carga de datos

library(readxl)
library(forecast)
library(magrittr)
SERIEIVAE <- read_excel("~/EMA1182022/IVAE/IVAE_SLV.xlsx",col_types = c("skip", "numeric"), skip = 5)

SERIEIVAE.ts <- ts(data = SERIEIVAE, start = c(2009, 1), frequency = 12)
SERIEIVAE.ts %>% autoplot(main = "IVAE, El Salvador 2009-2021[marzo]", xlab = "Años/Meses", ylab = "Indice")

Yt <- SERIEIVAE.ts

Estimación del modelo de Holt Winters Estacional Clase

library(forecast)
Modelo_HoltWinters <-
  HoltWinters(Yt, seasonal = "multiplicative", optim.start = c(.9, .9, .9))

Modelo_HoltWinters
## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = Yt, seasonal = "multiplicative", optim.start = c(0.9,     0.9, 0.9))
## 
## Smoothing parameters:
##  alpha: 0.8408163
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##            [,1]
## a   117.0799442
## b     0.1600306
## s1    0.9502255
## s2    1.0233274
## s3    1.0518154
## s4    0.9900276
## s5    1.0007537
## s6    0.9807088
## s7    0.9600206
## s8    1.0149628
## s9    1.0915423
## s10   0.9796752
## s11   0.9584676
## s12   0.9994880

Generación del pronostico

Pronostico<-forecast(Modelo_HoltWinters,h=12,level=c(.95))
Pronostico
##          Point Forecast     Lo 95    Hi 95
## Apr 2021       111.4044 105.94952 116.8593
## May 2021       120.1386 112.77972 127.4976
## Jun 2021       123.6515 114.83356 132.4694
## Jul 2021       116.5461 107.01096 126.0813
## Aug 2021       117.9689 107.30373 128.6341
## Sep 2021       115.7630 104.33417 127.1918
## Oct 2021       113.4746 101.36814 125.5810
## Nov 2021       120.1312 106.57272 133.6897
## Dec 2021       129.3698 114.12877 144.6109
## Jan 2022       116.2681 101.78191 130.7543
## Feb 2022       113.9046  98.99575 128.8134
## Mar 2022       118.9394  81.61739 156.2614
Pronostico %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")

Aproximación por Espacios de los Estados

Pronostico2<-hw(Yt, h = 12, level = c(.95), seasonal = "multiplicative", initial = "optimal")
Pronostico2
##          Point Forecast     Lo 95    Hi 95
## Apr 2021       107.4928  99.59377 115.3918
## May 2021       115.3370 106.85846 123.8155
## Jun 2021       115.6946 107.18632 124.2029
## Jul 2021       109.6301 101.56399 117.6962
## Aug 2021       112.2047 103.94477 120.4646
## Sep 2021       110.2284 102.10923 118.3476
## Oct 2021       107.9393  99.98348 115.8951
## Nov 2021       114.4306 105.99022 122.8710
## Dec 2021       122.6459 113.59234 131.6994
## Jan 2022       108.5830 100.56060 116.6054
## Feb 2022       107.1239  99.20182 115.0460
## Mar 2022       113.1678 104.79016 121.5455
Pronostico2 %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")

Estimación del modelo de Holt Winters Estacional Tarea Aditivo

library(forecast)
Modelo_HoltWinters <-
  HoltWinters(Yt, seasonal = "additive", optim.start = c(.99, .99, .99))

Modelo_HoltWinters
## Holt-Winters exponential smoothing with trend and additive seasonal component.
## 
## Call:
## HoltWinters(x = Yt, seasonal = "additive", optim.start = c(0.99,     0.99, 0.99))
## 
## Smoothing parameters:
##  alpha: 0.898148
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##            [,1]
## a   116.4534518
## b     0.1600306
## s1   -4.0691412
## s2    3.1366975
## s3    4.4287527
## s4   -1.9042915
## s5   -0.4459172
## s6   -1.9969246
## s7   -3.7516231
## s8    2.1866170
## s9    9.7691060
## s10  -2.4926728
## s11  -4.6818571
## s12   0.5665482

