0.641 -0.310  0.494  7.713  4.627 19.396
## x84 0.810 -0.135  0.003 12.301  0.880  0.001
## x91 0.342 -0.197 -0.528  1.851  1.583 18.745
## x92 0.795 -0.165 -0.369 10.029  1.113  9.175
## x93 0.793 -0.182 -0.252  9.969  1.351  4.290
## x94 0.818 -0.177 -0.297 10.615  1.276  5.929
## x95 0.652 -0.300 -0.117  6.755  3.664  0.920
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=CaliyPalmira[,c(19:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.5341653 0.5287287 0.5308074 0.4505285 0.1784305 0.3955389 0.3544335 0.6076142 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.7919927 0.6412808 0.8098680 0.3415608 0.7949994 0.7926213 0.8178959 0.6524851
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 1.95372
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.3821594 0.3782699 0.3797571 0.3223229 0.1276550 0.2829815 0.2535734 0.4347071 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.5666176 0.4587934 0.5794061 0.2443638 0.5687687 0.5670673 0.5851496 0.4668093
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##        x71        x72        x73        x74        x75        x76        x77 
## 0.05791696 0.05732750 0.05755288 0.04884863 0.01934636 0.04288637 0.03842951 
##        x81        x82        x83        x84        x91        x92        x93 
## 0.06588067 0.08587194 0.06953098 0.08781007 0.03703379 0.08619794 0.08594010 
##        x94        x95 
## 0.08868050 0.07074581
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.058
## x72                     0.057
## x73                     0.058
## x74                     0.049
## x75                     0.019
## x76                     0.043
## x77                     0.038
## x81                     0.066
## x82                     0.086
## x83                     0.070
## x84                     0.088
## x91                     0.037
## x92                     0.086
## x93                     0.086
## x94                     0.089
## x95                     0.071
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.95371969              37.354849                          37.35485
## comp 2  0.76278418              14.584328                          51.93918
## comp 3  0.46061251               8.806847                          60.74602
## comp 4  0.31307706               5.985990                          66.73201
## comp 5  0.27980231               5.349781                          72.08179
## comp 6  0.24472973               4.679198                          76.76099
## comp 7  0.21919631               4.191003                          80.95200
## comp 8  0.19355882               3.700818                          84.65281
## comp 9  0.16004627               3.060062                          87.71288
## comp 10 0.14217163               2.718302                          90.43118
## comp 11 0.11679648               2.233132                          92.66431
## comp 12 0.10867422               2.077836                          94.74215
## comp 13 0.08312730               1.589382                          96.33153
## comp 14 0.07144414               1.366002                          97.69753
## comp 15 0.06704119               1.281818                          98.97935
## comp 16 0.05338169               1.020651                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.9629662
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.613507
Ind_2_severidad3<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad3)
## [1] 0
max(Ind_2_severidad3)
## [1] 100
C8<-cbind(Ind_2_severidad3,CaliyPalmira)

summary(C8$Ind_2_severidad3);sd(C8$Ind_2_severidad3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   41.24   53.47   54.10   66.20  100.00
## [1] 17.83391

K-means

set.seed(1234)
kmeans <- kmeans(C8$Ind_2_severidad3, 3, iter.max = 1000, nstart = 10);kmeans
## K-means clustering with 3 clusters of sizes 646, 433, 364
## 
## Cluster means:
##       [,1]
## 1 54.69625
## 2 33.72363
## 3 77.28025
## 
## Clustering vector:
##    [1] 2 2 1 1 1 3 2 1 1 2 1 2 1 1 1 1 2 1 3 1 3 2 2 2 1 2 2 1 2 1 1 1 2 3 1 2 1
##   [38] 3 3 1 3 2 1 1 1 2 2 2 2 1 2 2 2 3 1 1 2 1 2 2 3 2 2 2 1 1 1 1 3 3 1 2 1 2
##   [75] 2 1 2 1 3 1 3 1 1 1 2 3 2 2 3 1 2 1 1 1 2 3 1 2 2 1 3 2 2 1 3 3 3 3 1 1 3
##  [112] 3 1 3 2 2 2 1 2 1 3 3 1 1 2 1 3 1 3 2 3 1 3 2 1 2 2 3 1 2 3 1 1 1 2 1 1 2
##  [149] 1 1 2 2 3 1 3 2 1 1 1 3 1 3 1 1 1 3 1 2 3 2 3 3 1 2 1 1 2 1 1 1 3 2 3 2 3
##  [186] 1 2 1 1 1 1 1 2 2 3 2 1 1 2 1 2 1 1 3 1 3 1 1 2 3 3 2 1 1 1 1 1 3 2 3 1 1
##  [223] 1 1 1 2 1 2 2 1 3 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 1 3 2 3 2 2 1 1 1 2 1 2 3
##  [260] 1 3 1 1 2 2 1 2 1 1 2 3 2 2 2 2 1 1 3 3 1 1 1 3 1 2 1 3 2 1 1 1 1 2 1 2 2
##  [297] 2 1 1 3 2 1 2 2 3 1 2 1 1 3 1 3 2 2 1 1 1 2 3 2 1 1 2 2 1 3 3 2 1 2 1 1 3
##  [334] 3 1 2 1 3 2 2 2 1 1 2 1 2 2 1 1 3 3 1 2 1 1 2 3 2 2 3 1 3 2 2 1 2 3 2 3 2
##  [371] 1 1 3 1 3 1 3 2 2 1 1 3 2 3 3 1 3 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 2 1 2 2
##  [408] 2 1 1 3 1 2 1 1 3 1 1 2 1 1 2 3 3 3 1 3 1 1 1 1 3 2 2 3 3 1 2 1 2 2 2 1 3
##  [445] 2 2 3 1 3 3 1 3 3 1 1 1 1 3 1 3 2 1 1 2 1 1 1 1 3 1 3 1 2 3 1 1 3 1 1 1 2
##  [482] 3 1 1 1 2 3 3 3 2 1 1 2 2 3 1 1 1 1 3 2 3 1 2 1 1 1 2 2 2 2 1 1 1 2 2 3 1
##  [519] 2 2 2 3 2 2 1 1 3 2 2 1 1 2 1 1 1 2 2 2 1 2 2 1 3 1 3 1 1 1 1 2 1 3 1 2 2
##  [556] 3 2 2 1 2 2 2 1 2 1 2 1 2 1 2 1 3 1 1 2 1 2 1 1 1 1 1 1 2 2 2 2 1 2 1 1 2
##  [593] 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 2 1 3 2 1 1 3 1 3 2 3 3 2 3 3 2 1 1 1 1 3 2
##  [630] 2 3 1 2 3 1 1 2 3 2 2 2 2 1 1 2 1 1 1 2 3 3 3 1 1 1 3 1 3 1 1 3 2 3 1 3 1
##  [667] 2 1 2 1 3 1 3 1 3 1 1 2 3 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 3 1 3 1 3 2 2 1 1
##  [704] 1 3 3 1 1 2 1 1 3 2 2 1 1 2 1 1 1 1 2 1 1 1 3 1 2 1 2 2 1 2 1 1 2 2 1 1 1
##  [741] 1 3 3 3 1 3 1 3 1 1 3 1 3 3 1 1 3 1 1 1 1 1 2 2 1 2 1 2 1 2 1 3 3 3 2 1 2
##  [778] 1 1 3 3 1 1 1 3 2 1 1 2 3 1 1 1 3 2 3 2 1 2 2 1 3 2 2 1 1 3 3 2 2 2 1 3 3
##  [815] 1 1 3 1 1 1 2 1 2 2 1 1 1 1 3 1 2 1 3 1 3 3 2 3 1 1 1 2 3 1 1 1 1 1 1 3 1
##  [852] 1 2 3 3 1 2 1 1 2 3 2 1 3 3 2 1 3 1 2 1 1 1 2 3 3 2 3 2 1 1 3 1 2 1 1 1 3
##  [889] 1 2 2 2 1 3 1 2 1 2 2 1 1 2 2 2 3 3 2 3 2 1 1 1 2 1 1 3 1 3 1 1 1 1 2 1 1
##  [926] 3 1 1 2 3 1 2 1 3 1 2 3 1 2 3 2 2 3 3 3 1 1 2 2 3 3 3 3 1 1 3 2 3 2 1 3 1
##  [963] 2 2 2 2 1 1 1 3 3 1 1 3 3 2 3 1 3 1 1 2 2 2 2 2 1 1 3 3 3 3 2 2 1 2 1 3 1
## [1000] 1 2 2 3 3 3 1 3 1 1 1 2 1 2 3 3 1 2 2 3 3 2 3 1 3 1 1 2 3 3 2 1 3 3 2 3 1
## [1037] 2 2 1 2 2 3 1 3 3 3 3 1 2 3 1 2 1 1 3 1 3 1 1 1 1 2 1 2 3 2 3 3 1 1 3 1 2
## [1074] 2 1 2 1 3 1 2 3 1 1 1 3 3 1 1 2 2 1 1 3 2 3 2 2 2 2 3 2 1 3 2 1 2 1 3 1 3
## [1111] 1 1 1 1 3 1 3 2 2 1 1 1 2 3 1 3 1 1 1 1 2 1 1 1 3 1 3 3 1 1 2 2 2 1 1 3 2
## [1148] 3 1 3 2 1 1 3 1 2 2 1 1 2 1 3 1 1 2 2 1 3 3 2 2 2 1 2 1 2 1 3 1 1 2 1 2 2
## [1185] 2 2 3 2 1 1 3 1 2 2 1 1 1 1 1 1 3 1 2 3 3 2 2 3 3 2 3 2 1 1 3 2 3 3 2 3 2
## [1222] 2 2 3 3 3 3 1 1 1 1 3 1 3 1 1 1 1 2 1 1 3 3 3 2 3 3 3 1 1 3 1 3 1 3 1 2 1
## [1259] 1 1 2 3 3 3 3 3 2 1 1 1 2 1 2 1 2 1 3 2 3 2 2 2 3 3 2 3 1 2 3 1 3 3 1 3 2
## [1296] 1 3 1 2 3 1 2 2 1 1 3 3 1 3 1 3 1 1 1 1 3 1 3 2 2 3 2 3 1 3 1 1 3 3 3 3 2
## [1333] 3 3 3 3 1 3 2 3 1 1 1 3 1 2 3 1 3 2 3 1 2 1 2 2 3 3 2 1 3 2 3 1 1 2 2 3 1
## [1370] 1 2 2 1 1 2 1 1 1 1 2 3 3 3 3 2 1 3 2 1 2 1 1 1 1 1 2 1 1 3 2 3 2 2 1 2 3
## [1407] 1 1 2 1 1 1 1 1 2 3 3 1 1 2 3 1 1 1 1 1 3 3 1 1 3 1 3 1 1 3 1 2 1 1 1 3 1
## 
## Within cluster sum of squares by cluster:
## [1] 23747.37 32212.71 27070.04
##  (between_SS / total_SS =  81.9 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
#windows();fviz_cluster(kmeans, data = C8)

C8$cluster <- kmeans$cluster
summary(C8)
##  Ind_2_severidad3      x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.47   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 54.10   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 66.20   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :1.805  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans$centers
##       [,1]
## 1 54.69625
## 2 33.72363
## 3 77.28025
tapply(Ind_2_severidad3,kmeans$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   44.26   49.44   54.52   54.70   59.80   65.94 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   29.76   35.91   33.72   40.02   44.17 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   66.05   70.30   75.33   77.28   82.27  100.00

BASES CON IPRG K-MEANS

#descriptivas final ####

#recodificar la voluntariedad
library(car)
#summary(C8$cluster) #de 1 a 3
#C8$cluster <- recode(C8$cluster, "1=Bajo; 2=Alto; 3=Medio")

C8$cluster<-factor(C8$cluster,levels=c("2","1","3"),labels = c("1.Bajo","2.Medio","3.Alto"))
summary(C8)
##  Ind_2_severidad3      x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.47   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 54.10   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 66.20   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster   
##  1.Bajo :433  
##  2.Medio:646  
##  3.Alto :364  
##               
##               
## 
table(C8$cluster)
## 
##  1.Bajo 2.Medio  3.Alto 
##     433     646     364

DESCRIPTIVAS

###------------------------------descriptivas-------------------------------#### 

library(readxl)
exploratorio <- read_excel("C:/LAURA LUCIA/U/9/Tesis/MARZO/exploratorio/exploratorio.xlsx")

C9<-cbind(C8$Ind_2_severidad,C8$cluster,exploratorio)

summary(C9)
##  C8$Ind_2_severidad   C8$cluster        ID         acep_participa    
##  Min.   :  0.00     1.Bajo :433   Min.   :   1.0   Length:1443       
##  1st Qu.: 41.24     2.Medio:646   1st Qu.: 368.5   Class :character  
##  Median : 53.47     3.Alto :364   Median : 736.0   Mode  :character  
##  Mean   : 54.10                   Mean   : 734.0                     
##  3rd Qu.: 66.20                   3rd Qu.:1099.5                     
##  Max.   :100.00                   Max.   :1460.0                     
##  acep_nuevainv       mayoredad            vivtrab           Edad      
##  Length:1443        Length:1443        Min.   :0.000   Min.   :18.00  
##  Class :character   Class :character   1st Qu.:1.000   1st Qu.:28.00  
##  Mode  :character   Mode  :character   Median :1.000   Median :36.00  
##                                        Mean   :1.431   Mean   :37.74  
##                                        3rd Qu.:2.000   3rd Qu.:46.00  
##                                        Max.   :2.000   Max.   :75.00  
##     Edad_g              Sexo              Sexo_Cat          Raza          
##  Length:1443        Length:1443        Min.   :0.0000   Length:1443       
##  Class :character   Class :character   1st Qu.:0.0000   Class :character  
##  Mode  :character   Mode  :character   Median :1.0000   Mode  :character  
##                                        Mean   :0.6743                     
##                                        3rd Qu.:1.0000                     
##                                        Max.   :2.0000                     
##     Raza_Cat        AreaResid              Area        Municipio        
##  Min.   :0.00000   Length:1443        Min.   :1.000   Length:1443       
##  1st Qu.:0.00000   Class :character   1st Qu.:1.000   Class :character  
##  Median :0.00000   Mode  :character   Median :1.000   Mode  :character  
##  Mean   :0.09286                      Mean   :1.085                     
##  3rd Qu.:0.00000                      3rd Qu.:1.000                     
##  Max.   :1.00000                      Max.   :3.000                     
##   MunicipioCat   Barrio_resid          Comuna            Estrato         
##  Min.   :0.000   Length:1443        Length:1443        Length:1443       
##  1st Qu.:1.000   Class :character   Class :character   Class :character  
##  Median :1.000   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1.386                                                           
##  3rd Qu.:2.000                                                           
##  Max.   :2.000                                                           
##   cat_estrato     Educacion           Ingresos          Ingresos_Cat   
##  Min.   :1.000   Length:1443        Length:1443        Min.   :0.0000  
##  1st Qu.:1.000   Class :character   Class :character   1st Qu.:0.0000  
##  Median :2.000   Mode  :character   Mode  :character   Median :1.0000  
##  Mean   :1.955                                         Mean   :0.9785  
##  3rd Qu.:2.000                                         3rd Qu.:2.0000  
##  Max.   :3.000                                         Max.   :2.0000  
##    Migrante          Ocupacion         Ocupacion_Cat   ActividadLaboral  
##  Length:1443        Length:1443        Min.   :1.000   Length:1443       
##  Class :character   Class :character   1st Qu.:2.000   Class :character  
##  Mode  :character   Mode  :character   Median :4.000   Mode  :character  
##                                        Mean   :3.034                     
##                                        3rd Qu.:4.000                     
##                                        Max.   :4.000                     
##    sec_ocupa2       Regimen           Regimen_Cat       Internet        
##  Min.   : 0.000   Length:1443        Min.   :0.0000   Length:1443       
##  1st Qu.: 2.000   Class :character   1st Qu.:0.0000   Class :character  
##  Median : 5.000   Mode  :character   Median :0.0000   Mode  :character  
##  Mean   : 8.643                      Mean   :0.6383                     
##  3rd Qu.:16.000                      3rd Qu.:1.0000                     
##  Max.   :26.000                      Max.   :2.0000                     
##   Internet_Cat       Agua           Personas_casa      conv10anos    
##  Min.   :1.000   Length:1443        Min.   : 1.000   Min.   :0.0000  
##  1st Qu.:3.000   Class :character   1st Qu.: 2.000   1st Qu.:0.0000  
##  Median :4.000   Mode  :character   Median : 3.000   Median :0.0000  
##  Mean   :3.568                      Mean   : 3.484   Mean   :0.3035  
##  3rd Qu.:4.000                      3rd Qu.: 4.000   3rd Qu.:1.0000  
##  Max.   :5.000                      Max.   :49.000   Max.   :1.0000  
##   conv1117anos     conv1830anos    conv3159anos      conv60anos    
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :1.0000   Median :0.0000  
##  Mean   :0.2183   Mean   :0.377   Mean   :0.6556   Mean   :0.4109  
##  3rd Qu.:0.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##  conv_enfercronicas    Vivesolo      
##  Min.   :0.0000     Min.   :0.00000  
##  1st Qu.:0.0000     1st Qu.:0.00000  
##  Median :0.0000     Median :0.00000  
##  Mean   :0.2994     Mean   :0.09702  
##  3rd Qu.:1.0000     3rd Qu.:0.00000  
##  Max.   :1.0000     Max.   :3.00000
#View(C9) #base de datos cali y palmira con la columna ?ndice

#edad
summary(C9$Edad)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   28.00   36.00   37.74   46.00   75.00
#C9[,"Edad_grupos"] <- cut(C9$Edad, breaks = c(18,29,59,76),labels = c("De 18 a 29 años", "De 30 a 59 años", "Más de 60 años"))
head(C9)
##   C8$Ind_2_severidad C8$cluster ID acep_participa acep_nuevainv mayoredad
## 1              35.88     1.Bajo  1             Si            Si        Si
## 2              31.53     1.Bajo  2             Si            Si        Si
## 3              50.10    2.Medio  3             Si            Si        Si
## 4              46.17    2.Medio  4             Si            Si        Si
## 5              56.30    2.Medio  5             Si            Si        Si
## 6              69.42     3.Alto  6             Si            Si        Si
##   vivtrab Edad Edad_g   Sexo Sexo_Cat    Raza Raza_Cat AreaResid Area
## 1       1   33  30-59 Hombre        0  Blanco        0    Urbana    1
## 2       1   35  30-59  Mujer        1 Mestizo        0    Urbana    1
## 3       1   21  18-29  Mujer        1 Mestizo        0    Urbana    1
## 4       1   20  18-29  Mujer        1 Mestizo        0    Urbana    1
## 5       1   48  30-59 Hombre        0  Blanco        0    Urbana    1
## 6       1   44  30-59  Mujer        1 Mestizo        0     Rural    2
##                            Municipio MunicipioCat         Barrio_resid
## 1                               Cali            1        Departamental
## 2                               Cali            1 Quintas de Don Simón
## 3                               Cali            1        Villa del Sol
## 4                               Cali            1            Seminario
## 5                               Cali            1            Normandía
## 6 Otro municipio del Valle del Cauca            0                   NA
##      Comuna   Estrato cat_estrato                    Educacion Ingresos
## 1 Comuna 10 Estrato 4           2                Universitario   Más de
## 2 Comuna 17 Estrato 5           3       Esp/Maestría/Doctorado   Más de
## 3  Comuna 5 Estrato 4           2 Técnico/Bachillerato o menos Sin ingr
## 4 Comuna 19 Estrato 5           3 Técnico/Bachillerato o menos Sin ingr
## 5  Comuna 2 Estrato 6           3       Esp/Maestría/Doctorado   Más de
## 6 No Aplica Estrato 5           3       Esp/Maestría/Doctorado   Más de
##   Ingresos_Cat       Migrante  Ocupacion Ocupacion_Cat
## 1            0 No es migrante   Empleado             4
## 2            0 No es migrante   Empleado             4
## 3            1 No es migrante Estudiante             3
## 4            1 No es migrante Estudiante             3
## 5            0 No es migrante   Empleado             4
## 6            0 No es migrante   Empleado             4
##                                   ActividadLaboral sec_ocupa2  Regimen
## 1                                        Educativo         23 Contribu
## 2 Actividades intelectuales y científicas /Docente          3 Contribu
## 3               Estudiante instituto o universidad          2  No sabe
## 4               Estudiante instituto o universidad          2 Contribu
## 5 Actividades intelectuales y científicas /Docente          3 Contribu
## 6 Actividades intelectuales y científicas /Docente          3 Contribu
##   Regimen_Cat                    Internet Internet_Cat Agua Personas_casa
## 1           0 Datos móviles – wifi vivien            4   Si             4
## 2           0 Datos móviles – wifi vivien            4   Si             1
## 3           2 Datos móviles – wifi vivien            4   Si             3
## 4           0 Datos móviles – wifi vivien            4   Si             4
## 5           0 Datos móviles – wifi vivien            4   Si             3
## 6           0              Wifi -vivienda            3   Si             2
##   conv10anos conv1117anos conv1830anos conv3159anos conv60anos
## 1          1            0            0            1          1
## 2          0            0            0            1          1
## 3          0            0            0            1          0
## 4          0            0            1            1          1
## 5          0            0            0            1          1
## 6          0            1            0            0          0
##   conv_enfercronicas Vivesolo
## 1                  0        0
## 2                  0        0
## 3                  0        0
## 4                  1        0
## 5                  0        0
## 6                  0        0
summary(C9$`C8$cluster`)
##  1.Bajo 2.Medio  3.Alto 
##     433     646     364
##Funci?n para generar las tablas
CualiG<-function(Variable,var2){
  T_1<-table(Variable,var2)
  p_1<-prop.table(T_1,1)*100
  p_F<-round(chisq.test(T_1)$p.value,3)
  #T_2<-table(Variable)
  #pp_2<-prop.table(T_2)*100
  Cual<-cbind(T_1,#T_2,
              p_1,p_F
              #,pp_2)
              )
  colnames(Cual)<-c("Bajo","Medio","Alto","%Bajo","%Medio","%Alto","p-valor")
  Cual
}

### Creaci?n de todas las tablas

Tablas_<-function(C9,Var_r){
  Edad<-CualiG(C9$Edad_g,Var_r)
  Sexo<-CualiG(C9$Sexo,Var_r)
  Raza<-CualiG(C9$Raza_Cat,Var_r)
  Residencia<-CualiG(C9$AreaResid,Var_r)
  Estrato<-CualiG(C9$cat_estrato,Var_r)
  Educacion<-CualiG(C9$Educacion,Var_r)
  Ingresos<-CualiG(C9$Ingresos_Cat,Var_r)
  Ocupacion<-CualiG(C9$Ocupacion_Cat,Var_r)
  rbind(Edad,Sexo, Raza,Residencia,Estrato,Educacion,Ingresos,Ocupacion)
  }

C9$Grupo=C8$cluster;dim(C9)
## [1] 1443   43
#C9<-na.omit(C9)
TablasFinal<-Tablas_(C9,C9$Grupo);TablasFinal
##                              Bajo Medio Alto    %Bajo   %Medio     %Alto
## >60                            15    42   35 16.30435 45.65217 38.043478
## 18-29                         171   175   83 39.86014 40.79254 19.347319
## 30-59                         247   429  246 26.78959 46.52928 26.681128
## Hombre                        163   204  107 34.38819 43.03797 22.573840
## Mujer                         269   439  257 27.87565 45.49223 26.632124
## 0                             394   593  322 30.09931 45.30176 24.598930
## 1                              39    53   42 29.10448 39.55224 31.343284
## Rural                          25    52   35 22.32143 46.42857 31.250000
## Urbana                        408   594  329 30.65364 44.62810 24.718257
## 1                             101   176  127 25.00000 43.56436 31.435644
## 2                             219   309  172 31.28571 44.14286 24.571429
## 3                             113   161   65 33.33333 47.49263 19.174041
## Esp/Maestría/Doctorado        144   218   86 32.14286 48.66071 19.196429
## Técnico/Bachillerato o menos  124   180  140 27.92793 40.54054 31.531532
## Universitario                 165   248  138 29.94555 45.00907 25.045372
## 0                             174   253  109 32.46269 47.20149 20.335821
## 1                             141   166   95 35.07463 41.29353 23.631841
## 2                             118   227  160 23.36634 44.95050 31.683168
## 1                              54    93   73 24.54545 42.27273 33.181818
## 2                              89   113   63 33.58491 42.64151 23.773585
## 3                              89    95   20 43.62745 46.56863  9.803922
## 4                             201   345  208 26.65782 45.75597 27.586207
##                              p-valor
## >60                            0.000
## 18-29                          0.000
## 30-59                          0.000
## Hombre                         0.030
## Mujer                          0.030
## 0                              0.209
## 1                              0.209
## Rural                          0.122
## Urbana                         0.122
## 1                              0.002
## 2                              0.002
## 3                              0.002
## Esp/Maestría/Doctorado         0.001
## Técnico/Bachillerato o menos   0.001
## Universitario                  0.001
## 0                              0.000
## 1                              0.000
## 2                              0.000
## 1                              0.000
## 2                              0.000
## 3                              0.000
## 4                              0.000
setwd("C:/LAURA LUCIA/U/9/Tesis/MARZO")

write.csv2(TablasFinal,"Tablas2.csv")

#LATEX

#TablasF2 <- read.csv2("C:/LAURA LUCIA/U/9/Tesis/MARZO/TablasF2.csv")
#View(TablasF2)

#print(xtable(TablasF2), include.rownames = FALSE)

#summary(C8$Ind_2_severidad)
#round(sd(C8$Ind_2_severidad),2)

ECM

#Nfinal<-c()
NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=CaliyPalmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,c(1)];Coord1_severidad
  lp_severidad<-res.mfa_severidad$eig[c(1)];lp_severidad #VALOR PROPIO
  Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
  Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
  data.frame(round(Pesos_severidad,3))
  Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
  Imin_severidad<-min(Ind_severidad);Imin_severidad
  Imax_severidad<-max(Ind_severidad);Imax_severidad
  Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
  NfinalMedia[i]=median(sample(Ind_2_severidad,replace = TRUE))