Generación del pronostico

Pronostico<-forecast(Modelo_HoltWinters,h=12,level=c(.99))
Pronostico
##          Point Forecast     Lo 99    Hi 99
## Apr 2021       112.5443 105.59550 119.4932
## May 2021       119.9102 110.57010 129.2503
## Jun 2021       121.3623 110.12892 132.5957
## Jul 2021       115.1893 102.33860 128.0400
## Aug 2021       116.8077 102.52164 131.0937
## Sep 2021       115.4167  99.82689 131.0065
## Oct 2021       113.8220  97.02938 130.6147
## Nov 2021       119.9203 102.00538 137.8352
## Dec 2021       127.6628 108.69191 146.6338
## Jan 2022       115.5611  95.58993 135.5322
## Feb 2022       113.5319  92.60830 134.4556
## Mar 2022       118.9404  97.10577 140.7750
Pronostico %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")

Aproximación por Espacios de los Estados

Pronostico2<-hw(Yt, h = 12, level = c(.99), seasonal = "additive", initial = "optimal")
Pronostico2
##          Point Forecast     Lo 99    Hi 99
## Apr 2021       112.6516 106.12788 119.1753
## May 2021       118.9992 109.77306 128.2253
## Jun 2021       119.5224 108.22210 130.8227
## Jul 2021       114.1081 101.05877 127.1574
## Aug 2021       116.5251 101.93444 131.1157
## Sep 2021       115.2657  99.28135 131.2501
## Oct 2021       113.7033  96.43692 130.9697
## Nov 2021       119.6967 101.23673 138.1566
## Dec 2021       127.3059 107.72473 146.8871
## Jan 2022       115.6947  95.05274 136.3366
## Feb 2022       113.0874  91.43631 134.7385
## Mar 2022       120.1331  97.51756 142.7486
Pronostico2 %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")

Estimación del modelo de Holt Winters Estacional Tarea Mutiplicativo

library(forecast)
Modelo_HoltWinters <-
  HoltWinters(Yt, seasonal = "multiplicative", optim.start = c(.99, .99, .99))

Modelo_HoltWinters
## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = Yt, seasonal = "multiplicative", optim.start = c(0.99,     0.99, 0.99))
## 
## Smoothing parameters:
##  alpha: 0.840818
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##            [,1]
## a   117.0799398
## b     0.1600306
## s1    0.9502257
## s2    1.0233276
## s3    1.0518153
## s4    0.9900274
## s5    1.0007534
## s6    0.9807087
## s7    0.9600206
## s8    1.0149629
## s9    1.0915425
## s10   0.9796753
## s11   0.9584675
## s12   0.9994880

Generación del pronostico

Pronostico<-forecast(Modelo_HoltWinters,h=12,level=c(.99))
Pronostico
##          Point Forecast     Lo 99    Hi 99
## Apr 2021       111.4044 104.23548 118.5734
## May 2021       120.1387 110.46738 129.8099
## Jun 2021       123.6514 112.06275 135.2401
## Jul 2021       116.5461 104.01475 129.0774
## Aug 2021       117.9689 103.95243 131.9854
## Sep 2021       115.7630 100.74293 130.7830
## Oct 2021       113.4746  97.56399 129.3852
## Nov 2021       120.1312 102.31232 137.9501
## Dec 2021       129.3699 109.33965 149.4001
## Jan 2022       116.2681  97.23000 135.3062
## Feb 2022       113.9045  94.31102 133.4981
## Mar 2022       118.9394  69.88995 167.9888
Pronostico %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")

Aproximación por Espacios de los Estados

Pronostico2<-hw(Yt, h = 12, level = c(.99), seasonal = "multiplicative", initial = "optimal")
Pronostico2
##          Point Forecast     Lo 99    Hi 99
## Apr 2021       107.4928  97.11173 117.8738
## May 2021       115.3370 104.19432 126.4796
## Jun 2021       115.6946 104.51281 126.8764
## Jul 2021       109.6301  99.02943 120.2308
## Aug 2021       112.2047 101.34932 123.0600
## Sep 2021       110.2284  99.55799 120.8989
## Oct 2021       107.9393  97.48358 118.3950
## Nov 2021       114.4306 103.33807 125.5231
## Dec 2021       122.6459 110.74752 134.5442
## Jan 2022       108.5830  98.03978 119.1262
## Feb 2022       107.1239  96.71251 117.5353
## Mar 2022       113.1678 102.15770 124.1780
Pronostico2 %>% autoplot(main = "Pronostico IVAE, El Salvador 2009-2022[marzo]", xlab = "Años/Meses", ylab = "Indice")