  }; NfinalMedia
##    [1] 53.18 54.44 54.39 53.11 53.70 53.49 53.49 53.18 53.54 53.27 53.73 53.53
##   [13] 53.47 53.52 54.18 54.06 53.48 53.73 54.87 53.48 53.08 54.39 53.52 53.31
##   [25] 52.59 53.40 54.18 52.63 53.52 54.32 54.71 52.76 53.60 53.92 53.46 54.29
##   [37] 54.18 53.40 53.20 53.31 53.32 53.49 51.93 52.59 53.08 52.46 53.49 53.47
##   [49] 52.61 53.53 53.06 53.53 53.47 52.35 53.48 53.49 53.92 54.06 53.46 53.08
##   [61] 53.31 52.67 54.06 53.48 53.31 52.71 53.46 52.02 54.66 53.82 53.47 53.53
##   [73] 52.63 52.63 54.18 53.60 54.39 53.20 53.76 54.45 53.27 53.16 53.32 54.29
##   [85] 53.52 53.52 53.39 53.49 52.40 53.27 53.08 54.32 53.46 52.95 52.47 54.17
##   [97] 53.53 53.62 53.70 52.95 53.53 53.46 54.56 53.47 53.18 54.61 53.32 53.70
##  [109] 54.47 53.27 53.91 54.50 53.27 53.46 53.70 53.49 52.59 52.35 53.31 52.69
##  [121] 53.27 52.76 52.37 53.82 53.39 54.15 54.18 53.53 53.39 53.06 52.83 54.29
##  [133] 53.32 52.92 54.32 53.11 54.95 54.17 53.18 53.53 53.49 54.32 53.06 53.76
##  [145] 53.40 52.83 54.06 53.76 54.14 53.06 53.27 53.70 53.82 53.11 53.46 54.14
##  [157] 53.62 53.49 53.49 53.52 53.31 54.15 53.62 53.18 53.39 54.56 53.08 53.27
##  [169] 53.91 52.69 54.18 54.39 53.62 53.92 53.48 53.52 53.11 53.20 53.18 52.83
##  [181] 53.70 53.62 53.46 53.40 53.21 52.57 53.53 53.40 53.92 52.63 52.35 54.17
##  [193] 54.17 53.76 53.47 54.17 53.49 54.06 54.48 53.32 53.06 53.67 53.47 53.92
##  [205] 53.27 53.08 53.82 51.80 54.80 52.58 52.76 53.39 53.21 54.66 53.40 53.54
##  [217] 52.06 53.16 53.47 53.16 53.52 54.47 54.50 53.18 54.39 53.32 53.62 53.70
##  [229] 53.39 53.31 53.47 53.76 52.83 53.91 53.11 53.52 53.11 54.17 53.54 52.40
##  [241] 52.69 54.41 53.18 53.82 51.93 54.17 53.67 53.18 52.71 54.14 54.55 52.71
##  [253] 55.02 53.70 52.71 53.21 52.09 54.29 53.08 53.67 53.54 53.49 53.31 52.71
##  [265] 53.18 53.49 54.31 53.73 53.46 53.70 52.83 53.73 52.92 52.69 53.76 53.40
##  [277] 52.46 54.50 53.27 54.18 54.80 53.40 53.39 53.70 52.63 53.16 54.97 53.47
##  [289] 53.21 54.31 53.48 53.32 53.60 52.95 53.73 53.91 52.63 54.29 53.47 52.57
##  [301] 53.31 53.39 54.32 53.70 54.14 53.49 53.54 52.58 54.32 53.11 53.11 54.14
##  [313] 53.49 53.70 52.76 54.29 53.49 53.46 53.40 53.06 52.92 53.39 53.53 53.46
##  [325] 53.49 53.92 53.46 53.70 53.73 53.48 53.11 53.46 53.67 53.20 53.70 54.18
##  [337] 52.67 53.76 53.06 53.76 53.52 53.32 52.14 53.39 53.06 53.53 53.92 53.31
##  [349] 52.61 53.67 53.46 53.46 54.06 54.48 53.08 53.82 53.40 53.91 53.70 53.46
##  [361] 53.82 53.40 52.59 53.27 53.70 53.40 53.62 53.49 54.32 53.60 53.60 53.31
##  [373] 53.82 53.52 53.16 54.29 53.32 52.58 52.67 53.54 53.54 53.48 53.49 53.20
##  [385] 53.54 52.26 53.32 53.48 52.26 53.67 53.31 53.49 52.67 53.46 54.18 53.40
##  [397] 53.62 53.54 53.21 53.20 53.18 54.32 53.53 53.31 53.76 53.40 53.49 52.95
##  [409] 54.61 53.32 53.91 53.49 53.52 53.76 54.44 53.62 54.17 54.18 52.69 52.95
##  [421] 53.32 53.62 53.39 53.46 53.08 53.21 53.31 54.18 53.40 53.11 53.06 53.20
##  [433] 53.70 53.76 53.62 53.53 53.47 53.27 53.70 53.11 52.76 52.71 52.65 53.70
##  [445] 52.83 54.39 53.92 53.21 52.59 54.14 53.54 53.47 53.73 53.67 53.11 54.14
##  [457] 53.49 53.47 52.69 53.67 52.63 53.16 53.49 53.47 52.69 53.31 52.59 52.92
##  [469] 51.80 53.11 53.08 54.32 53.08 54.06 53.53 53.91 53.47 53.49 53.62 53.39
##  [481] 53.54 53.53 52.13 53.49 52.63 53.49 52.76 53.92 53.52 53.52 53.08 53.49
##  [493] 53.11 53.54 53.16 53.49 54.55 53.40 52.76 54.80 53.06 53.11 53.20 53.48
##  [505] 53.49 54.06 53.40 52.83 53.49 54.29 54.45 52.65 53.52 53.31 53.47 53.21
##  [517] 53.49 52.71 53.82 53.46 53.47 53.70 53.39 52.59 53.76 53.16 54.66 53.47
##  [529] 53.92 53.21 53.82 54.50 53.49 52.65 53.40 53.54 52.58 53.39 52.76 53.49
##  [541] 52.69 54.95 53.47 53.20 53.40 52.26 53.40 53.16 52.69 54.06 53.46 52.92
##  [553] 52.67 54.17 53.46 52.95 53.73 54.69 52.58 53.48 53.32 53.82 53.53 53.73
##  [565] 52.63 54.41 54.15 52.71 53.40 53.70 52.63 53.31 52.63 53.49 53.47 52.63
##  [577] 53.53 54.29 54.44 53.48 53.46 53.52 53.52 52.65 53.27 53.73 53.52 52.69
##  [589] 53.39 54.29 53.16 52.18 53.49 53.49 54.41 53.70 53.21 51.46 52.58 53.18
##  [601] 53.53 54.17 53.53 53.62 53.48 53.27 53.73 53.40 52.14 54.39 54.15 52.67
##  [613] 52.94 53.39 53.60 53.49 53.32 53.08 52.37 53.46 52.58 53.70 53.52 53.39
##  [625] 53.46 54.50 53.54 53.49 53.70 53.39 53.46 53.91 53.06 54.61 53.82 53.53
##  [637] 52.59 53.73 53.18 53.67 53.91 53.52 54.69 52.63 53.73 53.27 53.70 53.31
##  [649] 53.52 53.53 53.54 53.54 54.18 54.87 53.49 53.76 54.45 54.55 54.15 52.58
##  [661] 54.17 53.48 53.70 53.06 52.94 53.49 54.32 54.61 54.06 52.13 52.76 53.49
##  [673] 53.54 52.57 53.49 51.47 52.37 52.95 52.40 53.62 53.62 54.32 53.18 52.65
##  [685] 53.48 53.11 53.47 53.27 53.08 53.76 54.18 53.11 52.69 54.15 53.91 53.06
##  [697] 54.47 53.54 53.62 54.39 54.18 53.76 52.83 52.71 54.80 52.02 54.45 53.47
##  [709] 54.32 52.61 53.21 53.46 53.21 53.91 53.18 54.17 54.56 53.27 53.31 53.40
##  [721] 53.11 53.39 53.11 54.41 53.54 54.06 54.06 53.54 53.32 51.75 52.95 53.49
##  [733] 52.02 53.67 53.76 53.39 53.60 52.61 53.60 53.53 52.67 53.70 52.76 54.18
##  [745] 54.15 52.46 52.67 53.18 53.62 53.21 54.41 54.47 53.32 52.95 53.53 55.04
##  [757] 53.53 53.32 53.54 53.49 53.70 52.95 53.11 53.16 53.32 53.18 53.52 53.46
##  [769] 53.40 53.52 53.40 54.39 53.49 52.63 54.31 53.62 52.59 53.08 53.46 54.14
##  [781] 53.67 52.46 53.40 53.06 52.40 54.41 53.40 53.20 54.55 53.53 55.18 51.98
##  [793] 53.08 53.46 54.61 53.67 53.49 54.17 53.82 52.69 52.69 53.49 53.20 53.16
##  [805] 53.32 53.21 53.40 53.70 53.49 52.58 53.11 52.63 53.70 53.46 54.48 52.71
##  [817] 54.15 53.53 53.48 53.47 53.67 54.15 54.14 53.92 52.14 53.39 53.40 52.14
##  [829] 53.18 53.49 53.18 53.47 53.82 53.91 51.82 54.31 53.27 53.91 53.48 53.67
##  [841] 52.47 53.49 54.15 53.16 53.20 54.31 54.18 52.83 53.76 53.73 53.46 53.47
##  [853] 53.92 53.20 53.46 53.54 53.48 53.48 52.67 53.54 54.18 53.27 52.95 54.29
##  [865] 54.17 52.69 54.17 53.73 52.71 53.47 53.49 53.48 53.40 53.70 54.18 54.29
##  [877] 53.11 54.17 53.49 53.52 53.70 53.70 53.40 53.46 53.67 52.76 54.18 54.06
##  [889] 53.47 53.47 53.11 53.48 53.18 53.70 53.70 53.67 53.62 53.20 53.31 53.62
##  [901] 53.39 53.46 53.76 53.47 54.18 53.46 53.39 53.40 54.18 53.32 53.39 54.15
##  [913] 53.48 52.94 53.76 52.63 53.39 53.49 54.32 52.92 53.40 53.46 53.27 53.49
##  [925] 54.15 53.21 54.14 54.18 53.32 54.48 53.46 53.32 54.39 53.70 54.29 53.39
##  [937] 53.48 53.76 52.63 52.02 53.18 53.62 53.73 53.16 53.62 52.61 54.76 54.44
##  [949] 53.70 54.14 52.95 53.73 53.11 53.40 54.41 53.46 52.76 53.67 53.47 54.39
##  [961] 54.31 53.70 54.18 53.46 52.67 54.91 54.17 53.49 53.39 53.70 52.47 53.49
##  [973] 53.92 53.06 53.46 54.80 53.76 53.20 53.91 53.08 53.49 54.18 53.46 53.39
##  [985] 53.70 54.29 54.41 54.15 53.49 53.27 53.91 52.63 53.31 52.92 52.95 54.14
##  [997] 53.27 53.39 54.15 52.95
hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 53
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_severidad))^2+(median(NfinalMedia)-median(C8$Ind_2_severidad))^2,2);EE
## [1] 0.03

Índices por separado

Probabilidad de contagio

#-----------------------------------probabilidad de contagio-----------------------------------
Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]

Imin_Proba<-min(Proba);Imin_Proba
## [1] -5.561753
Imax_Proba<-max(Proba);Imax_Proba
## [1] 3.500155
Ind_2_Proba3<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) #con este índice se hace el cluster
min(Ind_2_Proba3)
## [1] 0
max(Ind_2_Proba3)
## [1] 100
C8<-cbind(Ind_2_Proba3,CaliyPalmira)
summary(C8$Ind_2_Proba3);sd(C8$Ind_2_Proba3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   48.23   60.96   61.38   74.47  100.00
## [1] 19.62697

K-means

set.seed(1234)
kmeans3<- kmeans(C8$Ind_2_Proba3, 3, iter.max = 1000, nstart = 10)

C8$cluster <- kmeans3$cluster
summary(C8)
##   Ind_2_Proba3         x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 48.23   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 60.96   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 61.38   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 74.47   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :2.169  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans3$centers
##       [,1]
## 1 85.61910
## 2 37.86926
## 3 61.10051
tapply(Ind_2_Proba3,kmeans3$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   73.55   77.48   83.87   85.62   93.50  100.00 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   32.78   40.56   37.87   45.62   49.42 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   49.57   55.37   61.00   61.10   67.09   73.29

BASES CON IPRG K-MEANS

library(car)
C8$cluster<-factor(C8$cluster,levels=c("2","3","1"),labels = c("1.Bajo","2.Medio","3.Alto"))
summary(C8)
##   Ind_2_Proba3         x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 48.23   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 60.96   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 61.38   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 74.47   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster   
##  1.Bajo :403  
##  2.Medio:642  
##  3.Alto :398  
##               
##               
## 
table(C8$cluster)
## 
##  1.Bajo 2.Medio  3.Alto 
##     403     642     398

ECM

#Nfinal<-c()
NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=CaliyPalmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]
  Imin_Proba<-min(Proba) 
  Imax_Proba<-max(Proba)
  Ind_2_Proba3<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) 
  #aquí están las replicaciones
  NfinalMedia[i]=median(sample(Ind_2_Proba3,replace = TRUE))
  }; NfinalMedia
##    [1] 61.32 60.84 60.71 60.51 61.00 61.67 60.84 60.84 60.96 61.21 60.84 61.12
##   [13] 61.47 61.27 61.71 60.81 61.12 60.24 61.00 59.90 61.15 61.32 60.72 60.84
##   [25] 60.84 61.27 60.88 60.84 60.84 60.96 61.45 60.84 61.47 60.96 61.12 61.35
##   [37] 61.27 61.23 60.81 60.96 61.00 60.81 60.84 61.00 61.27 61.32 60.71 61.27
##   [49] 61.27 60.84 60.84 61.27 60.84 60.51 61.27 60.84 60.84 61.38 61.08 60.84
##   [61] 60.52 61.08 61.12 61.67 61.12 61.59 61.27 60.72 61.71 61.43 60.56 61.21
##   [73] 60.96 60.84 61.27 61.27 60.72 60.71 61.51 61.38 61.23 60.84 61.23 61.71
##   [85] 61.23 61.31 60.84 60.19 60.71 60.64 61.12 61.00 61.43 61.00 60.84 60.84
##   [97] 61.47 60.84 61.27 61.27 61.12 60.84 61.75 61.38 61.00 61.75 60.24 61.47
##  [109] 60.88 60.08 61.23 61.28 61.21 61.27 60.84 61.00 60.70 60.19 60.84 60.84
##  [121] 60.96 61.00 60.96 60.84 61.32 61.75 60.88 61.00 61.12 60.84 60.04 61.47
##  [133] 60.84 60.53 61.38 60.84 61.00 60.84 60.84 61.47 61.79 61.32 60.84 61.00
##  [145] 60.84 60.84 61.28 61.32 61.43 60.52 60.71 60.84 61.23 61.00 61.00 61.35
##  [157] 60.19 60.84 61.28 61.27 60.84 61.27 61.00 61.28 61.00 60.84 61.27 60.84
##  [169] 61.28 61.00 61.08 60.84 60.84 61.27 61.08 61.12 60.84 60.84 60.84 61.27
##  [181] 60.96 61.47 61.00 61.28 60.88 60.70 60.84 59.78 61.32 61.12 60.84 60.96
##  [193] 61.38 60.44 61.51 60.88 61.35 61.00 61.43 61.00 61.28 60.84 60.96 60.96
##  [205] 61.35 60.84 60.84 60.81 61.00 61.00 60.84 60.84 60.71 60.84 60.64 60.84
##  [217] 60.84 60.84 60.84 60.84 60.84 61.31 61.28 61.00 60.84 60.84 61.38 60.72
##  [229] 61.27 60.84 60.96 60.81 60.88 60.84 61.15 60.84 60.84 61.00 61.12 60.19
##  [241] 60.84 61.86 60.96 61.27 60.84 61.47 61.21 60.96 61.47 61.71 61.28 61.28
##  [253] 61.28 60.84 60.41 60.23 60.84 61.31 59.78 61.00 61.27 61.12 60.84 60.72
##  [265] 60.84 61.45 61.51 60.84 61.27 61.71 61.00 60.72 60.52 61.00 59.78 61.60
##  [277] 60.84 60.84 61.38 61.12 61.23 60.84 60.84 60.84 60.71 61.27 60.24 60.84
##  [289] 60.84 60.84 60.84 60.84 60.52 60.24 60.84 60.84 61.00 61.23 61.27 60.84
##  [301] 61.28 60.84 60.84 60.96 60.81 60.72 60.84 60.41 61.51 60.23 61.38 61.12
##  [313] 60.84 60.84 60.70 61.60 60.84 60.84 61.08 61.12 60.96 61.21 60.84 61.38
##  [325] 61.00 61.43 60.84 60.84 61.35 60.84 61.35 60.84 60.84 61.28 61.59 61.27
##  [337] 60.09 60.09 60.84 60.71 61.08 60.84 60.84 61.00 61.08 61.28 61.27 61.51
##  [349] 60.71 61.31 60.71 61.00 61.35 61.28 61.43 61.43 61.00 61.32 61.28 61.27
##  [361] 61.00 61.00 60.72 61.12 61.27 61.28 61.60 61.15 61.00 60.09 60.84 60.84
##  [373] 61.00 60.70 60.84 60.84 61.08 60.88 60.71 61.12 60.64 60.84 60.84 61.08
##  [385] 60.84 60.84 60.64 61.43 60.84 61.47 60.84 60.96 60.52 60.84 60.84 60.88
##  [397] 61.12 61.12 60.84 59.76 61.12 61.47 61.27 60.84 60.84 60.84 61.00 61.00
##  [409] 61.15 61.38 61.59 61.15 60.70 61.43 61.71 61.21 61.59 60.84 60.71 60.84
##  [421] 61.00 60.72 60.84 61.00 61.08 61.00 60.72 61.00 60.84 61.47 61.21 60.84
##  [433] 60.84 61.31 61.00 60.84 60.84 61.08 60.84 60.84 60.84 59.77 60.84 61.00
##  [445] 60.56 61.43 61.27 60.84 60.70 61.27 60.71 60.96 61.12 60.84 61.32 61.47
##  [457] 60.96 60.84 60.84 61.00 60.71 60.84 61.38 60.84 60.41 60.72 60.84 59.33
##  [469] 60.44 61.28 61.27 61.55 60.84 61.12 60.84 61.00 61.12 60.84 61.55 61.12
##  [481] 61.15 61.23 60.72 60.84 60.84 61.08 61.00 61.15 60.88 60.84 61.00 61.00
##  [493] 61.15 61.12 60.84 61.00 60.72 61.27 60.88 61.38 61.23 60.53 60.84 61.55
##  [505] 61.08 60.84 60.96 60.72 60.96 61.38 60.84 61.28 60.84 61.27 60.96 60.72
##  [517] 61.12 60.53 61.28 60.81 60.84 61.59 60.84 60.84 60.84 60.44 61.28 61.59
##  [529] 61.27 60.84 60.84 61.08 61.08 60.70 59.61 61.27 61.51 61.12 60.84 61.00
##  [541] 60.41 61.12 60.88 60.84 60.84 60.51 61.12 61.27 60.72 61.71 60.84 60.84
##  [553] 60.84 61.71 61.43 60.84 60.41 62.65 60.84 60.24 60.64 60.84 61.00 60.84
##  [565] 61.00 61.28 60.96 60.84 61.08 61.35 61.00 60.84 60.84 60.64 61.43 60.72
##  [577] 61.71 61.15 60.84 60.96 60.84 61.12 61.27 60.70 60.84 61.21 60.88 61.28
##  [589] 60.84 61.27 61.35 60.84 61.28 61.23 60.96 60.84 60.84 60.09 61.00 61.00
##  [601] 60.84 60.84 60.84 60.84 60.84 60.84 60.56 61.79 60.84 61.75 60.84 61.27
##  [613] 60.08 60.56 61.43 60.84 60.84 61.12 60.84 61.67 61.00 61.32 60.96 60.84
##  [625] 60.84 61.28 61.31 61.00 60.84 60.84 61.38 60.84 60.84 60.52 60.96 61.27
##  [637] 60.84 60.84 60.88 60.96 61.47 61.08 61.51 60.72 60.84 60.84 60.84 60.84
##  [649] 60.96 61.28 60.84 61.21 61.43 61.90 60.84 60.09 60.84 61.23 61.12 59.30
##  [661] 60.96 60.84 60.84 60.09 60.84 60.84 61.08 61.67 60.71 61.27 60.72 60.84
##  [673] 61.00 60.84 61.27 60.71 60.84 61.27 60.88 61.31 61.27 61.35 60.84 60.84
##  [685] 60.84 61.21 61.59 60.84 60.96 61.00 60.84 61.12 60.84 61.32 61.38 61.28
##  [697] 60.84 61.00 61.27 61.27 60.72 61.00 60.84 60.84 61.67 60.64 61.27 60.84
##  [709] 60.84 60.84 61.35 61.43 61.32 61.47 60.84 61.27 60.84 60.96 60.84 60.84
##  [721] 59.90 61.12 60.84 61.75 60.84 61.00 61.90 61.00 61.35 60.44 60.09 60.84
##  [733] 60.96 61.23 60.72 60.84 60.84 60.96 60.84 60.96 60.84 61.21 61.35 60.84
##  [745] 61.23 60.84 60.84 60.84 60.84 60.96 61.00 60.71 60.84 61.27 61.43 61.55
##  [757] 60.70 60.53 60.84 60.56 60.88 61.21 60.51 60.71 60.84 60.84 60.84 61.43
##  [769] 60.52 61.31 61.47 60.84 61.31 60.37 61.59 60.71 60.71 60.84 61.59 61.00
##  [781] 61.27 60.84 60.84 61.12 60.84 61.27 60.84 60.19 61.12 61.00 61.79 60.84
##  [793] 59.91 60.71 61.47 61.27 61.38 61.27 60.84 60.84 60.23 60.52 60.71 60.84
##  [805] 61.27 59.49 60.09 61.71 61.31 59.33 61.23 60.84 60.70 60.84 61.32 61.00
##  [817] 61.27 61.27 61.15 61.23 61.71 60.96 61.43 61.31 60.84 61.27 60.84 60.72
##  [829] 60.71 61.55 60.71 60.09 61.51 61.59 60.84 61.43 59.90 61.79 60.84 61.12
##  [841] 60.84 61.00 60.84 61.31 60.71 60.84 60.84 60.51 60.84 61.00 61.27 61.47
##  [853] 61.28 60.51 61.31 61.51 60.84 60.88 60.84 61.00 61.59 61.12 60.84 60.96
##  [865] 61.00 59.61 61.15 61.00 60.70 60.84 60.84 60.72 60.41 61.47 61.71 61.51
##  [877] 60.84 61.27 61.27 61.71 61.08 60.88 60.96 61.00 61.27 60.84 60.88 61.08
##  [889] 60.84 60.84 60.37 60.23 61.71 60.84 61.51 60.72 60.84 61.23 60.84 61.12
##  [901] 61.00 61.47 61.27 61.31 60.96 61.38 61.28 61.45 61.45 60.84 61.47 61.32
##  [913] 60.56 60.64 61.27 60.84 60.84 60.88 61.71 60.84 61.23 61.67 61.00 61.28
##  [925] 61.27 61.00 60.84 60.84 60.84 61.59 60.84 60.84 61.67 60.84 61.51 61.21
##  [937] 61.28 60.84 61.08 60.88 60.84 60.52 61.71 61.00 60.72 61.43 61.35 60.88
##  [949] 60.81 61.12 60.84 61.15 61.27 61.12 60.84 60.84 60.84 61.21 60.70 61.15
##  [961] 61.28 60.84 61.35 61.15 60.84 61.51 60.72 61.23 61.27 61.15 60.09 60.84
##  [973] 60.84 61.08 61.31 61.15 60.96 60.84 61.79 61.23 61.23 60.84 60.84 60.84
##  [985] 60.84 61.21 61.31 61.28 61.15 60.84 61.35 60.53 60.84 61.35 60.84 60.84
##  [997] 60.96 60.84 60.84 60.96
hist(NfinalMedia)

I_mediana=round(mean(NfinalMedia,3));I_mediana
## [1] 61
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Proba3))^2+(median(NfinalMedia)-median(C8$Ind_2_Proba3))^2,2);EE
## [1] 1.3

Severidad

#-----------------------------------severidad-----------------------------------
Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]

Imin_Sev<-min(Sev);Imin_Sev
## [1] -4.142719
Imax_Sev<-max(Sev);Imax_Sev
## [1] 3.366186
Ind_2_Sev3<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
min(Ind_2_Sev3)
## [1] 0
max(Ind_2_Sev3)
## [1] 100
sd(Ind_2_Sev3)
## [1] 22.00786
#rbind(summary(Ind_2_Sev))
#print(xtable(rbind(summary(Ind_2_Sev))), include.rownames = FALSE)
C8<-cbind(Ind_2_Sev3,CaliyPalmira)
summary(C8$Ind_2_Sev3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   41.66   54.28   55.17   70.83  100.00

K-means

set.seed(1234)
kmeans3<- kmeans(C8$Ind_2_Sev3, 3, iter.max = 1000, nstart = 10)

C8$cluster <- kmeans3$cluster
summary(C8)
##    Ind_2_Sev3          x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.66   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 54.28   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 55.17   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 70.83   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :2.237  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans3$centers
##       [,1]
## 1 83.32348
## 2 26.63181
## 3 54.53598
tapply(Ind_2_Sev3,kmeans3$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   70.50   75.11   83.33   83.32   91.68  100.00 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   20.95   29.21   26.63   33.48   38.11 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   41.53   49.91   54.28   54.54   62.54   67.15

BASES CON IPRG K-MEANS

library(car)
C8$cluster<-factor(C8$cluster,levels=c("2","3","1"),labels = c("1.Bajo","2.Medio","3.Alto"))
summary(C8)
##    Ind_2_Sev3          x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.66   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 54.28   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 55.17   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 70.83   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster   
##  1.Bajo :353  
##  2.Medio:716  
##  3.Alto :374  
##               
##               
## 
table(C8$cluster)
## 
##  1.Bajo 2.Medio  3.Alto 
##     353     716     374

ECM

#Nfinal<-c()
NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=CaliyPalmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]
  Imin_Sev<-min(Sev)
  Imax_Sev<-max(Sev)
  Ind_2_Sev3<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
 #aquí están las replicaciones
  NfinalMedia[i]=median(sample(Ind_2_Sev3,replace = TRUE))
  }; NfinalMedia
##    [1] 54.28 54.59 54.42 54.28 54.32 54.28 54.43 54.28 54.47 54.18 54.28 54.28
##   [13] 54.28 54.28 54.28 54.32 54.34 54.43 54.58 54.28 54.14 54.32 54.28 54.28
##   [25] 54.16 54.22 54.28 54.16 54.28 54.34 54.28 54.28 54.28 54.28 54.34 54.50
##   [37] 54.28 54.25 54.28 54.28 54.14 54.28 53.99 54.28 54.12 54.28 54.34 54.34
##   [49] 54.22 54.34 54.20 54.47 54.28 54.16 54.28 54.28 54.28 54.28 54.28 54.28
##   [61] 54.28 54.18 54.31 54.28 54.28 54.18 54.28 54.06 54.57 54.28 54.34 54.28
##   [73] 54.19 54.14 54.28 54.31 54.32 54.28 54.55 54.34 54.28 54.16 54.28 54.28
##   [85] 54.31 54.16 54.28 54.28 54.28 54.28 54.20 54.31 54.28 54.28 54.28 54.28
##   [97] 54.32 54.28 54.28 54.28 54.28 54.28 54.28 54.28 54.28 54.64 54.28 54.28
##  [109] 54.32 54.28 54.28 54.43 54.28 54.28 54.28 54.28 54.14 54.28 54.28 54.14
##  [121] 54.28 54.41 54.16 54.40 54.28 54.31 54.40 54.28 54.28 54.28 54.16 54.43
##  [133] 54.22 54.16 54.47 54.28 54.43 54.42 54.28 54.28 54.28 54.57 54.16 54.59
##  [145] 54.28 54.28 54.34 54.28 54.19 54.28 54.28 54.28 54.28 54.18 54.28 54.58
##  [157] 54.28 54.32 54.28 54.28 54.28 54.28 54.34 54.28 54.22 54.34 54.22 54.12
##  [169] 54.28 54.22 54.28 54.34 54.32 54.28 54.28 54.34 54.16 54.31 54.28 54.14
##  [181] 54.28 54.44 54.28 54.28 54.28 54.28 54.28 54.16 54.28 54.28 54.20 54.28
##  [193] 54.34 54.28 54.34 54.34 54.40 54.32 54.28 54.28 54.18 54.43 54.28 54.28
##  [205] 54.28 54.28 54.28 54.22 54.28 54.16 54.28 54.28 54.28 54.57 54.28 54.28
##  [217] 54.22 54.28 54.31 54.16 54.30 54.28 54.55 54.19 54.28 54.16 54.28 54.32
##  [229] 54.28 54.28 54.31 54.47 54.28 54.28 54.28 54.28 54.28 54.64 54.30 50.51
##  [241] 54.36 54.40 54.38 54.28 54.06 54.32 54.28 54.28 54.16 54.28 54.63 54.12
##  [253] 54.31 54.47 54.28 54.28 54.28 54.28 54.31 54.28 54.28 54.28 54.28 54.16
##  [265] 54.28 54.28 54.34 54.28 54.28 54.28 54.28 54.32 54.28 54.28 54.28 54.28
##  [277] 54.16 54.36 54.43 54.28 54.28 54.28 54.28 54.28 54.28 54.18 54.41 54.12
##  [289] 54.28 54.43 54.32 54.28 54.30 54.28 54.28 54.28 54.25 54.28 54.34 54.14
##  [301] 54.28 54.28 54.31 54.28 54.28 54.20 54.22 54.16 54.28 54.28 54.28 54.28
##  [313] 54.28 54.38 54.28 54.40 54.28 54.25 54.28 54.28 54.28 54.19 54.28 54.28
##  [325] 54.25 54.28 54.28 54.28 54.57 54.14 54.28 54.28 54.28 54.28 54.32 54.32
##  [337] 54.16 54.32 54.25 54.28 54.28 54.28 54.16 54.22 54.28 54.28 54.32 54.28
##  [349] 54.28 54.28 54.28 54.28 54.63 54.41 54.28 54.32 54.38 54.28 54.28 54.28
##  [361] 54.28 54.28 54.16 54.28 54.28 54.28 54.42 54.25 54.42 54.28 54.28 54.28
##  [373] 54.28 54.31 54.28 54.28 54.22 54.28 54.28 54.22 54.28 54.28 54.28 54.28
##  [385] 54.28 54.28 54.28 54.28 54.22 54.32 54.28 54.28 54.16 54.28 54.50 54.28
##  [397] 54.31 54.28 54.28 54.28 54.28 54.28 54.18 54.28 54.28 54.28 54.22 54.18
##  [409] 54.57 54.43 54.28 54.28 54.28 54.47 54.38 54.28 54.47 54.28 54.19 54.28
##  [421] 54.28 54.34 54.28 54.28 54.28 54.22 54.28 54.58 54.28 54.28 54.28 54.19
##  [433] 54.28 54.22 54.28 54.28 54.28 54.28 54.28 54.18 54.28 54.28 54.16 54.28
##  [445] 54.28 54.32 54.34 54.28 54.28 54.42 54.28 54.28 54.28 54.28 54.28 54.28
##  [457] 54.42 54.22 54.28 54.34 54.28 54.28 54.31 54.28 54.14 54.28 54.28 54.25
##  [469] 54.14 54.28 54.28 54.28 54.28 54.28 54.28 54.28 54.42 54.28 54.31 54.28
##  [481] 54.31 54.22 54.25 54.28 54.25 54.22 54.28 54.28 54.28 54.32 54.28 54.28
##  [493] 54.25 54.34 54.28 54.28 54.55 54.28 54.28 54.41 54.28 54.20 54.25 54.28
##  [505] 54.28 54.28 54.14 54.28 54.30 54.34 54.28 54.20 54.31 54.28 54.28 54.25
##  [517] 54.32 54.14 54.28 54.28 54.28 54.28 54.28 54.28 54.40 54.28 54.30 54.28
##  [529] 54.28 54.28 54.28 54.47 54.28 54.28 54.25 54.58 54.28 54.28 54.30 54.28
##  [541] 54.19 54.59 54.28 54.22 54.28 54.28 54.28 54.28 54.19 54.28 54.12 54.16
##  [553] 54.16 54.32 54.34 54.25 54.28 54.43 54.22 54.28 54.25 54.32 54.28 54.32
##  [565] 54.28 54.28 54.30 54.16 54.28 54.28 54.19 54.28 54.16 54.25 54.28 54.16
##  [577] 54.34 54.28 54.47 54.28 54.32 54.28 54.28 54.28 54.28 54.19 54.57 54.28
##  [589] 54.28 54.32 54.28 54.14 54.28 54.34 54.34 54.28 54.28 50.33 54.28 54.28
##  [601] 54.28 54.28 54.16 54.28 54.32 54.16 54.28 54.28 54.08 54.28 54.28 54.28
##  [613] 54.22 54.28 54.40 54.28 54.28 54.28 54.25 54.31 54.28 54.22 54.28 54.28
##  [625] 54.28 54.43 54.28 54.38 54.34 54.36 54.28 54.59 54.28 54.47 54.42 54.28
##  [637] 54.28 54.32 54.28 54.31 54.36 54.28 54.32 54.19 54.28 54.12 54.34 54.28
##  [649] 54.25 54.28 54.28 54.28 54.28 54.28 54.12 54.34 54.34 54.59 54.47 54.25
##  [661] 54.53 54.28 54.32 54.28 54.28 54.28 54.47 54.32 54.31 54.12 54.16 54.28
##  [673] 54.28 54.28 54.28 54.10 54.22 54.28 54.16 54.28 54.50 54.34 54.28 54.28
##  [685] 54.28 54.28 54.30 54.28 54.28 54.32 54.28 54.28 54.28 54.28 54.28 54.28
##  [697] 54.50 54.28 54.28 54.38 54.38 54.28 54.16 54.28 54.28 50.47 54.34 54.28
##  [709] 54.28 54.28 54.34 54.28 54.32 54.28 54.19 54.31 54.31 54.14 54.31 54.28
##  [721] 54.28 54.28 54.19 54.34 54.28 54.43 54.28 54.28 54.34 50.56 54.28 54.28
##  [733] 54.28 54.16 54.28 54.28 54.25 54.16 54.28 54.28 54.28 54.28 54.16 54.28
##  [745] 54.40 54.22 54.22 54.28 54.30 54.28 54.32 54.32 54.28 54.19 54.25 54.34
##  [757] 54.36 54.22 54.28 54.28 54.28 54.06 54.14 54.28 54.40 54.14 54.28 54.19
##  [769] 54.31 54.28 54.16 54.43 54.28 54.22 54.64 54.28 54.28 54.28 54.25 54.42
##  [781] 54.30 54.12 54.28 54.28 54.28 54.43 54.06 54.28 54.44 54.28 54.58 50.51
##  [793] 54.32 54.28 54.44 54.28 54.25 54.28 54.28 54.28 54.22 54.14 54.22 54.25
##  [805] 54.18 54.28 54.28 54.28 54.28 54.28 54.28 54.19 54.28 54.28 54.28 54.14
##  [817] 54.36 54.58 54.22 54.20 54.28 54.28 54.28 54.28 54.14 54.28 54.28 54.06
##  [829] 54.28 54.28 54.19 54.28 54.22 54.32 54.06 54.28 54.28 54.28 54.22 54.28
##  [841] 54.12 54.28 54.28 54.25 54.28 54.32 54.32 54.10 54.28 54.69 54.28 54.22
##  [853] 54.28 54.32 54.28 54.28 54.28 54.28 54.28 54.31 54.28 54.28 54.25 54.34
##  [865] 54.28 54.28 54.44 54.28 54.16 54.28 54.28 54.40 54.28 54.28 54.28 54.47
##  [877] 54.32 54.36 54.28 54.28 54.42 54.31 54.28 54.47 54.42 54.10 54.38 54.34
##  [889] 54.28 54.28 54.16 54.28 54.28 54.42 54.30 54.28 54.42 54.16 54.28 54.28
##  [901] 54.28 54.32 54.28 54.28 54.28 54.28 54.28 54.28 54.38 54.28 54.34 54.28
##  [913] 54.28 54.28 54.42 54.28 54.30 54.31 54.28 54.28 54.28 54.28 54.25 54.28
##  [925] 54.31 54.16 54.47 54.43 54.63 54.34 54.38 54.28 54.58 54.16 54.28 54.28
##  [937] 54.28 54.50 54.25 54.14 54.28 54.36 54.44 54.16 54.28 54.28 58.30 54.61
##  [949] 54.28 54.28 54.16 54.28 54.34 54.28 54.34 54.34 54.28 54.31 54.28 54.40
##  [961] 54.28 54.32 54.28 54.28 54.16 54.43 54.43 54.19 54.30 54.32 54.22 54.31
##  [973] 54.28 54.28 54.28 54.28 54.34 54.28 54.28 54.14 54.28 54.28 54.28 54.28
##  [985] 54.28 54.42 58.26 54.22 54.28 54.28 54.32 54.28 54.16 54.28 54.28 54.30
##  [997] 54.19 54.28 54.28 54.28
hist(NfinalMedia)

I_mediana=round(mean(NfinalMedia,3));I_mediana
## [1] 54
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-(1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Sev3))^2+(median(NfinalMedia)-median(C8$Ind_2_Sev3))^2;EE
## [1] 0.003171572

Susceptibilidad

#-----------------------------------susceptibilidad-----------------------------------
SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]

Imin_SU<-min(SU);Imin_SU
## [1] -3.522199
Imax_SU<-max(SU);Imax_SU
## [1] 6.746319
Ind_2_SU3<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
min(Ind_2_SU3)
## [1] 0
max(Ind_2_SU3)
## [1] 100
sd(Ind_2_SU3)
## [1] 17.49717
#rbind(summary(Ind_2_SU))
#print(xtable(rbind(summary(Ind_2_SU))), include.rownames = FALSE)


#-----------------------------------k-mean--------------------------------####
C8<-cbind(Ind_2_SU3,CaliyPalmira)
summary(C8$Ind_2_SU3)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   21.91   34.02   34.30   45.38  100.00

K-means

set.seed(1234)
kmeans3<- kmeans(C8$Ind_2_SU3, 3, iter.max = 1000, nstart = 10)

C8$cluster <- kmeans3$cluster
summary(C8)
##    Ind_2_SU3           x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 21.91   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 34.02   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 34.30   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 45.38   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:2.000  
##  Median :2.000  
##  Mean   :2.222  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans3$centers
##       [,1]
## 1 61.37931
## 2 38.83473
## 3 17.44862
tapply(Ind_2_SU3,kmeans3$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   50.13   54.34   59.67   61.38   67.79  100.00 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   28.20   34.02   38.41   38.83   44.33   49.89 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   12.39   18.83   17.45   23.64   28.13

BASES CON IPRG K-MEANS

library(car)
C8$cluster<-factor(C8$cluster,levels=c("2","3","1"),labels = c("1.Bajo","2.Medio","3.Alto"))
summary(C8)
##    Ind_2_SU3           x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 21.91   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 34.02   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 34.30   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 45.38   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster   
##  1.Bajo :603  
##  2.Medio:580  
##  3.Alto :260  
##               
##               
## 
table(C8$cluster)
## 
##  1.Bajo 2.Medio  3.Alto 
##     603     580     260

ECM

#Nfinal<-c()
NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=CaliyPalmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]
  Imin_SU<-min(SU)
  Imax_SU<-max(SU)
  Ind_2_SU3<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
 #aquí están las replicaciones
  NfinalMedia[i]=median(sample(Ind_2_SU3,replace = TRUE))
  }; NfinalMedia
##    [1] 34.02 34.04 34.02 34.02 34.02 34.02 33.27 34.02 34.02 34.02 34.02 34.02
##   [13] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.28
##   [25] 33.73 33.88 34.02 33.27 34.02 34.41 34.02 33.28 34.02 34.02 34.02 34.02
##   [37] 34.02 33.27 34.02 33.43 34.02 34.02 31.83 34.02 33.28 31.45 34.02 33.42
##   [49] 32.99 34.02 32.99 34.02 33.73 32.21 34.02 34.02 34.02 34.02 34.02 33.73
##   [61] 34.02 33.43 34.02 34.02 34.02 32.35 34.02 32.21 34.02 34.02 34.02 34.02
##   [73] 33.12 34.02 34.02 34.02 34.02 33.12 34.02 34.04 33.11 34.02 33.73 34.02
##   [85] 33.12 34.02 33.88 34.02 33.27 34.02 33.27 34.02 34.02 33.12 33.12 34.02
##   [97] 34.02 34.02 33.88 34.02 34.02 34.02 34.41 34.02 34.02 34.02 33.11 34.02
##  [109] 34.02 34.02 34.02 34.02 33.43 34.02 34.02 34.02 32.51 33.27 34.02 32.60
##  [121] 34.02 33.42 31.75 34.02 34.02 33.27 34.02 34.02 33.27 34.02 34.02 34.02
##  [133] 34.02 33.73 33.43 34.02 34.17 33.88 34.02 34.02 32.99 34.02 34.02 34.02
##  [145] 33.73 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.73 33.28 33.28 34.02
##  [157] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.27 34.02 34.02 33.27 34.02
##  [169] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.88 34.02 34.02 33.27
##  [181] 34.02 33.73 33.27 34.02 34.02 33.12 34.02 34.02 34.02 33.88 33.12 34.02
##  [193] 34.02 34.02 34.02 34.05 34.02 34.04 34.02 34.02 33.27 34.02 34.02 34.02
##  [205] 34.02 32.48 34.02 31.75 34.54 33.73 33.43 33.88 34.02 34.02 34.02 34.02
##  [217] 34.02 34.02 33.88 32.36 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02
##  [229] 34.02 33.27 34.02 34.02 33.27 34.02 32.60 34.02 34.02 34.02 34.02 33.11
##  [241] 34.02 34.02 33.28 34.02 32.51 34.02 34.02 33.27 33.28 34.02 34.02 34.02
##  [253] 34.02 33.88 33.28 34.02 32.48 34.02 34.02 33.88 34.02 34.02 34.02 33.88
##  [265] 34.02 33.28 34.02 34.02 34.02 33.88 34.02 34.02 33.28 32.99 34.02 33.89
##  [277] 32.35 34.02 34.02 34.02 34.02 33.89 34.02 34.02 33.12 33.88 34.02 34.02
##  [289] 34.02 34.02 34.02 33.27 34.02 34.02 34.02 34.02 33.27 34.02 33.27 33.11
##  [301] 34.02 34.02 34.02 34.02 34.02 33.73 34.02 33.28 33.27 34.02 32.99 34.02
##  [313] 34.02 34.02 34.02 34.04 34.02 34.02 34.02 33.27 33.12 33.42 34.02 33.57
##  [325] 34.02 34.02 33.89 34.02 33.73 34.02 32.36 33.89 34.02 33.27 34.02 34.02
##  [337] 32.01 34.02 34.02 34.02 34.02 33.27 32.82 34.02 34.02 34.02 34.02 33.43
##  [349] 33.27 34.02 34.02 34.02 34.02 34.56 34.02 32.21 34.02 34.02 34.02 33.42
##  [361] 34.02 33.73 33.88 34.02 34.02 33.12 33.12 34.02 34.02 34.02 34.02 34.02
##  [373] 34.02 34.02 34.02 34.02 33.88 32.51 34.02 34.02 34.02 34.02 34.02 32.35
##  [385] 34.02 33.27 33.12 33.27 32.53 33.12 33.88 33.27 33.57 33.88 34.02 33.73
##  [397] 33.89 34.02 33.88 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.27
##  [409] 34.02 33.12 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02
##  [421] 34.02 34.02 34.02 33.89 33.42 34.02 34.02 34.02 34.02 33.27 33.28 33.73
##  [433] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.43 33.57 33.42 34.02
##  [445] 33.88 34.04 33.88 33.27 34.02 34.02 34.02 34.02 34.02 33.73 33.88 34.02
##  [457] 34.02 34.02 33.42 34.02 33.27 34.02 34.02 32.99 33.12 34.02 33.27 34.02
##  [469] 31.45 33.88 33.27 33.89 33.28 34.02 34.02 34.02 33.73 34.02 34.02 34.02
##  [481] 34.02 34.02 33.11 34.02 33.43 34.02 34.02 34.02 33.73 34.02 34.02 34.02
##  [493] 33.88 34.02 34.02 34.02 34.04 33.27 33.73 34.02 34.02 33.43 33.88 34.02
##  [505] 34.02 34.02 33.88 33.43 34.02 34.02 34.02 32.35 34.02 34.02 34.02 34.02
##  [517] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 32.21 34.02 33.28 34.02 34.02
##  [529] 34.02 33.73 34.02 34.02 33.88 33.73 34.02 34.02 32.36 34.02 34.02 33.42
##  [541] 33.88 34.02 34.02 34.02 34.02 33.28 33.88 34.02 33.88 34.02 33.27 33.11
##  [553] 33.73 34.02 34.02 34.02 34.02 34.16 33.88 33.27 34.02 34.02 33.27 34.02
##  [565] 33.73 34.02 34.02 32.99 34.02 34.02 33.27 34.02 33.27 34.02 33.27 32.51
##  [577] 34.02 34.02 34.02 33.43 34.02 33.27 34.02 33.12 33.43 32.53 33.27 32.82
##  [589] 34.02 34.02 33.28 32.99 34.02 34.02 34.02 34.02 33.89 32.99 33.89 33.89
##  [601] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.12 34.02 34.02 32.60
##  [613] 34.02 34.02 34.02 33.43 34.02 33.11 32.99 34.02 31.83 34.02 34.02 34.02
##  [625] 34.02 34.41 33.12 33.27 34.02 34.02 34.02 34.02 32.51 34.02 34.02 34.02
##  [637] 33.89 33.43 34.02 34.02 34.02 33.12 34.02 33.12 34.02 33.73 34.02 34.02
##  [649] 34.02 34.02 33.27 34.02 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.27
##  [661] 34.02 33.88 34.02 34.02 33.28 34.02 34.02 34.02 34.02 33.73 33.12 33.89
##  [673] 34.02 32.82 34.02 31.83 33.12 33.88 32.12 34.04 34.02 34.02 34.02 32.89
##  [685] 34.02 33.28 34.02 33.88 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.88
##  [697] 34.02 34.02 34.02 34.02 34.18 33.89 32.89 34.02 34.02 33.57 34.02 33.27
##  [709] 34.02 33.89 33.43 34.02 34.02 34.02 32.99 34.02 34.02 33.88 34.02 34.02
##  [721] 34.02 33.88 33.42 34.02 34.02 34.02 34.04 34.02 34.02 32.36 34.02 34.02
##  [733] 33.12 34.02 34.02 34.02 34.02 33.27 34.02 33.88 32.35 34.02 32.36 34.02
##  [745] 34.02 31.45 33.28 34.02 34.02 33.88 34.02 34.02 34.02 34.02 34.02 34.41
##  [757] 34.02 34.02 34.02 34.02 33.27 33.11 34.02 33.27 34.02 32.82 34.02 33.42
##  [769] 34.02 34.02 34.02 34.02 34.02 33.27 34.02 34.02 33.28 34.02 33.57 34.02
##  [781] 34.02 33.27 33.27 33.27 34.02 34.02 33.73 34.02 34.02 34.02 34.02 33.27
##  [793] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.27 33.88 34.02 34.02 34.02
##  [805] 34.02 33.12 33.28 34.02 34.02 32.99 33.88 32.60 34.02 34.02 34.04 33.89
##  [817] 34.02 34.02 33.28 34.02 34.02 34.02 34.02 34.02 33.27 34.02 34.02 33.12
##  [829] 34.02 34.02 33.27 33.73 34.02 34.02 33.73 34.02 34.02 34.02 34.02 34.02
##  [841] 33.27 34.02 34.02 34.02 33.27 34.02 34.02 33.42 34.02 33.73 34.02 33.28
##  [853] 34.02 33.73 34.02 34.02 34.02 33.88 33.27 34.02 34.02 33.89 33.88 34.02
##  [865] 34.04 32.48 34.02 33.73 33.42 33.89 34.02 34.02 33.43 34.02 34.02 34.02
##  [877] 32.82 34.04 33.27 34.02 34.02 34.02 33.27 34.02 34.02 34.02 34.02 34.02
##  [889] 34.02 34.02 33.73 33.73 33.27 33.89 34.02 34.02 33.28 33.27 34.02 33.57
##  [901] 34.02 34.02 34.02 33.88 34.02 33.27 34.02 33.88 34.02 33.28 33.73 34.02
##  [913] 34.02 32.99 34.02 32.34 34.02 34.02 34.02 33.27 34.02 33.27 34.02 33.12
##  [925] 34.02 33.27 34.02 34.02 33.88 34.02 34.02 34.02 34.02 34.02 34.02 34.02
##  [937] 34.02 34.02 33.57 32.82 33.42 34.02 34.02 34.02 34.02 32.35 34.02 34.02
##  [949] 34.02 34.02 33.43 34.02 34.02 34.02 34.02 34.04 33.73 34.02 34.02 34.04
##  [961] 34.02 34.02 34.02 33.27 34.02 34.02 34.02 34.02 33.73 34.02 32.36 34.02
##  [973] 34.02 34.02 34.02 34.02 34.02 34.02 34.02 33.73 34.02 33.88 34.02 34.02
##  [985] 34.02 34.02 34.02 34.02 34.02 33.73 34.02 32.51 34.02 32.36 33.43 34.02
##  [997] 34.02 34.02 34.02 33.12
hist(NfinalMedia)

I_mediana=round(mean(NfinalMedia,3));I_mediana
## [1] 34
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-(1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_SU3))^2+(median(NfinalMedia)-median(C8$Ind_2_SU3))^2;EE
## [1] 56.715

CALI

#---------------------Índice de percepción por ciudad---------------------------####
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
CaliyPalmira$Municipio<-as.factor(CaliyPalmira$Municipio)
Cali<-filter(CaliyPalmira, CaliyPalmira$Municipio=="Cali")

summary(Cali)
##       x11             x12             x21             x22       
##  Min.   :0.000   Min.   :2.000   Min.   :1.000   Min.   :2.000  
##  1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000   1st Qu.:3.000  
##  Median :4.000   Median :7.000   Median :5.000   Median :4.000  
##  Mean   :3.565   Mean   :6.294   Mean   :5.386   Mean   :3.656  
##  3rd Qu.:4.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :8.000   Max.   :7.000   Max.   :4.000  
##       x23             x24             x25             x31           x32     
##  Min.   :0.000   Min.   :1.000   Min.   :3.000   No     :  5   No     :386  
##  1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  9   No sabe: 61  
##  Median :8.000   Median :6.000   Median :7.000   Si     :783   Si     :350  
##  Mean   :7.329   Mean   :5.864   Mean   :6.504                              
##  3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                              
##  Max.   :8.000   Max.   :7.000   Max.   :7.000                              
##  x33          x41             x42             x43             x44       
##  0:  4   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1:720   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000  
##  2: 73   Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##          Mean   :3.839   Mean   :3.704   Mean   :3.991   Mean   :3.512  
##          3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##          Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x51             x52             x61             x62       
##  Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:1.000   1st Qu.:2.000  
##  Median :5.000   Median :6.000   Median :2.000   Median :4.000  
##  Mean   :4.731   Mean   :5.528   Mean   :2.221   Mean   :3.478  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:3.000   3rd Qu.:5.000  
##  Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.000  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.289   Mean   :4.575   Mean   :4.088   Mean   :5.428  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :3.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.118   Mean   :3.287   Mean   :4.438   Mean   :4.881  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84             x91        
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   : 0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.: 0.000  
##  Median :4.000   Median :4.000   Median :4.000   Median : 0.000  
##  Mean   :3.964   Mean   :4.092   Mean   :3.757   Mean   : 0.601  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.: 1.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :13.000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.000  
##  Median :3.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.449   Mean   :3.601   Mean   :3.606   Mean   :4.464  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103           x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.00   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.00   Median :5.000  
##  Mean   :4.494   Mean   :4.675   Mean   :4.12   Mean   :4.588  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :5.000  
##       x105             x106              id          Municipio  
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Cali   :797  
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:202.0   Palmira:  0  
##  Median : 8.000   Median : 6.000   Median :407.0                
##  Mean   : 7.853   Mean   : 5.762   Mean   :406.9                
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:611.0                
##  Max.   :14.000   Max.   :12.000   Max.   :814.0
## AFM CON TODAS LAS VARIABLES

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(Cali[,c(19:34)],
                      group=c(#2,
                              #5,
                              #3,
                              #4,
                              #2,
                              #2, #3
                              7,
                              4,
                              5
                              #6
                              ),
                      type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.88558352              35.330673                          35.33067
## comp 2  0.80127659              15.013730                          50.34440
## comp 3  0.46792772               8.767684                          59.11209
## comp 4  0.33608339               6.297283                          65.40937
## comp 5  0.31549687               5.911548                          71.32092
## comp 6  0.26084766               4.887571                          76.20849
## comp 7  0.23464033               4.396517                          80.60501
## comp 8  0.19947998               3.737709                          84.34272
## comp 9  0.16751433               3.138760                          87.48148
## comp 10 0.14802976               2.773672                          90.25515
## comp 11 0.12433215               2.329644                          92.58479
## comp 12 0.10948924               2.051529                          94.63632
## comp 13 0.08829007               1.654314                          96.29063
## comp 14 0.07611270               1.426144                          97.71678
## comp 15 0.06563418               1.229805                          98.94658
## comp 16 0.05622042               1.053417                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2    Dim.3     Dim.4     Dim.5
## Probabilidad de contagio 19.82260 79.665204 13.19394 91.207231 85.477448
## Severidad                39.72483 11.178689 50.39997  5.018541  7.488267
## Susceptibilidad          40.45257  9.156107 36.40609  3.774228  7.034285
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.6159570 0.8031239 0.4393622
## Severidad                0.8709080 0.3042487 0.6027138
## Susceptibilidad          0.8754346 0.2824650 0.4531235
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.519  0.714 -0.077
## x72 0.523  0.638 -0.060
## x73 0.490  0.679 -0.060
## x74 0.395  0.470  0.265
## x75 0.032  0.091 -0.035
## x76 0.349  0.585  0.061
## x77 0.282  0.034  0.316
## x81 0.592 -0.246  0.602
## x82 0.796 -0.288 -0.003
## x83 0.646 -0.272  0.525
## x84 0.793 -0.159  0.031
## x91 0.329 -0.209 -0.505
## x92 0.790 -0.173 -0.356
## x93 0.777 -0.200 -0.244
## x94 0.821 -0.191 -0.284
## x95 0.649 -0.289 -0.143
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.676 20.813  0.418
## x72  4.744 16.620  0.248
## x73  4.174 18.858  0.254
## x74  2.715  9.028  4.929
## x75  0.018  0.336  0.088
## x76  2.113 13.964  0.262
## x77  1.382  0.047  6.994
## x81  6.868  2.781 28.610
## x82 12.399  3.808  0.001
## x83  8.165  3.418 21.713
## x84 12.293  1.171  0.077
## x91  1.804  1.707 17.124
## x92 10.378  1.178  8.505
## x93 10.053  1.559  4.005
## x94 11.210  1.433  5.395
## x95  7.008  3.278  1.377
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.519  0.714 -0.077  4.676 20.813  0.418
## x72 0.523  0.638 -0.060  4.744 16.620  0.248
## x73 0.490  0.679 -0.060  4.174 18.858  0.254
## x74 0.395  0.470  0.265  2.715  9.028  4.929
## x75 0.032  0.091 -0.035  0.018  0.336  0.088
## x76 0.349  0.585  0.061  2.113 13.964  0.262
## x77 0.282  0.034  0.316  1.382  0.047  6.994
## x81 0.592 -0.246  0.602  6.868  2.781 28.610
## x82 0.796 -0.288 -0.003 12.399  3.808  0.001
## x83 0.646 -0.272  0.525  8.165  3.418 21.713
## x84 0.793 -0.159  0.031 12.293  1.171  0.077
## x91 0.329 -0.209 -0.505  1.804  1.707 17.124
## x92 0.790 -0.173 -0.356 10.378  1.178  8.505
## x93 0.777 -0.200 -0.244 10.053  1.559  4.005
## x94 0.821 -0.191 -0.284 11.210  1.433  5.395
## x95 0.649 -0.289 -0.143  7.008  3.278  1.377
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=Cali[,c(19:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##        x71        x72        x73        x74        x75        x76        x77 
## 0.51897714 0.52273671 0.49032346 0.39540629 0.03201124 0.34883299 0.28217312 
##        x81        x82        x83        x84        x91        x92        x93 
## 0.59244118 0.79605796 0.64597488 0.79262979 0.32918363 0.78957486 0.77708632 
##        x94        x95 
## 0.82059472 0.64882058
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 1.885584
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.3779422 0.3806800 0.3570753 0.2879524 0.0233120 0.2540356 0.2054910 0.4314419 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.5797247 0.4704275 0.5772282 0.2397261 0.5750034 0.5659087 0.5975935 0.4724999
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##         x71         x72         x73         x74         x75         x76 
## 0.059090002 0.059518062 0.055827535 0.045020400 0.003644754 0.039717630 
##         x77         x81         x82         x83         x84         x91 
## 0.032127832 0.067454514 0.090638033 0.073549784 0.090247705 0.037480382 
##         x92         x93         x94         x95 
## 0.089899876 0.088477947 0.093431752 0.073873792
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.059
## x72                     0.060
## x73                     0.056
## x74                     0.045
## x75                     0.004
## x76                     0.040
## x77                     0.032
## x81                     0.067
## x82                     0.091
## x83                     0.074
## x84                     0.090
## x91                     0.037
## x92                     0.090
## x93                     0.088
## x94                     0.093
## x95                     0.074
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.88558352              35.330673                          35.33067
## comp 2  0.80127659              15.013730                          50.34440
## comp 3  0.46792772               8.767684                          59.11209
## comp 4  0.33608339               6.297283                          65.40937
## comp 5  0.31549687               5.911548                          71.32092
## comp 6  0.26084766               4.887571                          76.20849
## comp 7  0.23464033               4.396517                          80.60501
## comp 8  0.19947998               3.737709                          84.34272
## comp 9  0.16751433               3.138760                          87.48148
## comp 10 0.14802976               2.773672                          90.25515
## comp 11 0.12433215               2.329644                          92.58479
## comp 12 0.10948924               2.051529                          94.63632
## comp 13 0.08829007               1.654314                          96.29063
## comp 14 0.07611270               1.426144                          97.71678
## comp 15 0.06563418               1.229805                          98.94658
## comp 16 0.05622042               1.053417                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.9625196
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.661618
Ind_2_severidad1<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad1)
## [1] 0
max(Ind_2_severidad1)
## [1] 100
C8<-cbind(Ind_2_severidad1,Cali)

summary(C8$Ind_2_severidad1);sd(C8$Ind_2_severidad1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   39.76   50.89   52.05   63.37  100.00
## [1] 17.58605

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Cali[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,c(1)];Coord1_severidad
  lp_severidad<-res.mfa_severidad$eig[c(1)];lp_severidad #VALOR PROPIO
  Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
  Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
  data.frame(round(Pesos_severidad,3))
  Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
  Imin_severidad<-min(Ind_severidad);Imin_severidad
  Imax_severidad<-max(Ind_severidad);Imax_severidad
  Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
  NfinalMedia[i]=median(sample(Ind_2_severidad,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 51
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_severidad1))^2+(median(NfinalMedia)-median(C8$Ind_2_severidad1))^2,2);EE
## [1] 0.01

Índices por separado

Probabilidad de contagio

#-----------------------------------probabilidad de contagio-----------------------------------
Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]

Imin_Proba<-min(Proba);Imin_Proba
## [1] -5.543756
Imax_Proba<-max(Proba);Imax_Proba
## [1] 3.539925
Ind_2_Proba<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) #con este índice se hace el cluster
min(Ind_2_Proba)
## [1] 0
max(Ind_2_Proba)
## [1] 100
C8<-cbind(Ind_2_Proba,Cali)
summary(C8$Ind_2_Proba);sd(C8$Ind_2_Proba)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   49.02   60.59   61.03   73.73  100.00
## [1] 19.25214

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Cali[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]
  Imin_Proba<-min(Proba)
  Imax_Proba<-max(Proba)
  Ind_2_Proba<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) 
  #repeticiones
  NfinalMedia[i]=median(sample(Ind_2_Proba,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 61
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Proba))^2+(median(NfinalMedia)-median(C8$Ind_2_Proba))^2,2);EE
## [1] 0.72

Severidad

#-----------------------------------severidad-----------------------------------
Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]

Imin_Sev<-min(Sev);Imin_Sev
## [1] -3.969254
Imax_Sev<-max(Sev);Imax_Sev
## [1] 3.521764
Ind_2_Sev<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
min(Ind_2_Sev)
## [1] 0
max(Ind_2_Sev)
## [1] 100
sd(Ind_2_Sev)
## [1] 21.99115
#rbind(summary(Ind_2_Sev))
#print(xtable(rbind(summary(Ind_2_Sev))), include.rownames = FALSE)
C8<-cbind(Ind_2_Sev,Cali)
summary(C8$Ind_2_Sev)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   37.60   50.26   52.99   66.90  100.00

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Cali[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]
  Imin_Sev<-min(Sev)
  Imax_Sev<-max(Sev)
  Ind_2_Sev<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
  #repeticiones
  NfinalMedia[i]=median(sample(Ind_2_Sev,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 50
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Sev))^2+(median(NfinalMedia)-median(C8$Ind_2_Sev))^2,2);EE
## [1] 794.21

Susceptibilidad

#-----------------------------------susceptibilidad-----------------------------------
SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]

Imin_SU<-min(SU);Imin_SU
## [1] -3.393132
Imax_SU<-max(SU);Imax_SU
## [1] 6.640584
Ind_2_SU<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
min(Ind_2_SU)
## [1] 0
max(Ind_2_SU)
## [1] 100
sd(Ind_2_SU)
## [1] 17.79983
#rbind(summary(Ind_2_SU))
#print(xtable(rbind(summary(Ind_2_SU))), include.rownames = FALSE)


#-----------------------------------k-mean--------------------------------####
C8<-cbind(Ind_2_SU,Cali)
summary(C8$Ind_2_SU)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   21.30   32.61   33.82   45.43  100.00

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Cali[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]
  Imin_SU<-min(SU)
  Imax_SU<-max(SU)
  Ind_2_SU<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
  #repeticiones
  NfinalMedia[i]=median(sample(Ind_2_SU,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 33
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_SU))^2+(median(NfinalMedia)-median(C8$Ind_2_SU))^2,2);EE
## [1] 32.39

PALMIRA

library(dplyr)

CaliyPalmira$Municipio<-as.factor(CaliyPalmira$Municipio)
Palmira<-filter(CaliyPalmira, CaliyPalmira$Municipio=="Palmira")

AFM CON TODAS LAS VARIABLES

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(Palmira[,c(19:34)],
                      group=c(#2,
                              #5,
                              #3,
                              #4,
                              #2,
                              #2, #3
                              7,
                              4,
                              5
                              #6
                              ),
                      type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  2.04287583             40.5263204                          40.52632
## comp 2  0.70280965             13.9422517                          54.46857
## comp 3  0.48852501              9.6912993                          64.15987
## comp 4  0.32139975              6.3758888                          70.53576
## comp 5  0.22235609              4.4110729                          74.94683
## comp 6  0.21048293              4.1755345                          79.12237
## comp 7  0.18525508              3.6750675                          82.79744
## comp 8  0.16106274              3.1951430                          85.99258
## comp 9  0.13244381              2.6274041                          88.61998
## comp 10 0.11596779              2.3005548                          90.92054
## comp 11 0.10876158              2.1575989                          93.07814
## comp 12 0.09656076              1.9155604                          94.99370
## comp 13 0.07852095              1.5576890                          96.55139
## comp 14 0.06938844              1.3765194                          97.92790
## comp 15 0.05687026              1.1281852                          99.05609
## comp 16 0.04758121              0.9439101                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2    Dim.3    Dim.4    Dim.5
## Probabilidad de contagio 25.03689 75.462789 32.35813 60.09339 20.54200
## Severidad                37.54348 15.833327 31.50396 25.29624 26.00522
## Susceptibilidad          37.41964  8.703884 36.13791 14.61037 53.45278
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.7225955 0.7538494 0.5811008
## Severidad                0.8805261 0.3520768 0.5469880
## Susceptibilidad          0.8769671 0.2667586 0.4634630
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.545  0.685 -0.043
## x72 0.531  0.650 -0.050
## x73 0.567  0.627 -0.084
## x74 0.519  0.420  0.237
## x75 0.409  0.167  0.495
## x76 0.451  0.559  0.070
## x77 0.457 -0.113  0.472
## x81 0.626 -0.296  0.499
## x82 0.788 -0.295 -0.069
## x83 0.632 -0.347  0.402
## x84 0.825 -0.094 -0.067
## x91 0.359 -0.188 -0.503
## x92 0.793 -0.149 -0.389
## x93 0.808 -0.156 -0.264
## x94 0.811 -0.148 -0.313
## x95 0.656 -0.310 -0.069
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.257 19.529  0.111
## x72  4.027 17.544  0.152
## x73  4.604 16.356  0.423
## x74  3.848  7.338  3.364
## x75  2.398  1.154 14.671
## x76  2.911 13.014  0.289
## x77  2.991  0.528 13.348
## x81  7.034  4.569 18.684
## x82 11.140  4.536  0.353
## x83  7.163  6.265 12.135
## x84 12.206  0.463  0.332
## x91  1.933  1.545 15.850
## x92  9.422  0.966  9.470
## x93  9.784  1.060  4.377
## x94  9.836  0.958  6.140
## x95  6.444  4.175  0.301
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.545  0.685 -0.043  4.257 19.529  0.111
## x72 0.531  0.650 -0.050  4.027 17.544  0.152
## x73 0.567  0.627 -0.084  4.604 16.356  0.423
## x74 0.519  0.420  0.237  3.848  7.338  3.364
## x75 0.409  0.167  0.495  2.398  1.154 14.671
## x76 0.451  0.559  0.070  2.911 13.014  0.289
## x77 0.457 -0.113  0.472  2.991  0.528 13.348
## x81 0.626 -0.296  0.499  7.034  4.569 18.684
## x82 0.788 -0.295 -0.069 11.140  4.536  0.353
## x83 0.632 -0.347  0.402  7.163  6.265 12.135
## x84 0.825 -0.094 -0.067 12.206  0.463  0.332
## x91 0.359 -0.188 -0.503  1.933  1.545 15.850
## x92 0.793 -0.149 -0.389  9.422  0.966  9.470
## x93 0.808 -0.156 -0.264  9.784  1.060  4.377
## x94 0.811 -0.148 -0.313  9.836  0.958  6.140
## x95 0.656 -0.310 -0.069  6.444  4.175  0.301
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=Palmira[,c(19:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.5454594 0.5305513 0.5672769 0.5186316 0.4093872 0.4510565 0.4572500 0.6262629 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.7881412 0.6319853 0.8249893 0.3593309 0.7932819 0.8083693 0.8105135 0.6560303
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 2.042876
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.3816290 0.3711987 0.3968936 0.3628591 0.2864265 0.3155803 0.3199136 0.4381630 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.5514207 0.4421667 0.5772013 0.2514048 0.5550173 0.5655732 0.5670734 0.4589897
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##        x71        x72        x73        x74        x75        x76        x77 
## 0.05578140 0.05425683 0.05801257 0.05303785 0.04186598 0.04612728 0.04676066 
##        x81        x82        x83        x84        x91        x92        x93 
## 0.06404477 0.08059925 0.06462997 0.08436752 0.03674697 0.08112496 0.08266788 
##        x94        x95 
## 0.08288716 0.06708894
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.056
## x72                     0.054
## x73                     0.058
## x74                     0.053
## x75                     0.042
## x76                     0.046
## x77                     0.047
## x81                     0.064
## x82                     0.081
## x83                     0.065
## x84                     0.084
## x91                     0.037
## x92                     0.081
## x93                     0.083
## x94                     0.083
## x95                     0.067
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  2.04287583             40.5263204                          40.52632
## comp 2  0.70280965             13.9422517                          54.46857
## comp 3  0.48852501              9.6912993                          64.15987
## comp 4  0.32139975              6.3758888                          70.53576
## comp 5  0.22235609              4.4110729                          74.94683
## comp 6  0.21048293              4.1755345                          79.12237
## comp 7  0.18525508              3.6750675                          82.79744
## comp 8  0.16106274              3.1951430                          85.99258
## comp 9  0.13244381              2.6274041                          88.61998
## comp 10 0.11596779              2.3005548                          90.92054
## comp 11 0.10876158              2.1575989                          93.07814
## comp 12 0.09656076              1.9155604                          94.99370
## comp 13 0.07852095              1.5576890                          96.55139
## comp 14 0.06938844              1.3765194                          97.92790
## comp 15 0.05687026              1.1281852                          99.05609
## comp 16 0.04758121              0.9439101                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.963253
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.546757
Ind_2_severidad2<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad2)
## [1] 0
max(Ind_2_severidad2)
## [1] 100
C8<-cbind(Ind_2_severidad2,Palmira)

summary(C8$Ind_2_severidad2);sd(C8$Ind_2_severidad2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   44.15   57.09   57.03   69.84  100.00
## [1] 18.0409

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Palmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,c(1)];Coord1_severidad
  lp_severidad<-res.mfa_severidad$eig[c(1)];lp_severidad #VALOR PROPIO
  Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
  Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
  data.frame(round(Pesos_severidad,3))
  Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
  Imin_severidad<-min(Ind_severidad);Imin_severidad
  Imax_severidad<-max(Ind_severidad);Imax_severidad
  Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
  NfinalMedia[i]=median(sample(Ind_2_severidad,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 57
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_severidad2))^2+(median(NfinalMedia)-median(C8$Ind_2_severidad2))^2,2);EE
## [1] 3.35

Índices por separado

Probabilidad de contagio

#-----------------------------------probabilidad de contagio-----------------------------------
Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]

Imin_Proba<-min(Proba);Imin_Proba
## [1] -6.214496
Imax_Proba<-max(Proba);Imax_Proba
## [1] 3.395533
Ind_2_Proba2<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) #con este índice se hace el cluster
min(Ind_2_Proba2)
## [1] 0
max(Ind_2_Proba2)
## [1] 100
C8<-cbind(Ind_2_Proba2,Palmira)
summary(C8$Ind_2_Proba2);sd(C8$Ind_2_Proba2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   51.83   64.84   64.67   77.22  100.00
## [1] 19.26239

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Palmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Proba<-CaliyPalmira.FMA$separate.analyses$`Probabilidad de contagio`$ind$coord[,1]
  Imin_Proba<-min(Proba)
  Imax_Proba<-max(Proba)
  Ind_2_Proba2<-round(((Proba-Imin_Proba)/(Imax_Proba-Imin_Proba))*100,2) #con este índice se hace el cluster
#repeticiones
  NfinalMedia[i]=median(sample(Ind_2_Proba2,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 65
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Proba2))^2+(median(NfinalMedia)-median(C8$Ind_2_Proba2))^2,2);EE
## [1] 3.33

Severidad

#-----------------------------------severidad-----------------------------------
Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]

Imin_Sev<-min(Sev);Imin_Sev
## [1] -4.397929
Imax_Sev<-max(Sev);Imax_Sev
## [1] 3.203421
Ind_2_Sev2<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
min(Ind_2_Sev2)
## [1] 0
max(Ind_2_Sev2)
## [1] 100
sd(Ind_2_Sev2)
## [1] 21.75114
#rbind(summary(Ind_2_Sev))
#print(xtable(rbind(summary(Ind_2_Sev))), include.rownames = FALSE)
C8<-cbind(Ind_2_Sev2,Palmira)
summary(C8$Ind_2_Sev2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   45.23   58.40   57.86   71.08  100.00

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Palmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  Sev<-CaliyPalmira.FMA$separate.analyses$Severidad$ind$coord[,1]
  Imin_Sev<-min(Sev)
  Imax_Sev<-max(Sev)
  Ind_2_Sev2<-round(((Sev-Imin_Sev)/(Imax_Sev-Imin_Sev))*100,2) #con este índice se hace el cluster
#repeticiones
  NfinalMedia[i]=median(sample(Ind_2_Sev2,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 58
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_Sev2))^2+(median(NfinalMedia)-median(C8$Ind_2_Sev2))^2,2);EE
## [1] 198.53

Susceptibilidad

#-----------------------------------susceptibilidad-----------------------------------
SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]

Imin_SU<-min(SU);Imin_SU
## [1] -3.712545
Imax_SU<-max(SU);Imax_SU
## [1] 4.942211
Ind_2_SU2<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
min(Ind_2_SU2)
## [1] 0
max(Ind_2_SU2)
## [1] 100
sd(Ind_2_SU2)
## [1] 20.9077
#rbind(summary(Ind_2_SU))
#print(xtable(rbind(summary(Ind_2_SU))), include.rownames = FALSE)


#-----------------------------------k-mean--------------------------------####
C8<-cbind(Ind_2_SU2,Palmira)
summary(C8$Ind_2_SU2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   26.64   41.91   42.90   57.20  100.00

ECM

NfinalMedia<-c() ##En este vector se estan almacenando las proporciones, osea, cada repeticion bootstrap
for (i in 1:1000) {
  Severidad=Palmira[,c(19:34)]
  res.mfa_severidad=CaliyPalmira.FMA
  #Datos
  SU<-CaliyPalmira.FMA$separate.analyses$Susceptibilidad$ind$coord[,1]
  Imin_SU<-min(SU)
  Imax_SU<-max(SU)
  Ind_2_SU2<-round(((SU-Imin_SU)/(Imax_SU-Imin_SU))*100,2) #con este índice se hace el cluster
#repeticiones
  NfinalMedia[i]=median(sample(Ind_2_SU2,replace = TRUE))

  }#; NfinalMedia

hist(NfinalMedia)

I_mediana=round(median(NfinalMedia,3));I_mediana
## [1] 42
#EE=I_referencia-I_mediana;EE
#EE<-round((1/1000)*sum((NfinalMedia-I_mediana)^2+((1/1000)*sum(NfinalMedia)-I_mediana)^2),2);EE
EE<-round((1/(1000-1))*sum(NfinalMedia-median(C8$Ind_2_SU2))^2+(median(NfinalMedia)-median(C8$Ind_2_SU2))^2,2);EE
## [1] 21.79

visualizacion

pdf("AFM_plots.pdf")
#png("mi_plot.png")

#windows(height=10,width=20)                     # Abre una nueva ventana grafica con las  dimensiones predeterminadas
par(cex.main=0.7,cex.lab=0.7,mfrow=c(3,4),oma = c(1,1,3,1)) 
#par(mfrow=c(4,5), mar = c(5, 3.7, 2, 0.8),oma = c(1,1,3,1))

#cali
hist(Ind_2_severidad1,col="azure2",xlab="IPRG",main = "Distribución de IPRG",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Proba,col="azure2",xlab="IPPC",main = "Distribución de IPPC",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Sev,col="azure2",xlab="IPSE",main = "Distribución de IPSE",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_SU,col="azure2",xlab="IPSU",main = "Distribución de IPSU",freq = FALSE,ylim = c(0,0.035))


#palmira
hist(Ind_2_severidad2,col="azure2",xlab="IPRG",main = "Distribución de IPRG",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Proba2,col="azure2",xlab="IPPC",main = "Distribución de IPPC",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Sev2,col="azure2",xlab="IPSE",main = "Distribución de IPSE",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_SU2,col="azure2",xlab="IPSU",main = "Distribución de IPSU",freq = FALSE,ylim = c(0,0.035))

#mtext("Índices Heuristicos", side = 3, line = -1, outer = TRUE)
mtext("Índices AFM de Cali", side = 3, line = 0, outer = TRUE,cex=0.7,font=0.6)
mtext("Índices AFM de Palmira", side = 3, line = -16.8, outer = TRUE,cex=0.7,font=0.6)
mtext("Índices AFM de Cali y Palmira", side = 3, line = -33, outer = TRUE,cex=0.7,font=0.6)


#Cali y palmira
hist(Ind_2_severidad3,col="azure2",xlab="IPRG",main = "Distribución de IPRG",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Proba3,col="azure2",xlab="IPPC",main = "Distribución de IPPC",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_Sev3,col="azure2",xlab="IPSE",main = "Distribución de IPSE",freq = FALSE,ylim = c(0,0.035))
hist(Ind_2_SU3,col="azure2",xlab="IPSU",main = "Distribución de IPSU",freq = FALSE,ylim = c(0,0.035))
dev.off()
## png 
##   2